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SUMMARY

TP53 is the most frequently mutated gene in human
cancer, and small-molecule reactivation of mutant
p53 function represents an important anticancer
strategy. A cell-based, high-throughput small-mole-
cule screen identified chetomin (CTM) as a mutant
p53 R175H reactivator. CTM enabled p53 to transac-
tivate target genes, restored MDM2 negative regula-
tion, and selectively inhibited the growth of cancer
cells harboringmutant p53 R175H in vitro and in vivo.
We found that CTM binds to Hsp40 and increases
the binding capacity of Hsp40 to the p53 R175H
mutant protein, causing a potential conformational
change to a wild-type-like p53. Thus, CTM acts as a
specific reactivator of the p53 R175H mutant form
through Hsp40. These results provide new insights
into the mechanism of reactivation of this specific
p53 mutant.

INTRODUCTION

The tumor suppressor p53 is mutated in at least half of human

cancers (Joerger and Fersht, 2008; Levine and Oren, 2009).

Loss of p53 function plays a pivotal role in the initiation as well

as the progression of cancers. Recent large-scale genomics

analysis found that some cancer types exhibit very high fre-

quencies of p53 mutation, including ovarian cancer (95%), lung

squamous cell carcinoma (84%), head and neck cancer (67%),

and esophageal adenocarcinoma (65%) (Lawrence et al.,

2014). p53 functions as a transcription factor and is activated

in response to various cellular stresses, such as DNA damage,

oncogene activation, and hypoxia (Joerger and Fersht, 2008;
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Levine and Oren, 2009). Once activated, p53 induces its down-

stream target genes and promotes cell-cycle arrest, apoptosis,

senescence, and DNA repair (Allen et al., 2014; Joerger and

Fersht, 2008; Levine and Oren, 2009). Thus, p53 is a tumor sup-

pressor gene and is frequently called the guardian of the genome

(Lane, 1992). The majority of clinically useful traditional anti-

cancer drugs includes DNA-damaging agents, and the activities

rely on functional wild-type (WT) p53 for anticancer effects. In

addition, mutant p53 has a gain-of-function phenotype that pro-

motes more aggressive cancer forms. Thus, cancer cells

harboring p53 mutants have been reported to exhibit chemore-

sistance to many conventional anticancer agents (Muller and

Vousden, 2014; Willis et al., 2004). This dramatic dependence

on functional p53 argues that restoring p53 function is an impor-

tant approach for cancer therapy, and several earlier studies

have reported targeting mutant p53 using small molecules,

peptides, and adenovirus (Chen et al., 2010; Hong et al., 2014;

Mandinova and Lee, 2011).

In this study, we have identified a natural compound, chetomin

(CTM) from a fungus extract as a novel p53 R175H mutant reac-

tivator in a cell-based, high-throughput screen. We found that

CTM restores p53 function, and can transactivate and induce

p53 target genes in vitro and in vivo through the p53-heat-shock

protein 40 (Hsp40) axis.
RESULTS

Identification of CTM as a Mutant p53 R175H
Reactivator
To identify small molecules that reactivate mutant p53, a lucif-

erase reporter-based, high-throughput chemical screen against

the R175H structural mutant was performed. For the screen,

we established a stable cell line with mutant p53 R175H and a

luciferase reporter carrying the p53 DNA binding site of the

PUMA promoter in p53-null H1299 lung cell carcinoma cells
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(H1299-mtp53 R175H/PUMA-luc). We first verified the respon-

siveness of this luciferase reporter cell line by infection with

Ad-p53 expressing WT p53, which significantly increased lucif-

erase activity, whereas treatment with Ad-GFP showed no effect

(Figure 1A). We then performed high-throughput chemical

screening, as outlined in Figure 1B, with a chemical library con-

taining 20,000 compounds and 36,256 natural extracts (from the

National Cancer Institute [NCI] Natural Products Repository)

to identify compounds that increase luciferase activity of the

PUMA promoter. Five top hits (#1–5) that consistently showed

more than 2.5-fold increased luciferase activity compared with

DMSO control were chosen (Figure 1C). All five candidates

were from the fungal extract library. We performed validation ex-

periments and found that fungal extracts #4 and #5 showed the

strongest effect. Extracts #4 and #5 were effective in inducing

PUMA promoter activity in a dose-dependent manner (Figures

S1A and S1B, top left), and showed significantly higher cytotoxic

effects toward mutant p53 R175H cells such as KLE, FAMPAC,

SK-BR-3, AU565, and TOV-112D than toward p53 null cells

including SK-OV-3, HCT116 p53�/�, and H1299 (Figures S1A

and S1B, middle left). Although the p53 gene in the HCT116�/�

cell line is not fully deleted, it has been reported as a p53-defi-

cient cell line (Bunz et al., 1998; Murray-Zmijewski et al., 2006).

In addition, when treated to mouse embryonic fibroblasts

(MEFs) expressing one of p53 R172H, R172P (the mouse equiv-

alent to R175 in human), and WT p53, or to p53 null MEFs, ex-

tracts #4 and #5 were both able to induce significant cell death

only in the mutants p53 R172P and R172H MEFs, unlike the

known mutant-p53 reactivator MIRA-1 (Bykov et al., 2005) (Fig-

ures S1A and S1B, bottom left). In response to extract #4, mRNA

and protein expression levels of p53 target genes such as p21

and PUMA were induced in cancer cell lines that harbor mutant

p53 R175H, while there was little effect in cancer cells with WT

p53 or in p53 null cells. Extract #5 also showed similar results

in protein expression level of p53 target genes (Figures S1A

and S1B, right). Based on these results, extracts #4 and #5

were chosen for further investigation.

To identify the active molecule(s) from the natural extracts,

we fractionated the extract #4 (fractions 1–7) and #5 (fractions

1–9) by high-performance liquid chromatography (HPLC) (Fig-

ure 1D) and tested PUMA promoter reporter activity in H1299-

mtp53 R175H/PUMA-luc cells. Treatment with fraction 4 of

extract #4 or fraction 6 of extract #5, respectively, demonstrated

the highest luciferase activity (Figure 1D). We then analyzed

these two fractions by nuclear magnetic resonance spectros-

copy, and as a result an identical small molecule, chetomin

(CTM), was identified from both fractions. CTM is produced by

several species in the fungal genus Chaetomium (Waksman

and Bugie, 1944). The structure of CTM and the 3D image of

the CTM global minimum conformation are shown in Figures

1E and 1F, respectively (Table S1). While the relative stereo-

chemistry of CTM is known, its absolute configuration has

not been determined. Thus, optical rotation calculations

were performed in a similar manner to a previous report (Cher-

blanc et al., 2011). Through using density functional theory

(DFT) with the SCRF(chloroform)-wB97XD/6–311++G(d,p) level

of theory (Chai and Head-Gordon, 2008) and assuming the

absolute stereochemistry of CTM depicted in Figure 1E, a

Boltzmann-weighted optical rotation [a]D +299� was obtained
Chemistry & Biology 22, 1206–121
(Tables S1–S4), which is of the same sign and similar magnitude

as the experimental optical rotation for CTM ([a]D
25 +278� CHCl3)

(Fujimoto et al., 2004). Therefore, the CTM absolute stereochem-

istry shown in Figure 1E is predicted to be correct. To confirm

that CTM is themolecule responsible for the activities of extracts

#4 and #5, we tested the effects of purified commercial CTM on

the PUMA promoter activity in H1299-mtp53 R175H/PUMA-luc

cells. As a result, CTM indeed increased PUMA promoter activity

in a dose-dependent manner (Figure 1G). Meanwhile, it did not

show any effect on NF-kB luciferase activity (Figure S1C). These

results suggest that CTM is a strong candidate small molecule

capable of restoring p53 activity from mutant p53 R175H.

Anticancer Effects and Induction of p53TargetGenesby
CTM in Cancer Cell Lines Expressing R175H p53Mutant
To investigate the anticancer activity of CTM, we treated human

tumor cell lines of different p53 statuses including mutant p53

R175H (structural mutation), p53 R273H (contact mutation),

WT p53, and p53 null, as well as normal cells. CTM exhibited a

higher cytotoxicity to the mutant p53 R175H cell lines than to-

ward mutant p53 R273H, WT p53, or p53 null cell lines (Fig-

ure 2A). In mutant p53 R175H cells, such as CAL-33, HuCCT1,

FAMPAC, KLE, and TOV-112D, mRNA expression of p53 target

genes such as p21, PUMA, andMDM2was significantly induced

upon CTM treatment. In fact, the level of induction was compa-

rable with that observed in WT p53 containing positive control

HCT116 cells treated with etoposide (ETO) (Figure 2B). Mean-

while, the mRNA expression level of these genes showed little

response to CTM in HCT116 (WT), H1299 (null), and PANC-1

(R273H) cells (Figure 2B). CTM also significantly increased pro-

tein expression levels of p21 and PUMA in a dose-dependent

manner in mutant p53 R175H cells, such as CAL-33, HuCCT1,

FAMPAC, and KLE (Figure 2C), whereas slight or no induction

was observed in OVCAR-3 (R248Q), A431 (R273H), HCT116

(WT), MCF7 (WT), H1299 (null), and HCT116 p53�/� (null) cells

(Figure 2D). These results suggest that CTM exerts an anticancer

effect with higher specificity toward cancer cells harboring

mutant p53 R175H.

CTM Specifically Targets Mutant p53 R175H and
Restores p53 WT-like Properties
To confirm the specificity of CTM to mutant p53 R175H, we

knocked down mutant p53 R175H by siRNA and observed at

the protein level that the induction of p53 target genes p21,

PUMA, and Noxa in response to CTM was impaired in R175H

cells, including TOV-112D, KLE, and CAL-33 (Figure 3A, top).

A similar result was also observed when p53 was knocked

down by short hairpin RNA (shRNA) in FAMPAC (R175H) cells

(Figure S2A). In contrast, introduction of mutant p53 R175H to

p53 null cells (H1299 and HCT116 p53�/�) resulted in induction

of p21 and PUMA at the protein level upon CTM treatment, while

induction of p21 or PUMA was not observed when mutant p53

R273H was introduced into HCT116 p53�/� cells (Figure 3A,

bottom). Taken together, these results demonstrate that CTM

induces p53 target genes in a mutant p53 R175H-dependent

manner.

We next investigated whether CTM restores DNA binding

activity of mutant p53 R175H protein by chromatin immuno-

precipitation (ChIP) assay. HCT116 cells containing WT p53
6, September 17, 2015 ª2015 Elsevier Ltd All rights reserved 1207



Figure 1. Identification of CTM as a Mutant p53 R175H Reactivator

(A) H1299-mutant p53 R175H cells with luciferase reporter carrying the p53 DNA binding site of PUMA promoter was generated and tested for luciferase activity

with adenovirus (Ad)-GFP or -p53. Data shown are means ± SD in triplicate and measured at the same time.

(B) Screening strategy used in this study.

(C) High-throughput chemical screening was performed in duplicate, and relative luciferase activity calculated.

(D) Fractionation of natural extracts #4 and #5 by HPLCmethods, and luciferase activity assays of resulting fractions of natural extracts. Each natural extract was

subjected to HPLC fractionation (#4, fractions 1–7; #5, fractions 1–9). Each fraction from extracts #4 and #5was analyzed by luciferase assay usingH1299-mutant

p53 R175H cells with luciferase reporter carrying the p53 DNA binding site of PUMA promoter. Cells were treated with each fraction at indicated concentrations

for 15 hr. Luciferase activity was then measured. Asterisks indicate the fractions that exhibited the highest luciferase activity. Data shown are mean ± SD in

triplicate and measured at the same time.

(E) Chemical structure of chetomin with absolute stereochemistry predicted through optical rotation calculations.

(F) Global minimum conformation of chetomin calculated using DFT at the SCRF(chloroform)-wB97XD/6-311++G(d,p) level of theory. See also Table S1.

(G) CTM was analyzed by luciferase assay using H1299-mutant p53 R175H cells with luciferase reporter carrying the p53 DNA binding site of PUMA promoter.

Cells were treated with CTM at indicated concentrations for 15 hr, after which luciferase activity was measured. Data shown are mean ± SD in triplicate and

measured at the same time. Adenoviruses Ad-GFP and Ad-p53 were used as negative and positive controls for luciferase assay, respectively. See also Figure S1.

1208 Chemistry & Biology 22, 1206–1216, September 17, 2015 ª2015 Elsevier Ltd All rights reserved



Figure 2. CTM Preferentially Suppresses Cancer Cells with p53 R175H and Induces p53 Target Genes

(A) CTM shows high anticancer activity in mutant p53 R175H cells. Normal and cancer cells including p53 WT, p53 null, mutant p53 R175H, and R273H were

treated with CTM for 24 hr at indicated concentrations. Cells were stained with sulforhodamine B andmeasured for cell viability. Error bars represent the range of

duplicates.

(B) p53 target genes are highly induced in mutant p53 R175H cells. Cancer cells (R175H: CAL-33, HuCCT1, FAMPAC, KLE, and TOV-112D; WT: HCT116; null:

H1299; R273H: PANC-1) with various statuses of p53 were treated with CTM (150 nM) for indicated times. Total RNAwas extracted and subjected to quantitative

real-time PCR with specific primers for p21, PUMA, andMDM2. HCT116 cells were treated with etoposide (50 mM) for indicated time points as a positive control.

Data shown are mean ± SD in triplicates and measured at the same time.

(C and D) CTM-mediated p53 target protein induction in mutant p53 R175H cells. Cancer cells (R175H: CAL-33, HuCCT1, FAMPAC, and KLE; R248Q: OVCAR-3;

R273H: A431; WT: HCT116; null: H1299) with various statuses of p53 were treated with CTM for 18 hr, and cell lysates were analyzed by western blotting with

indicated antibodies. Arrows mark the band corresponding to PUMA. Ad-p53 was used as a positive control.
showed significant p53 occupancy at p21, PUMA, and MDM2

promoters in response to the DNA-damaging reagent ETO, while

CTM showed little effect (Figure 3B). However, H1299 cells

transfected with mutant p53 R175H and CAL-33 (R175H) cells

showed increased p53 promoter occupancy at p21, PUMA,

and MDM2 promoters upon CTM treatment. To test whether

this was due to a CTM-specific effect, ETO was treated and

the occupancy of mutant p53 examined through ChIP assay in

H1299 cells transfected with mutant p53 R175H. As a result,

ETO treatment showed little effect on mutant p53 occupancy,

corroborating the importance of chetomin as a mutant p53-spe-

cific compound (Figure S2B). Thus, it appears that CTM can

restore DNA binding activity of mutant p53 R175H protein.
Chemistry & Biology 22, 1206–121
Notably, we observed that upon CTM treatment, the p53

protein level significantly decreased in mutant p53 R175H cells

while remaining relatively stable in OVCAR-3 (R248Q) and A431

(R273H) cells (Figures 2C and 2D). Based on this finding, we

came to suspect that the restoration of WT p53 function by

CTM might have resulted in increased negative regulation by

MDM2, leading to decreased level of the mutant p53 R175H

protein. To test this idea,weassessed the impact ofMDM2nega-

tive regulation onCTM-treatedmutant p53R175HusingNutlin-3,

a well-knownMDM2 antagonist. Nutlin-3 treatment alone did not

affect p53 protein level, whereasCTM treatment alone resulted in

a decrease in p53 level in mutant p53 R175H cells (CAL-33, KLE,

HuCCT1, and FAMPAC), but not in A431 (R273H) and OVCAR-3
6, September 17, 2015 ª2015 Elsevier Ltd All rights reserved 1209



Figure 3. Mutant p53 Reactivation Effect of

CTM Is Mediated through p53 R175H

(A) Knockdown of mutant p53 R175H impairs

induction of p53 target genes by CTM. Cells were

transfected with siRNA (si control or sip53) and

treated with CTM for 18 hr. Overexpression of

mutant p53 R175H increased the protein expres-

sion level of p53 target genes. H1299 (p53-null)

cells were transfected with pcDNA3-empty or

mutant p53 R175H plasmid. Stable cells were

treated with CTM for 18 hr. HCT116 p53�/� cells

overexpressing mutant p53 R175H or R273H by

tetracycline-inducible system were treated with

CTM (150 nM) for 18 hr. Mutant p53 was overex-

pressed by doxycycline for 48 hr prior to CTM

treatment.

(B) ChIP analysis shows that CTM treatment

restores the transactivation function of p53 in

mutant p53 R175H cells. Cells were treated with DMSO, etoposide (50 mM), or CTM (200 nM) and cross-linked. Sheared chromatin was immunoprecipitated with

p53 antibody. Eluted DNA was examined by quantitative real-time PCR using primers that specifically target p53 binding site in the promoter. Data shown are

mean ± SD in triplicate. See also Figure S2.
(R248Q) cells. However, when p53 R175H cells (CAL-33, KLE,

HuCCT1, and FAMPAC) were treated with both Nutlin-3 and

CTM, the decrease in p53 was inhibited (Figures 4A and S3A).

We also observed that MDM2 protein level was induced upon

CTM treatment, and the binding between mutant p53 and

MDM2 protein was significantly increased upon CTM treatment

but inhibited upon addition ofNutlin-3 inCAL-33 cells (Figure 4B).

Furthermore, to examine whether co-treatment of Nutlin-3 and

CTM, which appears to lead to stabilization of functionally

restored p53 R175H, might result in synergistic effects on p53

target gene induction, we checked mRNA levels of p53 target

genes through quantitative real-time PCR assay in HuCCT1 cells

and CAL-33 cells treated with either CTM or Nutlin-3 alone, or

with both CTM and Nutlin-3. As a result, while Nutlin-3 alone

did not cause an increase, co-treatment of Nutlin-3 and CTM re-

sulted in increased levels of mRNA, demonstrating additive or

synergistic effects in a gene-dependent manner (Figure S3B).

These results indicate that CTM restores mutant p53 R175H

function to WT-like p53, thus activating the induction of MDM2,

which then binds to and negatively regulates p53 R175H.
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Antitumor Effect of CTM in Xenograft Tumor Model
To investigate whether CTM can reactivate the mutant p53

R175H in vivo, mouse xenografts of various tumor cell lines

carrying mutant p53 R175H, p53 R273H, or p53 null were gener-

ated. In mutant p53 R175H-carrying TOV-112D and CAL-33

tumors, CTM treatment resulted in significant reduction of tumor

volume (up to 71% and 59% at end point, respectively) and

weight (71% and 51% at end point, respectively) (Figure 5A).

However, CTM did not inhibit in vivo tumor growth of A431

(R273H) (Figure 5B) and H1299 (p53 null) (Figure 5C) tumors.

These findings further support the idea that the antitumor effect

of CTM is specific to the p53 R175H mutation.

Hsp40 Is a CTM Target and Mediator of Mutant p53
R175H Reactivation
To explore the mechanism by which CTM affects mutant

p53 R175H, we investigated whether CTM could directly bind

to mutant p53 R175H protein. However, in a gel-shift assay

to assess DNA binding activity of mutant p53 R175H upon

CTM treatment, no increase in direct DNA binding ability was
Figure 4. CTM Restores p53 WT-like Prop-
erties in Mutant p53 R175H

(A) p53 level is decreased upon CTM treatment

due to MDM2-negative regulation in mutant p53

R175H cells, but not in mutant p53 R275H and

R248Q cells. Cells were treated with Nutlin-3 and/

or CTM at indicated concentrations and time.

(B) CTM treatment increased MDM2 protein level

and binding capacity to p53 protein in R175H

cells. Cells were treated with etoposide, CTM,

and/or Nutlin-3 as described, and co-immuno-

precipitation was performed with cell lysate using

anti-p53 or -MDM2 antibody. Input and co-

immunoprecipitate (IP) were analyzed with indi-

cated antibodies. See also Figure S3.

5 Elsevier Ltd All rights reserved



Figure 5. CTM Suppresses Tumor Growth

In Vivo in a p53 R175H Mutant-Dependent

Manner

(A–C) Various types of p53 cells were used for

xenograft model: (A) TOV-112D (p53-R175H) and

CAL-33 (p53-R175H); (B) A431 (p53-R273H); and

(C) H1299 (p53-null). Tumors were allowed to

grow to 50 mm3 before intraperitoneal injection of

DMSO or CTM at 1 mg/kg/day for indicated days.

Tumor volume and weight were measured.

Numbers of mice examined are as follows:

TOV-112D (DMSO control: n = 7 and CTM-

treated: n = 6), CAL-33 (DMSO control: n = 9 and

CTM-treated: n = 9), A431 (DMSO control: n = 6

and CTM-treated: n = 6), H1299 (DMSO control:

n = 8 and CTM-treated: n = 8). Data shown

are mean ± SD. Student’s t test: *p < 0.001,

**p < 0.005.
observed (Figures S4A and S4B). This suggests that CTM does

not bind to or directly affect the mutant p53 R175H protein.

Thus, we investigated potential CTM binding partners with a

co-immunoprecipitation-coupled mass spectrometry analysis

to identify the direct targets of CTM (Figure S4C). Mass spec-

trometry data demonstrated that most known p53 binding

partners were decreased in unique peptide number upon CTM

treatment, a finding in accordance with the previously observed

decrease in p53 protein level (Table S5) (Avantaggiati et al., 1997;

Bates et al., 2005; Gaiddon et al., 2001; Lee et al., 2002; Yuan

et al., 2010). However, upon CTM treatment, some p53 binding

partners such as YBX1, WDR33, and Hsp40 homolog (DNAJC8)

showed increased binding to p53 (King et al., 2001; Okamoto

et al., 2000; Stelzl et al., 2005).

As previously reported, heat-shock proteins, which have been

identified as p53 binding partners, function as chaperone or co-

chaperone proteins to regulate protein conformation and stabil-

ity (King et al., 2001; Rosser and Cyr, 2007; Sugito et al., 1995).

Therefore, we focused on the role of Hsp40 in reactivation of

mutant p53 R175H upon CTM treatment. Consistent with the

mass spectrometry data, only Hsp40, but not Hsp90, showed

increased binding affinity to mutant p53 upon CTM treatment

(Figure 6A). The induction of Hsp40 protein was observed only

upon CTM treatment and not in response to treatments with

known DNA-damaging agents (ETO and camptothecin) or the

known mutant p53 reactivators (MIRA-1 [Bykov et al., 2005]
Chemistry & Biology 22, 1206–1216, September 17, 2015 ª
and PRIMA-1 [Bykov et al., 2002]) (Fig-

ure S4D). Notably, knockdown of Hsp40

by siRNA impaired the protein level in-

duction of p53 target genes upon CTM

treatment (Figure 6B). We also observed

that CTM enhanced Hsp40 binding to

mutant p53 R175H protein in a dose-

dependent manner in an in vitro binding

assay using recombinant proteins (Fig-

ure 6C, top), which was not seen with

PRIMA-1 or MIRA-1 (Figure S4E). Inter-

estingly, this in vitro binding assay also

showed that upon CTM addition, p53-

R175H/Hsp40 complex was detected
byWT-specific antibody PAb1620 (Figure 6C, bottom). Intrigued

by these observations, we next determined the effects of CTM

on the DNA binding activity of p53 R175H in the presence of

Hsp40. When using purified recombinant Hsp40 and mutant

p53-DBD-R175H for gel-shift assay, CTM showed little effect.

However, when the nuclear extract of TOV-112D (R175H) cell

was used to repeat this experiment, CTM treatment increased

the DNA binding activity of p53-DBD-R175H (Figure S5). As

another approach, using a Biacore assay, we confirmed that

CTM binds to Hsp40 with a KD value of 3.7 mM based on surface

plasmon resonance data analysis (Figures 6D and S6A). Next,

the binding affinity of CTM toward Hsp40 and p53 R175H was

examined. Varying concentrations of CTM were injected in

addition to Hsp40 over immobilized p53R175H. Although the

addition of CTM resulted in a slight increase of binding affinity

between Hsp40 and p53 R175H, the level of increase was not

sufficient to determine the KD toward this complex (Figure S6B).

This observation is consistent with the aforementioned gel-shift

assay results, where little effect of CTM was observed when

testingwith purifiedHsp40 and p53R175Hproteins. The positive

gel-shift assay result obtained when using nuclear extract of

TOV-112D (R175H) cell (Figure S5) implies the involvement of a

yet unidentified factor(s) present in vivo that contributes to the

higher potency of CTM in vivo. Binding of CTM to mutant p53

R175H andHsp70were also tested, but no significant interaction

was detected. In addition, no interaction was detected between
2015 Elsevier Ltd All rights reserved 1211



Figure 6. Binding of CTM to the Hsp40 Protein Is Required for the CTM-Mediated Reactivation of Mutant p53 R175H

(A) Hsp40 expression is increased and its binding capacity to mutant p53 is enhanced upon CTM treatment in CAL-33 (R175H) cells. Cells were treated with CTM

(200 nM) for 8 hr and co-immunoprecipitation was performed with cell lysate using anti-p53 antibody. Input and co-IP were analyzed with indicated antibodies.

(B) Hsp40 depletion impairs protein induction of p53 target genes upon chetomin treatment. CAL-33 cells were transfected with siRNA (si control and si-p53) and

treated with CTM for 18 hr. Cell lysates were analyzed by western blotting.

(C) CTM treatment increases the binding capacity of Hsp40 protein to mutant p53 R175H in vitro. Top: Recombinant proteins of mutant p53 R175H (250 nM) and

His-Hsp40 (1 mM)were incubated with or without CTMat increasing concentrations (1, 2, and 4 mM), and pull-down assayswere performedwith anti-p53 antibody

DO1, which recognizes bothWT andmutant p53. Bottom: Recombinant proteins of His-mutant p53 R175H (55 nM) and His-Hsp40 (1 mM) were incubated with or

without CTM (4 mM), and pull-down assays were performed with either anti-p53 antibody DO1 or anti-p53 antibody PAb1620 (WT specific).

(D) CTM binds to Hsp40 in a concentration-dependent manner. Physical interaction between CTM and Hsp40, mt-p53 R175H, or Hsp70 was tested through

Biacore assay. A 2-fold dilution series of CTM, ranging from 0 to 40 mM, was tested for binding. In addition, physical interaction between Hsp40 and either

NSC319726 (40 mM) or etoposide (40 mM) was tested through Biacore assay. Each series of experiments was tested in duplicate.

See also Figures S4–S6 and Table S5.
Hsp40 and other small molecules such as ETO or NSC319726, a

previously reported reactivator of mutant p53 R175H (Yu et al.,

2012) (Figure 6D). These results corroborate the specificity of

CTM toward Hsp40 and p53 R175H in the process of reactivat-

ing p53 R175H.

DISCUSSION

Several small molecules, including PRIMA-1, MIRA-1, and

CP-31398, have been reported as mutant p53 reactivators

(Bykov et al., 2002, 2005; Foster et al., 1999). However, only

PRIMA-1MET (PRIMA-1 analog), also known as APR-246, is

currently in clinical trials (phase Ib, NCT02098343) and has a
1212 Chemistry & Biology 22, 1206–1216, September 17, 2015 ª201
report on a completed phase I study (Hoe et al., 2014). Thus,

discovering small molecules that restore function to mutant

p53 remains an important research goal for generating drug

leads and developing new therapeutics. Mutant p53 has several

hot-spot mutations, categorized into two classes: contact muta-

tions and structural mutations (Bullock and Fersht, 2001; Joerger

and Fersht, 2008). While either type results in the loss of p53

transactivation function, contact mutations, such as R248 and

R273, directly inhibit the ability of p53 to bind DNA, while struc-

tural mutations, such as R175, alter the conformation of p53

protein to abrogate DNA binding.

Recently, two compounds, NSC319726 (Yu et al., 2012) and

stictic acid (Wassman et al., 2013), were reported as mutant
5 Elsevier Ltd All rights reserved



p53 reactivators. Themechanism ofmutant p53 R175H reactiva-

tion by NSC319726 was reported to be through its zinc ion-

chelating and redox-changing function. Stictic acid (Wassman

et al., 2013) was identified through an ensemble-based virtual

screening approach, and its mechanism of reactivation is

through docking of the small molecule in the open L1/S3 p53

binding pocket around Cys124, Cys135, and Cys141. These

two reports indicate multiple mechanisms for reactivating

mutant p53. We also focused on the structural mutant p53

R175H with an intact DNA binding site over contact mutants,

as the likelihood of finding a small molecule effecting a p53

conformational change back to WT seemed higher than correct-

ing a contact mutant with lost DNA binding ability. In addition,

among the various hot-spot mutations, R175H is the most

frequent (Leroy et al., 2013).

In this study we examined 20,000 chemical compounds and

36,256 natural product extracts, and identified CTM through

cell-based screening using a luciferase reporter assay. CTM

indeed induced p53 target genes such as p21, PUMA, and

MDM2, and showed anticancer effects in an R175H-specific

manner in vitro and in vivo. Moreover, its ability to induce

MDM2 resulted in increased p53-MDM2 binding and p53 degra-

dation, which was inhibited by Nutlin-3. CTM also increased p53

occupancy on p53 target promoter binding sites in mutant

p53 R175H cells. The conformational change of the mutant

p53 R175H to WT was shown by its increased detection by

WT p53-specific antibody, PAb1620. Collectively, these results

strongly suggest that CTM can reactivate mutant p53 and

restore it to WT-like function, including restoration of MDM2

negative regulation.

We observed that R175H mutant-harboring cell lines are in

general more sensitive to CTM than cell lines with R273Hmutant

or WT p53 (Figure 2A). In addition, among different R175H

mutant cells there was a different degree of sensitivity to CTM,

suggesting that there may be more factors other than R175H

mutation contributing to the sensitivity toward CTM, although

further details remain to be elucidated. For instance, it was pre-

viously reported that CTM exerts antitumor activity through

targeting the interactions between HIF-1a and p300 (Kessler

et al., 2010; Kung et al., 2004; Staab et al., 2007) in conditions

whereby HIF-1a is stabilized. Although our experiments were

not carried out in such conditions, and thus argues against this

possibility, we still cannot exclude the possibility of other factors

contributing to the antitumor effects of CTM observed in our set-

tings. CTM is a member of the epidithiodiketopiperazine family

of natural products. Chaetocin, another member of this family,

has been previously reported to show activities similar to those

of CTM in targeting HIF-1a and p300 interaction (Cook et al.,

2009). When we tested the effects of chaetocin, we observed ef-

fects similar to those of CTM on p53 R175H destabilization and

p21 gene induction in p53 R175H-harboring cells (Figure S6C).

This result demonstrates the value of CTM as a lead compound.

The mechanism by which CTM reactivates mutant p53 R175H

does not appear to involve direct binding between CTM and p53

R175H protein. However, mass spectrometry results suggested

Hsp40 as a promising target of CTM, a possibility further sup-

ported by previous reports showing that Hsp40 can bind to WT

and mutant p53 proteins and act as a chaperone to stabilize

unfolded p53 proteins (King et al., 2001; Rosser and Cyr, 2007;
Chemistry & Biology 22, 1206–121
Sugito et al., 1995). We demonstrated that CTM increases the

binding of Hsp40 to mutant p53 R175H upon treatment, and

that reactivation of mutant p53 R175H is suppressed by knock-

down of Hsp40. We also confirmed through Biacore assay that

CTM directly binds Hsp40 protein and that the CTM-Hsp40-

p53 R175H in vivo complex can be recognized by the WT

p53-specific antibody PAb1620. All of these findings indicate

that CTM-Hsp40 functions to revert mutant p53 R175H to

WT-like conformation. Previous studies have described other

small molecules that reactivated mutant p53 through heat-

shock proteins. PRIMA-1 treatment resulted in translocation of

Hsp90a to the nucleus, and enhanced binding between Hsp90

a and mutant p53 (Rehman et al., 2005). Similarly, its analog

PRIMA-1MET is reported to induce Hsp70 and co-localization

with mutant p53 in the nucleoli (Rokaeus et al., 2007). Thus,

these studies support a role for heat-shock proteins in the refold-

ing and reactivation of mutant p53 protein.

In conclusion, this study shows that CTM can restore mutant

p53 R175H to WT-like p53 function through direct interaction

and activation of Hsp40, demonstrating the critical role of

Hsp40 in reactivating mutant p53 R175H in cancer cells, and

providing novel insights into mutant p53 R175H reactivation.

SIGNIFICANCE

TP53 gene is mutated in more than 50% of human cancers,

including ovarian cancer, head and neck cancer, and lung

cancer. Among the most frequently found mutations is

R175H, which alters the conformation of p53 and disrupts

its negative regulation, as well as target gene induction,

thus promoting tumorigenesis. Therefore, pharmacologi-

cally restoring mutant p53 R175H to WT activity is antici-

pated to be an effective strategy for targeting cancer.

Here we report CTM as a novel reactivator of mutant p53

R175H identified by high-throughput, cell-based screening

of chemical compounds and natural product libraries. CTM

restores DNA binding activity of mutant p53 R175H, and

also restoresMDM2-mediated negative regulation ofmutant

p53 R175H. Furthermore, our findings suggest that the

mechanism of action of chetomin requires interaction with

Hsp40. Therefore, we not only report a lead compound for

mutant p53 reactivator drug discovery, but also present a

novel approach that involves heat-shock protein in restoring

mutant p53 function for anticancer therapeutics.

EXPERIMENTAL PROCEDURES

Cell Lines and Culture Conditions

Cells were cultured in media containing 10% fetal bovine serum (Gibco),

100 U/ml penicillin, and 10 mg/ml streptomycin at 37�C. DMEM (Cellgro)

was used for FAMPAC (human pancreatic cancer cells), HCT116 p53+/+ (hu-

man colorectal cancer cells), HCT116 p53�/� (human colorectal cancer cells),

SK-OV-3 (human ovarian cancer cells), H1299 (human lung cancer cells), PC3

(human prostate cancer cells), PANC-1 (human pancreatic cancer cells), A431

(human epidermoid carcinoma cells), A549 (human lung cancer cells), MCF7

(human breast cancer cells), and TOV-112D (human ovarian cancer cells).

DMEM/F12 (Cellgro) medium was used for CAL-33 (human tongue cancer

cells), KLE (human endometrial cancer cells), and SK-BR-3 (human breast

cancer cells). RPMI 1640 (Cellgro) was used for AU-565 (human breast cancer

cells), HuCCT1 (human bile duct cancer cells), and RXF393 (human renal cell

carcinoma). MEM (Cellgro) was used for CCD-8Lu (lung fibroblast), WI-38
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(lung fibroblast), and CCD-18Co (colon fibroblast). Various p53 statuses of

MEFs (WT p53, R172P, R172H, and p53 null) were kindly provided by Z.

Yuan (Harvard School of Public Health). The HCT116 p53�/� with tetracy-

cline-inducible mutant p53-R175H and -R273H were gifts from X. Chen

(University of California, Davis). p53 statuses of the cell lines were previously

reported in reference websites (http://p53.free.fr/, http://www-p53.iarc.fr,

and http://cancer.sanger.ac.uk/cancergenome/projects/cell_lines/) or con-

firmed as previously documented (Sjogren et al., 1996).

Plasmids and Adenovirus Constructs

The pcDNA3-Flag-HA mutant p53 R175H plasmid was kindly provided by X.

Chen (University of California, Davis). p53-Expressing adenovirus (Ad-p53)

and GFP-expressing adenovirus (Ad-GFP) were generated as previously re-

ported (He et al., 1998). For the PUMA-Luc reporter plasmid, p53 binding

site of the PUMA promoter in a plasmid obtained from J. Manfredi (originally

from Lin Zhang) was subcloned into pGL4.20-Luc vector (Yu et al., 2001).

Screening

H1299 cells were transfected with pcDNA3-Flag-HA mutant p53 R175H and

luciferase reporter plasmid pGL4.20-PUMA-luc carrying the p53 responsive

element of human PUMA promoter to establish a stable cell line, H1299-

mtp53 R175H/PUMA-luc cells. High-throughput chemical screening was

performed as previously described with modifications (Raj et al., 2011). Cells

were plated in 25 ml of medium containing 9,000 cells per well into a 384-

well plate using an automated plate filler. Twenty-four hours after plating,

20,000 small molecules (compound library fromChembridge) or 36,256 natural

extracts (from the NCI Natural Products Repository) were pin-transferred from

stock plates to the 384-well assay plates containing cells. The final concentra-

tion of small molecule and natural extract were 10 mM and 1 mg/ml, respec-

tively. The assay plates were incubated with compounds or natural extracts

for 15 hr, and luciferase activities were measured using 25 ml of luciferase

assay reagent (Steady-Glo Luciferase Assay System; Promega). Lumines-

cence was measured with an automated plate reader after shaking the assay

plate at room temperature for 3 min to allow full signal generation from the

lysed cells. All small molecules and natural extracts were tested in duplicate.

Chemicals

The following chemicals were purchased and dissolved in DMSO: CTM

(Sigma-Aldrich), etoposide (Sigma-Aldrich), camptothecin (Sigma-Aldrich),

PRIMA-1 (Sigma-Aldrich), MIRA-1 (Santa Cruz Biotechnology), Nutlin-3

(EMD Millipore), and NSC319726 (Selleck Chemicals).

Cell Viability Assay

Cell viability was determined by the Sulforhodamine B Based In Vitro Toxi-

cology Assay Kit (Sigma-Aldrich). Cells were plated in six-well plates, and after

reaching 60%–70% confluency the cells were treated with chemicals at con-

centrations and hours indicated in the figures and figure legends. Staining and

quantitative analysis were performed according to the manufacturer’s

method. All experiments were performed in duplicate.

Total RNA Extraction and Quantitative Real-Time PCR Analysis

Total RNA was extracted using a Qiagen RNA extraction kit, converted to

cDNA using an iScript cDNA Synthesis Kit (Bio-Rad), and analyzed by quanti-

tative PCR (qPCR) using gene-specific primers. Primer sequences used were

as follows: p21 (forward: GGCGGCAGACCAGCATGACAGATT; reverse:

GCAGGGGGCGGCCAGGGTAT), PUMA (forward: GACCTCAACGCACAGT

ACGAG; reverse: AGGAGTCCCATGATGAGATTGT), MDM2 (forward: GAAT

CATCGGACTCAGGTACATC; reverse: TCTGTCTCACTAATTGCTCTCCT),

and 36B4 (forward: CAGATTGGCTACCCAACTGTT; reverse: GGGAAGGTG

TAATCCGTCTCC). qPCRwas performed using an iCycler iQ5 real-time detec-

tion system (Bio-Rad) with LightCycler 480 SYBR Green I Master (Roche)

according to the manufacturer’s instructions. The quantitative value was

normalized by 36B4 expression. All experiments were performed in triplicate.

Immunoblotting

Cells were lysed with 1% Triton X-100 lysis buffer (20 mM Tris-HCl [pH 7.4],

5 mM EDTA, 10 mM Na4P2O7, 100 mM NaF, 2 mM Na3VO4, and 1% Triton

X-100) supplemented with protease inhibitor cocktail (Roche). An equal
1214 Chemistry & Biology 22, 1206–1216, September 17, 2015 ª201
amount of total cellular proteins per sample was subjected to SDS-PAGE

and transferred to a nitrocellulose membrane (Bio-Rad). Antibodies for immu-

noblotting included anti-p53 (DO-1; Santa Cruz), p21 (Cell Signaling Technol-

ogy), PUMA (Cell Signaling), MDM2 (Calbiochem), Noxa (Calbiochem), Hsp40

(Santa Cruz), Hsp90 (Enzo Life Sciences), and b-actin (Sigma). Bands were

detected using Western Lightning Plus ECL (PerkinElmer) or SuperSignal

West Femto Maximum Sensitivity Substrate (Thermo Scientific). All experi-

ments were performed independently at a minimum of three times.

siRNA and shRNA Experiments

Vectors expressing shRNAs (pLKO.1-shLuc and pLKO.1-shp53 [TRCN000

0003753, Sigma-Aldrich]) and small interfering RNAs (siRNAs) (siControl

[12935-499, Invitrogen], sip53 [VHS40367, Invitrogen], siHsp40 [DNAJB1,

Santa Cruz]) were used. All shRNA and siRNA constructs were introduced

into cells by transfection with Lipofectamine 2000 or 3000 (Invitrogen) and

Lipofectamine RNAiMax (Invitrogen), respectively, according to the manu-

facturer’s protocol.

Chromatin Immunoprecipitation

Cells were seeded in 10-cm dishes and began treatment of compound at 70%

confluency for 6 hr. Cells were harvested and ChIP was carried out according

to the manufacturer’s instructions using a Chromatin Immunoprecipitation

Assay Kit (EMD Millipore). Immunoprecipitation was performed at 4�C
overnight with anti-p53 antibody (DO-1; Santa Cruz). qPCR amplifications

were carried out using the following specific primers: p21 (forward: CTCA

CATCCTCCTTCTTCAG; reverse: CACACACAGAATCTGACTCCC), PUMA

(forward: GCGAGACTGTGGCCTTGTGT; reverse: CGTTCCAGGGTCCACA

AAGT), andMDM2 (forward: GGTTGACTCAGCTTTTCCTCTTG; reverse: GGA

AAATGCATGGTTTAAATAGCC). The amount of co-precipitating DNA was

normalized to inputs. All experiments were performed in triplicate.

Co-immunoprecipitation and Mass Spectrometry

Immunoprecipitation was performed as previously described (Namba et al.,

2013) with modifications. In brief, cells were washed with PBS and incubated

with PBS containing 1 mM dithiobis[succinimidyl propionate] (DSP; Thermo

Scientific) for 30 min at room temperature. The reaction was then quenched

by 10 mM Tris (pH 7.5) for 15 min at room temperature. Cells were lysed

with 0.5% Triton X-100 lysis buffer (20 mM Tris-HCl [pH 7.4], 5 mM EDTA,

10 mM Na4P2O7, 100 mM NaF, 2 mM Na3VO4, 0.5% Triton X-100) with prote-

ase inhibitor cocktail (Roche). Immunoprecipitation was performed using anti-

p53 antibody (DO-1; Santa Cruz) with Protein A/G PLUS-Agarose (Santa Cruz)

or agarose-conjugated anti-p53 antibody (DO-1 AC; Santa Cruz). Immunopre-

cipitated samples were subjected to mass spectrometry at the Taplin Biolog-

ical Mass Spectrometry Facility of Harvard Medical School.

Animal Experiments

All animal experiments were reviewed and approved by the Massachusetts

General Hospital Subcommittee on Research Animal Care. For xenograft

tumor models, cancer cell lines TOV-112D (5 3 106 cells/mouse), CAL-33

(5 3 106 cells/mouse), H1299 (1 3 107 cells/mouse), and A431 (3 3 106

cells/mouse) were injected subcutaneously into the flanks of nude mice

(NCr nude, 5–6 weeks old). Tumor dimensions were measured, and volume

was calculated by length (L) and width (W) using the formula (volume = p/

6 3 L 3 W2). Tumors were allowed to grow to 50 mm3 prior to intraperitoneal

injection of CTMat 1mg/kg for days indicated in the figures and figure legends.

Numbers of mice examined are as follows: TOV-112D (DMSO control: n = 7

and CTM-treated: n = 6), CAL-33 (DMSO control: n = 9 and CTM-treated:

n = 9), A431 (DMSO control: n = 6 and CTM-treated: n = 6), and H1299

(DMSO control: n = 8 and CTM-treated: n = 8).

Recombinant Proteins

Full-length WT p53 and p53 R175H were subcloned into pGEX-6P-1 vector.

Full-length Hsp40 (DNAJB1) was subcloned into pET-28a vector. These bac-

terial expression constructs were used to transform Escherichia coli BL21

(New England BioLabs). Cells were induced with 0.05 mM isopropylthiogalac-

toside at 25�C for 24 hr. Recombinant proteins of interest were bound to GST

beads (glutathione Sepharose 4B; GE Healthcare) or His beads (TALON Metal
5 Elsevier Ltd All rights reserved
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Affinity Resin; Clontech). GST-R175H was incubated with PreScission Prote-

ase (GE Healthcare) to purify full-length p53 proteins.

Biacore Assay and Analysis

Hsp40, mt p53 R175H, or Hsp70 was immobilized on CM5 sensor chip by

amine coupling, and compound binding was assayed through a BIAcore

3000 SPR system (GE Healthcare). CM5 sensor chips were coated with

each of the purified proteins to a final resonance value of 1,000–2,000

response units. Various concentrations of compound in binding buffer

(100 mg/ml BSA, 0.01% Triton X-100, 2%DMSO in PBS [pH 7.4]) were injected

for 90 or 180 s at a flow rate of 40 ml/min, and each series of experiments was

tested in duplicate. Sensorgram analyseswere carried out using BIAevaluation

software (GE Healthcare). All of the experiments were performed in duplicate.

In Vitro Binding and Pull-Down Assay

In vitro binding assaywas performed as previously described (King et al., 2001;

Takada et al., 2012) with some modifications. In brief, purified recombinant

p53 R175H (250 nM) or His-p53 R175H (55 nM, Thermo Scientific) and His-

Hsp40 (1 mM) in 90 ml of assay buffer (PBS [pH 7.4], BSA [100 mg/ml], 0.01%

Triton X-100) with protease inhibitor cocktail (Roche) were incubated with

the indicated concentrations of CTM in 10 ml of DMSO at 4�C overnight.

Subsequently, 900 ml of binding buffer and p53 antibody (DO-1; Santa Cruz)

with Protein A/G PLUS-Agarose (Santa Cruz) were added, followed by immu-

noprecipitation. All experiments were performed independently at a minimum

of three times.

Statistical Analysis

Statistical analysis was performed with GraphPad Prism 6 Software using

Student’s t test.
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