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This study determined retinal thinning in a mammalian model of high myopia using optical coherence
tomography (OCT) and histological sections from the same retinal tissue. High myopia was induced in
three tree shrews (Tupaia belangeri) by deprivation of form vision via lid suture of one eye, with the other
eye a control. Ocular biometry data was obtained by Ascan ultrasonography, keratometry and retinos-
copy. The Zeiss StratusOCT was used to obtain Bscans in vivo across the retina. Subsequently, eyes were
enucleated and retinas fixed, dehydrated, embedded and sectioned. Treated eyes developed a high degree
of axial myopia (�15.9 ± 2.3 D; n = 3). The OCT analysis showed that in myopic eyes the nasal retina
thinned more than the temporal retina relative to the disc (p = 0.005). Histology showed that the retinas
in the myopic eyes comprise all layers but were thinner than the retinas in normal and control eyes.
Detailed thickness measurements in corresponding locations of myopic and control eyes in superior nasal
retina using longitudinal reflectivity profiles from OCT and semithin vertical histological sections showed
the percentage of retinal thinning in the myopic eyes was similar between methods (OCT 15.34 ± 5.69%;
histology 17.61 ± 3.02%; p = 0.10). Analysis of retinal layers revealed that the inner plexiform, inner
nuclear and outer plexiform layers thin the most. Cell density measurements showed all neuronal cell
types are involved in retinal thinning. The results indicate that in vivo OCT measurements can accurately
detect retinal thinning in high myopia.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Myopia has a high prevalence in the human population, with
some degree of myopia present in 20–42% of individuals in Austra-
lia, Europe and North America respectively and with a higher prev-
alence of 60–80% reported in South East Asian populations
(Fledelius, 1988; Goh & Lam, 1994; Lin et al., 1999; Vitale, Sperd-
uto, & Ferris, 2009; Wensor, McCarty, & Taylor, 1999; Wu et al.,
2001). Low to moderate degrees of myopia represent a relatively
minor inconvenience in the developed world, as blurred distance
vision can be corrected using spectacles, contact lenses or refrac-
tive surgery. High degrees of myopia, typically classed as in excess
of 5 or 6 dioptres (D) (Curtin, 1985; Kempen et al., 2004), while
also correctable using the above measures, are of major concern
due to the incidence of myopia related pathology, since the risks
of retinal atrophy, chorioretinal degeneration and retinal detach-
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ment are significantly increased (Celorio & Pruett, 1991; Yannuzzi,
Sorenson, et al., 1993). Up to 70% of myopes over 6 D are reported
to have sight threatening ocular pathology (Chiang et al., 1993;
Grossniklaus & Green, 1992). Prevalence studies indicate that some
12–17% of all myopes have myopia greater than 5 D, resulting in a
prevalence of high myopia in the general population of approxi-
mately 2–3% in Western developed nations (Kempen et al.,
2004), and significantly higher in South East Asian populations
(Lin et al., 1999; Wu et al., 2001). High myopia is thus amongst
the leading causes of registered blindness and partial sight in the
populations of the developed world, particularly in the working
population (Chiang et al., 1993; Grey, Burns-Cox, & Hughes,
1989; Maruo, Ikebukuro, Kawanabe, & Kubota, 1991; Rosenberg
& Klie, 1996).

High myopia is invariably due to excessive elongation of the
eye. High myopes are at greater risk of developing sight threaten-
ing pathology of the retina and choroid, primarily due to the in-
creased mechanical stresses placed on these tissues in elongated
eyes (David, Smye, Dabbs, & James, 1998). Clinical reports (Curtin,
1985; Curtin & Karlin, 1971; Tokoro, 1998) of chorioretinal atrophy
in the fundus of eyes with high myopia and histological studies
(Curtin, 1985; McBrien, Moghaddam, Cottriall, Leech, & Cornell,
1995; Yanoff & Fine, 2002), indicate that myopia is associated with
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thinning of the retina. Additionally, in vivo measurements of retinal
thickness in human high myopia with optical coherence tomogra-
phy (OCT) (Hee et al., 1995; Huang, Swanson, et al., 1991) and the
retinal thickness analyzer (Kremser, Troger, Baltaci, Kralinger, &
Kieselbach, 1999) have identified retinal thinning at the posterior
pole of the eye (Choi & Lee, 2006; Lam et al., 2007; Leung, Mohamed,
et al., 2006; Liew, Gilbert, Spector, Marshall, & Hammond, 2007;
Lim et al., 2005; Luo, Gazzard, et al., 2006; Wolsley, Saunders,
Silvestri, & Anderson, 2008; Wu et al., 2008). It remains unknown
whether thinning occurs equally in all retinal layers, although one
OCT study in human suggests it occurs more in the middle to inner
retina (outer plexiform layer to nerve fiber layer) (Wolsley et al.,
2008). No study to date has directly compared in vivo with histo-
logical measures of retinal thinning in myopia. However, retinal
thickness measurements in normal rabbit, monkey and tree shrew
(Abbott, McBrien, Grünert, & Pianta, 2009; Anger et al., 2004;
Ge, Luo, & Guo, 1999) using both OCT and histological methods
show good agreement.

The aim of the present study is to quantify changes in retinal
thickness (in total and across layers) in an animal model of axial
myopia. The tree shrew is a commonly used mammalian model
of axial myopia development. Tree shrews have a similar ocular
structure to humans and their developmental ocular growth re-
sponses are well documented (McBrien & Gentle, 2003; McBrien
& Norton, 1992). The percentage of retinal thinning in axial high
myopia is determined and compared between OCT (in vivo) and
histological (in vitro) methods. These results help to determine
the accuracy of OCT as an in vivo tool for assessing changes in ret-
inal thickness in myopia.
2. Materials and methods

2.1. Animal model of myopia

Three maternally reared tree shrews (Tupaia belangeri) from our
breeding colony (TS1, TS2 and TS3) were used. Animals were main-
tained on a 15:9 h (light:dark) cycle, with light levels at the cage floor
approximately 250 lux. Food and water were available ad libitum.

Fifteen to twenty days after eye opening, animals were anaesthe-
tized with a mixture of ketamine (90 mg/kg) and xylazine
(10 mg/kg) given intramuscularly. The lids of one eye were then
sutured, as previously described (McBrien & Norton, 1992). In order
to induce high levels of axial myopia, animals experienced between
19 and 21 months of form deprivation (TS1 19.7 months, TS2
20.6 months, TS3 19.0 months). Lid suture is the only validated
method available for the long term deprivation of form vision in
the tree shrew and form deprivation is a well characterized method
of inducing axial myopia (Marsh-Tootle & Norton, 1989; McBrien &
Norton, 1992; Sherman, Norton, & Casagrande, 1977). The alterna-
tive method of inducing myopia using negative powered lenses in
a head mounted goggle (Siegwart & Norton, 1994) cannot be used
for experimental periods longer than about 8 weeks (Metlapally &
McBrien, 2008).

After the prescribed period of form deprivation, lids were reo-
pened in order to conduct biometric measures and imaging proce-
dures. Pupils were dilated (1% tropicamide; Alcon Australia) and
the cornea anaesthetized (0.5% proxymetacaine hydrochloride, Al-
caine; Alcon Australia). Ascan ultrasonography (10 MHz focused
transducer; LeCroy 9400 digital storage oscilloscope, Geneva, Swit-
zerland) was used to obtain axial dimensions of the ocular compo-
nents. Corneal curvature was measured using a modified Bausch &
Lomb one position keratometer. Cycloplegic refractive error was
measured using a streak retinoscope (Keeler). Measures were ta-
ken on both eyes of each animal. Artificial tears (Artificial Tears;
CIBA Vision Australia) were applied regularly to prevent corneal
desiccation during retinal imaging. A bite bar stabilized the ani-
mal’s head (Norton & McBrien, 1992) and eyelids were retracted
with a custom made speculum. Further details of the ocular biom-
etry methodology have been described elsewhere (McBrien,
Moghaddam, & Reeder, 1993; Norton & McBrien, 1992). All animals
were treated in accordance with the ARVO statement for the Use of
Animals in Ophthalmic and Vision Research and institutional
ethics approval was obtained.

2.2. Optical coherence tomography and image processing

A third-generation OCT system (StratusOCT, Model number
3000; Carl Zeiss Ophthalmic Systems, Dublin, California, USA) was
used to acquire Bscans and custom quantitative analysis (MATLAB
7; MathWorks, Natick, MA) was performed as described previously
(Abbott et al., 2009). Briefly, each Bscan was registered relative to
the optic disc and blood vessels seen in its corresponding fundus
photo, and coregistered relative to all scans to create an accurate
in vivo ocular fundus map (Fig. 1). Individual longitudinal reflectivity
profiles (LRPs) were assigned to bins (100 lm � 100 lm in area)
based on their registered position. The LRPs in each bin were aligned,
averaged and smoothed to create a mean LRP for the area of retina
encompassed by the bin. Axial length measures were used to correct
the lateral OCT Bscan length for the tree shrew eyes based on retinal
magnification factor calculations (Wakitani et al., 2003).

2.3. Histological processing

Following the in vivo procedures animals were administered a
lethal dose of sodium pentobarbital (120 mg/kg). Full details of the
histological processing protocol and lateral shrinkage calculations
have been previously described (Abbott et al., 2009). Briefly, the eyes
were enucleated and the posterior eyecup was immersion fixed in
2.5% glutaraldehyde and 1% paraformaldehyde in 0.1 M phosphate
buffer, pH 7.2. The retina was dissected, cut into quadrants and kept
flat during dehydration and embedding. The mean (±SD) lateral
shrinkage due to tissue dehydration was 22.96 (±0.77)% in the con-
trol eyes (n = 3 retinas) and 23.53 (±0.99)% in the myopic eyes (n = 3
retinas). These values are not significantly different (p = 0.475;
t-test) and are within the range of reported values (8–29%) (Abbott
et al., 2009; Adams, Perez, & Hawthorne, 1974; Curcio, Packer, &
Kalina, 1987; Kolb & Wang, 1985; Ogden, 1975; Perry & Cowey,
1985; Reymond, 1985; Steinberg, Reid, & Lacy, 1973). Serial vertical
semithin (1 lm) sections were cut on a Reichert ultramicrotome,
stained with toluidine blue and micrographs were taken with a Zeiss
Axioplan 2 microscope. Axial shrinkage estimates were determined
as previously described (Abbott et al., 2009).

2.4. Selection of retinal locations for analysis

In vivo retinal maps were created for the three myopic and three
control eyes (Fig. 1) as previously described (Abbott et al., 2009).
Subsequently, a systematic analysis of all retinal quadrants (supe-
rior nasal, inferior nasal, superior temporal and inferior temporal
with respect to the optic disc) was carried out using the OCT data.
A square grid of nine locations (i.e. 100 lm � 100 lm bins) in each
retinal quadrant out to 18� from the optic disc center, separated
from their neighboring locations by 500 lm, was overlaid on each
retinal map to select matching locations. Shifts of these locations
up to 100 lm were occasionally required to avoid blood vessels.
Thinning was calculated for each location in the myopic eye rela-
tive to the control and averaged (±SD) for each quadrant. The supe-
rior nasal quadrant showed the smallest standard deviation across
animals and the greatest thinning (see Section 3) so was used for a
more detailed analysis to investigate potential differences in thin-
ning between measurement methods and retinal layers.
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Fig. 1. Example of retinal maps of the control and treated eye superior nasal quadrants (TS2) to show the positions of analyzed retinal locations. The blood vessels and the
optic disc were used as landmarks to align the OCT and histology data. Points in the control and treated eyes corresponding for retinal eccentricity were identified. OCT and
histology locations within 100 lm of these identified points were selected for analysis. For further information about the method of reconstructing the retinal maps, refer to
Abbott et al. (2009). Grey rectangles indicate regions cut into vertical sections. Refer to the symbol legend for other symbol information. Abbreviations: superior retina (S),
nasal retina (N), inferior retina (I), temporal retina (T).

Table 1
Ocular biometry measures for each tree shrew (TS).

Ocular biometry measure Difference (T � C)

TS1 TS2 TS3

Refractive error (D) �18.3 ± 0.5 �13.7 ± 0.7 �15.8 ± 1.3
Corneal curvature (D) �2.50 ± 0.06 �3.40 ± 0.25 �3.68 ± 0.35
Anterior chamber depth (mm) �0.11 ± 0.02 �0.11 ± 0.03 �0.06 ± 0.01
Lens thickness (mm) �0.05 ± 0.01 �0.01 ± 0.01 �0.03 ± 0.01
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For this detailed analysis, LRP and histology pairs were chosen
from equivalent locations (±100 lm) (Fig. 1) as previously de-
scribed (Abbott et al., 2009). Exact positions and dimensions of
the vertical sections were matched to the in vivo map, after
accounting for lateral shrinkage due to dehydration during tissue
processing. Eccentricity and area measurements are presented in
predehydration units. The maps were additionally used to ensure
that pairings from treated and control eyes within each animal
were from equivalent retinal locations (±100 lm). When selecting
OCT bins for the detailed analysis the following criteria were used.
Retinal locations near inner retinal blood vessels were avoided due
to shadowing of the OCT signal. A sampling density of at least three
Bscans per bin was required to achieve a signal to noise ratio that
enabled the features within each mean LRP to be reliably identi-
fied. When selecting retinal histology for analysis, sections with
artifacts/disturbances were avoided. Fifteen paired retinal loca-
tions were analyzed from comparable eccentricities, 1.6–2.7 mm
(i.e. 16–27�) superior nasal to the center of the optic disc (e.g.
Fig. 1). There were six locations from each of TS1 and TS2. In TS3
only three locations were analyzed because it was not possible to
obtain more matching locations using the criteria outlined above.
The data from the 15 independent locations were pooled and aver-
aged for each tree shrew, then total mean retinal thickness and
thinning values were calculated where the standard deviation rep-
resents the variation across animals.

A further 24 locations were selected from the OCT maps of two
normal tree shrews (aged 9 and 26 months) used in a previous
study (Abbott et al., 2009). In these tree shrews both eyes had
undergone normal binocular visual development. Six retinal loca-
tions were selected from each of the four normal eyes, with eccen-
tricities that ranged from 1.8 mm to 2.7 mm superior nasal from
the center of the optic disc.
Vitreous chamber depth (mm) +0.82 ± 0.08 +0.49 ± 0.03 +0.81 ± 0.08
Axial length (mm) +0.66 ± 0.08 +0.38 ± 0.05 +0.72 ± 0.08

Measurements are expressed as the difference (mean ± SD) between treated (T) and
control (C) eyes. The number of measurements averaged for each eye are: refractive
error n = 2, corneal curvature n = 3, anterior chamber depth, lens thickness, vitreous
chamber depth, axial length n = 6.
2.5. Interpretation of the OCT signal

The present study uses the previously defined interpretation of
the OCT signal in tree shrew (Abbott et al., 2009) as a basis for the
in vivo retinal thickness measurements. Briefly, nerve fiber, plexi-
form layers and retinal pigment epithelium are highly reflective,
whereas inner and outer nuclear layers are less reflective. The
innermost peak in reflectivity corresponds to the nerve fiber layer
and the ganglion cell layer. The outer highly reflective peak repre-
sents the inner and outer segments of the photoreceptors, the ret-
inal pigment epithelium and the choriocapillaris. For detailed
discussion on the comparison of the OCT interpretation in tree
shrew and human, see Abbott et al. (2009).
2.6. Retinal thickness measurements

To measure the retinal thickness from the mean LRP, a custom
MATLAB program was employed to aid identification of the bound-
aries corresponding to retinal layers (Abbott et al., 2009). Each
thickness measurement was made in pixels and then converted
to micrometers based on the number of pixels within the depth
of the scan (1024 pixels over 2 mm for the StratusOCT). For the cor-
responding histology locations, thicknesses in micrometers were
measured on a digital micrograph (width 100 lm) taken with a
40� oil immersion objective by manually identifying the average
position of the retinal layer boundaries across the section, then
measuring the distances between the boundaries.
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Fig. 2. Biometry results expressed as the difference (mean ± SEM) between eyes (treated–control). Data was calculated for each tree shrew separately, then averaged so that
the SEM represents variation across animals (n = 3). (A) Difference in ocular refraction and corneal curvature in dioptres. (B) Difference in vitreous chamber depth and axial
length in millimeters. The results show that axial myopia has developed in the treated eyes. One sample t-test for significant difference from zero: refractive error, p = 0.007;
corneal curvature, p = 0.012; vitreous chamber depth, p = 0.023; axial length, p = 0.030. ⁄indicates p < 0.05.

Table 2
OCT quadrant analysis of retinal thinning.

Retinal quadrant relative to optic disc Retinal thinning (%) p

Superior nasal 13.7 ± 2.5 0.011
Inferior nasal 13.3 ± 3.4 0.021
Superior temporal 7.3 ± 5.0 0.127
Inferior temporal 7.6 ± 3.2 0.053

The percentage of retinal thinning (mean ± SD) in the myopic eyes as calculated
from Eq. (1). n = 9 locations per quadrant and n = 3 animals. p-Values calculated
with one sample t-test for significant difference from zero.
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Total retinal thickness is defined as the distance between the in-
ner limiting membrane and the retinal pigment epithelium/chori-
ocapillaris boundary. Retinal thickness was also determined for
four layer ‘zones’, of which the first three zones have been defined
previously (Abbott et al., 2009). Zone 1 represents the retinal nerve
fiber and ganglion cell layers. Zone 2 represents the inner plexi-
form layer and amacrine cells of the inner nuclear layer. Zone 3
represents the Müller, bipolar and horizontal cells of the inner nu-
clear layer and the outer plexiform layer. The definition of zone 4 is
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Fig. 3. Micrographs of Toluidine blue stained vertical sections through (A) retina from a n
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they are considered a combined layer. Abbreviations: nerve fiber layer (NFL), ganglion ce
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also based on a previous interpretation and represents the outer
nuclear layer, inner and outer segments of the photoreceptors
and the retinal pigment epithelium.

2.7. Retinal thinning calculations

Retinal thinning due to myopia was calculated from the retinal
thickness measures relative to the control thickness as a normal-
ized percentage:

Retinal thinning ð%Þ ¼ 100
TC � TT

TC

� �
ð1Þ

where TC is control eye retinal thickness and TT is treated eye retinal
thickness, and control and treated retinal locations are from corre-
sponding eccentricities. The percentage thinning detected in each
retinal zone (Ui) for i = 1, 2, 3 and 4, as calculated from Eq. (1), can
also be expressed as a proportion of the sum of the thinning from
all zones (Pi) for each animal:

Pi ¼
UiP

iUi
ð2Þ
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ormal tree shrew (Abbott et al., 2009), (B) retina from the control eye of TS2 and (C)
al 2.5 mm, control 2.3 mm and treated 2.3 mm superior nasal to the optic disc. The
s of the photoreceptors are fully ensconced within the retinal pigment epithelium, so
ll layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform
pithelium (RPE).
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2.8. Cell density calculations

2.8.1. Areal density
Areal cell density (DA, cells/mm2) was determined by cell

counts for one location (size = 560 lm � 560 lm; position =
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The areal cell density was calculated using cell counting with
the method of recursive reconstruction, which is fully described
by Rose and Rohrlich (1988). Briefly, a computer attached camera
lucida system (Goodchild & Martin, 1998; Halasz & Martin, 1984;
Wilder, Grünert, Lee, & Martin, 1996) was used to draw the posi-
tion and size of cell soma profiles and the position of laminar
boundaries in 102 retinal samples (each 66 lm long) taken from
twelve vertical sections (560 lm long) using a 100� oil immersion
objective. Sections were spaced at least 10 lm apart to ensure
independence. For a sample of cells for each cell population, the
area of the neuronal profile was measured and the equivalent area
diameter calculated. The recursive reconstruction method enables
calculation of the ratio between the number of soma profiles in a
section and the number of cells which give rise to the profiles. This
number is used as a correction factor to convert the total number
of profiles counted to the number of actual cells. There was no sig-
nificant difference in the correction factors between control and
treated eyes for each cell type (bipolar and horizontal cells,
p = 0.400; rods and cones, p = 0.700; amacrine cells, p = 0.658; Mül-
ler cells, p = 0.376; ganglion cells, p = 1.000; Mann Whitney non-
parametric test for independent samples), so they were combined
and averaged. Taking into account the area of the region where
profiles were counted allows the areal density to be calculated.
The recursive reconstruction method does not assume size homo-
geneity in the target population, which is an advantage over alter-
native cell counting methods (Rose & Rohrlich, 1988).

Amacrine, Müller, bipolar and horizontal cells were distin-
guished by their morphological appearance and location within
the inner nuclear layer (Cao, Murphy, & Petry, 1999; Ochs, May-
hew, & Knabe, 2000; Reichenbach et al., 1995). Müller cell somas
are more polygonal than either amacrine or bipolar cells somas
(see Fig. 2B of Abbott et al. (2009)). Amacrine cells are located on
the inner side of the close knit Müller cell sublayer and bipolar
cells on the outer side (Abbott et al., 2009). Bipolar and horizontal
cells were not distinguished from each other since the horizontal
cell population was small.

2.8.2. Volumetric density
The volumetric cell density (DV, cells/mm3) was determined for

each cell type as follows:

DV ¼
DA

TS
ð3Þ

where TS is the total layer thickness (mm). Layer thickness was
measured in the center of each section using the measuring tool
in Zeiss Axiovision 4.2 software, and then averaged.
Table 3
Retinal thickness and retinal thinning in the superior nasal quadrant.

Zone Eye Retinal thickness

OCT (lm)

Total Normal 213.78 ± 9.05
Control 210.07 ± 19.48
Treated 177.33 ± 11.50

Zone 1 Control 60.07 ± 12.25
Treated 50.58 ± 5.92

Zone 2 Control 63.06 ± 3.63
Treated 50.62 ± 3.26

Zone 3 Control 43.72 ± 2.48
Treated 36.28 ± 1.70

Zone 4 Control 43.22 ± 2.86
Treated 39.85 ± 2.49

All results are shown as mean ± SD. Data was calculated for each tree shrew separately
(n = 3). Retinal thinning was calculated from Eq. (1) and is expressed as a normalized pe
total retinal thickness (unpaired t-test; p = 0.74).
3. Results

3.1. Refractive and ocular biometry

The biometry measures are expressed as the difference between
treated and control eyes for each animal and then averaged across
the animals. All tree shrews showed high levels of myopia in the lid
sutured eye compared to the control eye (mean ± SD = �15.9 ±
2.3 D; p = 0.007; one sample t-test) (Table 1 and Fig. 2). The cornea
was flatter in the lid sutured eyes compared to the control eyes
(�3.1 ± 0.6 D; p = 0.012; one sample t-test). The vitreous chamber
depth of lid sutured eyes was on average 28 ± 7% longer than in
control eyes (0.71 ± 0.19 mm; p = 0.023; one sample t-test) with
a concomitant increase in the axial length (0.59 ± 0.18 mm;
p = 0.030; one sample t-test).
3.2. Retinal morphology

Histological sections show that the retinas in the myopic eyes
comprise all layers, but have a reduced thickness compared to both
control and normal eyes (Fig. 3). The retinas of the three control
eyes looked comparable to those of normal eyes except for a region
near the optic disc where nonmechanical disturbances (i.e. not re-
lated to processing artifacts) were found. These disturbances were
not seen in the myopic eyes or in the normal eyes (Abbott et al.,
2009), and predominantly affected the photoreceptors including
swelling, degeneration and thickening of inner segments, and
degeneration and orientation changes in the somas. Retinal pig-
ment epithelium folding and migration, as well as soma migration
from the three nuclear layers into the plexiform layers, were also
occasionally seen (not shown). These retinal changes could not
be detected in the OCT Bscans. Only retinal locations that were
unaffected by disturbances were selected for the detailed retinal
thinning analysis and the cell density analysis, thus providing con-
fidence that the results are representative of changes due only to
myopia.
3.3. Total retinal thinning

The initial OCT analysis showed the retinal quadrants were sub-
ject to thinning in the myopic eyes (Table 2). The nasal retina
underwent greater thinning than the temporal retina (p = 0.005;
paired t-test). Retinal thickness in the superior nasal quadrant
had the lowest variability between animals and the highest
amount of thinning so was thus chosen for the detailed analysis.
Retinal thinning

Histology (lm) OCT (%) Histology (%)

Not determined
136.95 ± 8.84
112.82 ± 10.35 15.34 ± 5.69 17.61 ± 3.02

36.38 ± 8.86
32.50 ± 8.41 14.44 ± 7.73 10.01 ± 9.69

42.31 ± 3.51
31.55 ± 4.84 19.64 ± 5.66 25.39 ± 5.74

30.10 ± 2.45
23.78 ± 2.34 16.78 ± 8.68 20.85 ± 5.65

28.16 ± 0.53
25.00 ± 0.11 7.73 ± 0.95 11.11 ± 1.97

, then averaged so the standard deviation represents the variation across animals
rcentage. Control total retinal thickness is not significantly different to the normal
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Fig. 5. Results of retinal thinning in the treated eye (mean ± SEM). Thinning was
calculated for each tree shrew separately, then results were combined and averaged
so that the SEM shown represents the variation across animals (n = 3). (A) Thinning
in the treated eye as calculated with Eq. (1). See Fig. 4 for the definition of zone
boundaries. There is no difference in retinal thinning between OCT and histology
methods in total or within any of the zones (total, p = 0.097; zone 1, p = 0.468; zone
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An example of the detailed retinal thickness measurement
using OCT and histology is shown in Fig. 4. The total retinal thick-
ness of the control eyes (mean ± SD = 210 ± 19 lm) was compara-
ble to that of the normal eyes (213 ± 11 lm) (p = 0.74; unpaired
t-test) measured with OCT (Table 3). The total retinal thinning in
the myopic eyes normalized to the control eyes was 15.3 ± 5.7%
by the OCT method (p < 0.001; one sample t-test) (Fig. 5A and Ta-
ble 3). Retinal thinning determined by the histology method was
17.6 ± 3.0% (p < 0.001; one sample t-test). Thus, the results for
the two methods were comparable (p = 0.10; paired t-test).

3.4. Differential thinning of retinal layers and axial shrinkage

Retinal thinning was determined for four retinal zones (Fig. 4).
The amount of retinal thinning within each zone of retina was
equivalent between the OCT and histology methods as shown in
Fig. 5A (zone 1, p = 0.468; zone 2, p = 0.101; zone 3, p = 0.246; zone
4, p = 0.081; paired t-test). The proportion each zone contributed to
the total retinal thinning accounts for variations in the amount of
thinning between animals and is shown in Fig. 5B (OCT) and
Fig. 5C (histology). Zones 2 and 3 contribute the most to total thin-
ning for both methods (Fig. 5), suggesting the inner plexiform layer
(zone 2) and the inner nuclear layer and/or outer plexiform layer
(zone 3) thin the most in axial myopia.

Axial shrinkage of the histology sections was equivalent be-
tween control and myopic eyes for total shrinkage (control
34.6 ± 4.9%; myopic 36.2 ± 6.8%; p = 0.686; paired t-test) and for
individual zone shrinkage (zone 1, p = 0.586; zone 2, p = 0.500;
zone 3, p = 0.689; zone 4, p = 0.194; paired t-test). Hence, the re-
sults for the control and myopic eyes were combined and averaged
to compare axial shrinkage between zones. Axial shrinkage shows
some variability, but was found to be equivalent between zones
(zone 1 = 38.0 ± 7.3%; zone 2 = 34.9 ± 10.3%; zone 3 = 32.6 ± 7.5%;
zone 4 = 35.9 ± 4.0%; one way ANOVA, p = 0.661). Furthermore,
each zone was within the 95% confidence interval (24.6–46.2%)
of the total axial shrinkage (mean = 35.4%), indicating shrinkage
is close to linear. However, previous results (Abbott et al., 2009)
show that a small amount of non-linear axial shrinkage does occur
due to variations in microstructure and water content. The linear-
ity of shrinkage will not affect the results in this study as it is
equivalent between control and myopic eyes within zones.

3.5. Cell density measurements

The retina from the myopic eye of TS1 showed a decrease in
areal cell density for all cell types (bipolar and horizontal cells,
p < 0.001; rods and cones, p = 0.033; amacrine cells, p < 0.001; gan-
glion cells, p < 0.001; unpaired t-test) except Müller cells
(p = 0.292; unpaired t-test) (Fig. 6A). The volumetric density calcu-
lation takes into account the differences in cell layer thicknesses
between myopic and control eyes. There were no differences in
volumetric cell density between myopic and control eyes for all
cell types (rods and cones, p = 0.555; amacrine cells, p = 0.086;
Müller cells, p = 0.581; ganglion cells, p = 0.542; unpaired t-test)
except the bipolar and horizontal cell group (p = 0.028; unpaired
t-test) (Fig. 6B).
2, p = 0.101; zone 3, p = 0.246; zone 4, p = 0.082; paired t-test). Note that retinal
eccentricity is not considered a variable because the independent retinal locations
were from the same region of retina (see Fig. 1). (B) Proportion each zone
contributes to the total retinal thinning as measured with OCT and calculated with
Eq. (2). (C) Proportion each zone contributes to the total retinal thinning as
measured with histology and calculated with Eq. (2). Zones 2 and 3 contribute the
most to total thinning for both OCT (zone 1/2, p = 0.001; zone 1/3, p = 0.020; zone
1/4, p = 0.139; zone 2/3, p = 0.076; zone 2/4, p < 0.001; zone 3/4, p = 0.006; paired
t-test) and histology (zone 1/2, p = 0.003; zone 1/3, p = 0.230; zone 1/4, p = 0.742;
zone 2/3, p = 0.113; zone 2/4, p < 0.001; zone 3/4, p < 0.001; paired t-test) methods
of measurement. ⁄represents p < 0.05.
4. Discussion

4.1. Refractive and biometric results

High myopia due to axial elongation of the vitreous chamber
occurred in all form-deprived eyes. Refractive and ocular biometry
findings are in agreement with previous studies (e.g. Marsh-Tootle
& Norton, 1989; McBrien & Norton, 1992). As retinal thinning in
human high myopia is thought to be due to axial elongation of
the globe causing retinal stretch (Wu et al., 2008), and since our
biometric findings replicate human axial myopia, it is likely our
findings regarding retinal thinning in tree shrew should translate
to human.
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4.2. Total retinal thinning in high myopia

Retinal thinning in myopia has been demonstrated with OCT
analysis in human studies (Choi & Lee, 2006; Lam et al., 2007; Leu-
ng et al., 2006; Liew et al., 2007; Lim et al., 2005; Luo et al., 2006;
Wolsley et al., 2008; Wu et al., 2008), and also with histology anal-
ysis in various species (Curtin, 1985; McBrien et al., 1995; Yanoff &
Fine, 2002; Yinon, Koslowe, Lobel, Landshman, & Barishak, 1982;
Zhou et al., 2010). The most recent OCT studies in human have
determined that the macula generally flattens in myopia by thin-
ning at the perifovea and thickening at the foveal pit (Lam et al.,
2007; Lim et al., 2005; Wolsley et al., 2008; Wu et al., 2008). How-
ever, earlier studies found either foveal thinning (Mrugacz,
Bakunowicz-Lazarczyk, & Sredzinska-Kita, 2004) or no difference
in foveal thickness (Choi & Lee, 2006; Wakitani et al., 2003). These
measurements at the macular region are not directly comparable
to our results in the superior nasal quadrant, as the macula is a
structurally specialized region of the retina. In this study, retinas
from myopic eyes (mean �15.9 D) showed comparable mean thin-
ning of 15 ± 5% (32 lm) with the OCT method and 17 ± 3% (24 lm)
with the histology method (Fig. 5A) in the superior nasal quadrant.
The absolute values of retinal thickness measured by the histolog-
ical method are smaller than the values measured by OCT, due to
shrinkage during dehydration (Abbott et al., 2009). The percentage
of retinal thinning (15–17%) is just over half the percentage of
mean vitreous chamber elongation (28 ± 7%). The similarity be-
tween the results from OCT and histology methods validates OCT
as a useful tool for in vivo measuring and monitoring of retinal
thickness changes in myopia.
4.3. Differential thinning of retinal layers in high myopia

A new finding from this study is that zones 2 and 3, represent-
ing the inner plexiform, inner nuclear and outer plexiform layers,
contribute the most to total retinal thinning in axial myopia
(approximately 35% and 30% of total thinning respectively). Zone
4, representing the photoreceptors and retinal pigment epithelium,
contributes the least to total retinal thinning in myopia (approxi-
mately 15% of total thinning). Zone 1, representing the nerve fiber
and ganglion cell layers, contributes approximately 20% to the total
thinning. This result is consistent with findings from an OCT study
in human, which suggested thinning occurs more in the middle to
inner retina (encompassing the ganglion cell, inner plexiform, in-
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Fig. 6. Cell densities (mean ± SEM) in the treated and control eye of one tree shrew (TS1)
the superior nasal quadrant (n = 12 vertical sections per eye). (A) Areal cell densities expr
cells (B + H), rods and cones (R + C), amacrine cells (Am), Müller cells (Mü), ganglion
(p = 0.292; unpaired t-test), there are greater cell densities in the control eye than the tre
cells, p < 0.001; ganglion cells, p < 0.001; unpaired t-test). (B) Volumetric cell densities
volumetric cell densities in the treated eye are generally comparable to that in the cont
ganglion cells, p = 0.542; unpaired t-test) except for the bipolar and horizontal cell grou
ner nuclear and outer plexiform layers) (Wolsley et al., 2008). Thus
it seems that the inherently thicker retinal layers are more suscep-
tible or adaptable to the effects of mechanical or biochemical
changes in myopia. Since retinal stretch slowly increases as myopia
develops, cell connections in the plexiform layers may be able to
anatomically adapt. For example, previous studies have shown that
amacrine and ganglion cell dendrites are able to elongate in myo-
pia (Teakle, Wildsoet, & Vaney, 1993; Troilo, Xiong, Crowley, &
Finlay, 1996).
4.4. Mechanism of retinal thinning in axial myopia

In the present study, there was a decrease in areal density for all
cell types except Müller cells, suggesting that photoreceptors,
bipolar/horizontal cells, amacrine cells and ganglion cells all con-
tribute to retinal thinning. Previous studies using a variety of ap-
proaches including psychophysics (Chui, Yap, Chan, & Thibos,
2005; Jaworski, Gentle, Zele, Vingrys, & McBrien, 2006), histologi-
cal cell counts (Grossniklaus & Green, 1992), and adaptive optics
imaging of the cone mosaic (Chui, Song, & Burns, 2008; Kitaguchi
et al., 2007; Li, Tiruveedhula, & Roorda, 2010) all find evidence of
decreased photoreceptor density in eyes with increased axial
length. Most of these studies suggest that tangential retinal stretch
(Wu et al., 2008) plays a significant role in the amount of retinal
thinning in myopia. It is possible that photoreceptor apoptosis also
contributes (Mao, Liu, Wen, Tan, & Fu, 2006; Xu, Li, & Tso, 1996).

The volumetric cell density data presented in this study shows
that the cell number to volume ratio remains equivalent between
myopic and control eyes. This is a new finding that will help with
determining the proportion (if any) of cell loss in future studies. A
study that accurately measures the surface area and the variable
thickness of the entire retina to directly estimate the total retinal
volume is required. Since the volumetric density is equivalent in
the retina of myopic and emmetropic eyes, the relative change in
cell number in myopia can then be determined.
4.5. Regional variation of retinal thinning in high myopia

As suggested by Li et al. (2010) and Wolsley et al. (2008), it seems
likely that retinal stretch causes differential effects on specialized re-
gions of the retina. A comprehensive study of the variation in thin-
ning at different retinal eccentricities is yet to be reported. Wolsley
et al. (2008) shows retinal thinning measured with OCT in human
 Volumetric retinal cell densities
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at a region (size 560 � 560 lm) located 2.7 mm from the center of the optic disc in
essed as the number of cells per mm2 for five groups of cells; bipolar and horizontal
cells and displaced amacrine cells (Ga). For all cell types apart from Müller cells
ated eye (bipolar and horizontal cells, p < 0.001; rods and cones, p = 0.033; amacrine
expressed as the number of cells per mm3 for the same five groups as in A. The

rol eye (rods and cones, p = 0.555; amacrine cells, p = 0.086; Müller cells, p = 0.581;
p (p = 0.028; unpaired t-test). ⁄represents p < 0.05.
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myopes compared to emmetropes along a line from 16� superior
temporal to the fovea to 16� inferior nasal. The thinning appeared
to slowly increase from 4� to 16� nasally and temporally, but regional
differences were not analyzed in detail. The initial OCT analysis in
the present study suggests that nasal retina (up to 18� from the cen-
ter of the optic disc) is thinner than the corresponding temporal ret-
ina. In tree shrew the area centralis is approximately 31� from the
disc (calculated from retinal maps in DeBruyn (1983)), while in hu-
man the fovea is approximately 15� from the disc. Further systematic
investigation of eccentricity changes in retinal thinning relative to
both the disc and the fovea are required.
5. Conclusions

The thickness of the retina in highly myopic eyes was reduced
by 15–17%. The percentage of retinal thinning was comparable be-
tween in vivo (OCT) and in vitro (histological) methods. Retinal
thinning varied across layers, with 35% of the thinning occurring
in the inner plexiform layer, 30% in the inner nuclear and outer
plexiform layers, 20% in the nerve fiber and ganglion cell layers,
and 15% in the photoreceptor layer and retinal pigment epithelium.
Cell density analysis showed that all neuronal cell types are in-
volved in retinal thinning. Future work could use this mammalian
model of axial myopia combined with noninvasive measurements
of retinal thickness using OCT to determine the time course of ret-
inal thinning and the correlation between retinal thinning, axial
elongation and ensuing chorioretinal pathology.

Acknowledgments

The authors would like to acknowledge and thank Paul Martin
for his assistance with the cell density measurements and analysis,
Erica Fletcher for discussion on retinal morphology changes, and
Paul Fijn for statistical advice.

This work was supported by National Health and Medical Re-
search Council of Australia Grants #255157 and #454602 to
N.McB., a Retina Australia Grant to M.J.P., a Lions Vision Research
Fellowship to U.G. and an Ernst and Grace Matthaei Scholarship to
C.J.A.

References

Abbott, C. J., McBrien, N. A., Grünert, U., & Pianta, M. J. (2009). Relationship of the
optical coherence tomography signal to underlying retinal histology in the tree
shrew (Tupaia belangeri). Investigative Ophthalmology and Visual Science, 50(1),
414–423.

Adams, C. K., Perez, J. M., & Hawthorne, M. N. (1974). Rod and cone densities in the
Rhesus. Investigative Ophthalmology and Visual Science, 13(11), 885–888.

Anger, E. M., Unterhuber, A., Hermann, B., Sattmann, H., Schubert, C., Morgan, J. E.,
et al. (2004). Ultrahigh resolution optical coherence tomography of the monkey
fovea. Identification of retinal sublayers by correlation with semithin histology
sections. Experimental Eye Research, 78(6), 1117–1125.

Cao, Q. L., Murphy, H. A., & Petry, H. M. (1999). Localization of nitric oxide synthase
in the tree shrew retina. Visual Neuroscience, 16(3), 399–409.

Celorio, J. M., & Pruett, R. C. (1991). Prevalence of lattice degeneration and its
relation to axial length in severe myopia. American Journal of Ophthalmology,
111(1), 20–23.

Chiang, L. M., Ho, T. C., Lin, L. L., Yang, C. M., Liu, K. R., & Chen, M. S. (1993).
Prevalence of retinal detachment and peripheral retinal degeneration in high
myopia college students in Taiwan. Investigative Ophthalmology and Visual
Science, 34, S937.

Choi, S. W., & Lee, S. J. (2006). Thickness changes in the fovea and peripapillary
retinal nerve fiber layer depend on the degree of myopia. Korean Journal of
Ophthalmology, 20(4), 215–219.

Chui, T. Y., Song, H., & Burns, S. A. (2008). Individual variations in human cone
photoreceptor packing density: Variations with refractive error. Investigative
Ophthalmology and Visual Science, 49(10), 4679–4687.

Chui, T. Y., Yap, M. K., Chan, H. H., & Thibos, L. N. (2005). Retinal stretching limits
peripheral visual acuity in myopia. Vision Research, 45(5), 593–605.

Curcio, C. A., Packer, O., & Kalina, R. E. (1987). A whole mount method for sequential
analysis of photoreceptor and ganglion cell topography in a single retina. Vision
Research, 27(1), 9–15.
Curtin, B. J. (1985). The myopias: Basic science and clinical management. Philadelphia:
Harper & Row.

Curtin, B. J., & Karlin, D. B. (1971). Axial length measurements and fundus changes
of the myopic eye. American Journal of Ophthalmology, 71(1), 42–53.

David, T., Smye, S., Dabbs, T., & James, T. (1998). A model for the fluid motion of
vitreous humour of the human eye during saccadic movement. Physics in
Medicine and Biology, 43(6), 1385–1399.

DeBruyn, E. J. I. (1983). The organization and central terminations of retinal
ganglion cells in the tree shrew (Tupaia glis). In Anatomy. Nashville: Vanderbilt
University.

Fledelius, H. C. (1988). Myopia prevalence in Scandinavia. A survey, with emphasis
on factors of relevance for epidemiological refraction studies in general. Acta
Ophthalmologica Supplementum, 185, 44–50.

Ge, J., Luo, R., & Guo, Y. (1999). Corrective change of retinal thickness measured by
optical coherence tomography and histologic studies. Yan Ke Xue Bao, 15(3).
153–155, 178.

Goh, W. S., & Lam, C. S. (1994). Changes in refractive trends and optical components
of Hong Kong Chinese aged 19–39 years. Ophthalmic and Physiological Optics,
14(4), 378–382.

Goodchild, A. K., & Martin, P. R. (1998). The distribution of calcium-binding proteins
in the lateral geniculate nucleus and visual cortex of a New World monkey, the
marmoset, Callithrix jacchus. Visual Neuroscience, 15(4), 625–642.

Grey, R. H., Burns-Cox, C. J., & Hughes, A. (1989). Blind and partial sight registration
in Avon. British Journal of Ophthalmology, 73(2), 88–94.

Grossniklaus, H. E., & Green, W. R. (1992). Pathologic findings in pathologic myopia.
Retina, 12(2), 127–133.

Halasz, P., & Martin, P. R. (1984). A microcomputer based system for semi-
automatic analysis of histological sections. Proceedings of the Royal Microscopical
Society, 19, 312.

Hee, M. R., Izatt, J. A., Swanson, E. A., Huang, D., Schuman, J. S., Lin, C. P., et al. (1995).
Optical coherence tomography of the human retina. Archives of Ophthalmology,
113(3), 325–332.

Huang, D., Swanson, E. A., et al. (1991). Optical coherence tomography. Science,
254(5035), 1178–1181.

Jaworski, A., Gentle, A., Zele, A. J., Vingrys, A. J., & McBrien, N. A. (2006). Altered
visual sensitivity in axial high myopia: A local postreceptoral phenomenon?
Investigative Ophthalmology and Visual Science, 47(8), 3695–3702.

Kempen, J. H., Mitchell, P., Lee, K. E., Tielsch, J. M., Broman, A. T., Taylor, H. R.,
et al. (2004). The prevalence of refractive errors among adults in the United
States, Western Europe, and Australia. Archives of Ophthalmology, 122(4),
495–505.

Kitaguchi, Y., Bessho, K., Yamaguchi, T., Nakazawa, N., Mihashi, T., & Fujikado, T.
(2007). In vivo measurements of cone photoreceptor spacing in myopic eyes
from images obtained by an adaptive optics fundus camera. Japan Journal of
Ophthalmology, 51(6), 456–461.

Kolb, H., & Wang, H. H. (1985). The distribution of photoreceptors, dopaminergic
amacrine cells and ganglion cells in the retina of the North American opossum
(Didelphis virginiana). Vision Research, 25(9), 1207–1221.

Kremser, B., Troger, J., Baltaci, M., Kralinger, M., & Kieselbach, G. F. (1999). Retinal
thickness analysis in subjects with different refractive conditions.
Ophthalmologica, 214(6), 376–379.

Lam, D. S., Leung, K. S., Mohamed, S., Chan, W. M., Palanivelu, M. S., Cheung, C. Y.,
et al. (2007). Regional variations in the relationship between macular thickness
measurements and myopia. Investigative Ophthalmology and Visual Science,
48(1), 376–382.

Leung, C. K., Mohamed, S., et al. (2006). Retinal nerve fiber layer measurements in
myopia: An optical coherence tomography study. Investigative Ophthalmology
and Visual Science, 47(12), 5171–5176.

Li, K. Y., Tiruveedhula, P., & Roorda, A. (2010). Inter-subject variability of foveal cone
photoreceptor density in relation to eye length. Investigative Ophthalmology and
Visual Science. doi:10.1167/iovs.10-5499.

Liew, S. H., Gilbert, C. E., Spector, T. D., Marshall, J., & Hammond, C. J. (2007). The role
of heredity in determining central retinal thickness. British Journal of
Ophthalmology, 91(9), 1143–1147.

Lim, M. C., Hoh, S. T., Foster, P. J., Lim, T. H., Chew, S. J., Seah, S. K., et al. (2005). Use of
optical coherence tomography to assess variations in macular retinal thickness
in myopia. Investigative Ophthalmology and Visual Science, 46(3), 974–978.

Lin, L. L., Shih, Y. F., Tsai, C. B., Chen, C. J., Lee, L. A., Hung, P. T., et al. (1999).
Epidemiologic study of ocular refraction among schoolchildren in Taiwan in
1995. Optometry and Vision Science, 76(5), 275–281.

Luo, H. D., Gazzard, G., et al. (2006). Myopia, axial length, and OCT characteristics of
the macula in Singaporean children. Investigative Ophthalmology and Visual
Science, 47(7), 2773–2781.

Mao, J., Liu, S., Wen, D., Tan, X., & Fu, C. (2006). Basic fibroblast growth factor
suppresses retinal neuronal apoptosis in form-deprivation myopia in chicks.
Current Eye Research, 31(11), 983–987.

Marsh-Tootle, W. L., & Norton, T. T. (1989). Refractive and structural measures of
lid-suture myopia in tree shrew. Investigative Ophthalmology and Visual Science,
30(10), 2245–2257.

Maruo, T., Ikebukuro, N., Kawanabe, K., & Kubota, N. (1991). Changes in causes of
visual handicaps in Tokyo. Japanese Journal of Ophthalmology, 35(3), 268–272.

McBrien, N. A., & Gentle, A. (2003). Role of the sclera in the development and
pathological complications of myopia. Progress in Retinal and Eye Research,
22(3), 307–338.

McBrien, N. A., Moghaddam, H. O., Cottriall, C. L., Leech, E. M., & Cornell, L. M. (1995).
The effects of blockade of retinal cell action potentials on ocular growth,

http://dx.doi.org/10.1167/iovs.10-5499


C.J. Abbott et al. / Vision Research 51 (2011) 376–385 385
emmetropization and form deprivation myopia in young chicks. Vision Research,
35(9), 1141–1152.

McBrien, N. A., Moghaddam, H. O., & Reeder, A. P. (1993). Atropine reduces
experimental myopia and eye enlargement via a nonaccommodative
mechanism. Investigative Ophthalmology and Visual Science, 34(1), 205–215.

McBrien, N. A., & Norton, T. T. (1992). The development of experimental myopia and
ocular component dimensions in monocularly lid-sutured tree shrews (Tupaia
belangeri). Vision Research, 32(5), 843–852.

Metlapally, S., & McBrien, N. A. (2008). The effect of positive lens defocus on ocular
growth and emmetropization in the tree shrew. Journal of Vision, 8(3), 11–12.

Mrugacz, M., Bakunowicz-Lazarczyk, A., & Sredzinska-Kita, D. (2004). Use of optical
coherence tomography in myopia. Journal of Pediatric Ophthalmology and
Strabismus, 41, 159–162.

Norton, T. T., & McBrien, N. A. (1992). Normal development of refractive state and
ocular component dimensions in the tree shrew (Tupaia belangeri). Vision
Research, 32(5), 833–842.

Ochs, M., Mayhew, T. M., & Knabe, W. (2000). To what extent are the retinal
capillaries ensheathed by Müller cells? A stereological study in the tree shrew
Tupaia belangeri. Journal of Anatomy, 196(Pt 3), 453–461.

Ogden, T. E. (1975). The receptor mosaic of Aotes trivirgatus: Distribution of rods and
cones. Journal of Comparative Neurology, 163(2), 193–202.

Perry, V. H., & Cowey, A. (1985). The ganglion cell and cone distributions in the
monkey’s retina: Implications for central magnification factors. Vision Research,
25(12), 1795–1810.

Reichenbach, A., Fromter, C., Engelmann, R., Wolburg, H., Kasper, M., & Schnitzer, J.
(1995). Müller glial cells of the tree shrew retina. Journal of Comparative
Neurology, 360, 257–270.

Reymond, L. (1985). Spatial visual acuity of the eagle Aquila audax: A behavioural,
optical and anatomical investigation. Vision Research, 25(10), 1477–1491.

Rose, R. D., & Rohrlich, D. (1988). Counting sectioned cells via mathematical
reconstruction. Journal of Comparative Neurology, 272(4), 365–386.

Rosenberg, T., & Klie, F. (1996). Current trends in newly registered blindness in
Denmark. Acta Ophthalmologica Scandinavica, 74(4), 395–398.

Sherman, S. M., Norton, T. T., & Casagrande, V. A. (1977). Myopia in the lid-sutured
tree shrew (Tupaia glis). Brain Research, 124(1), 154–157.

Siegwart, J. T., Jr., & Norton, T. T. (1994). Goggles for controlling the visual
environment of small animals. Laboratory Animal Science, 44(3), 292–294.

Steinberg, R. H., Reid, M., & Lacy, P. L. (1973). The distribution of rods and cones in
the retina of the cat (Felis domesticus). Journal of Comparative Neurology, 148(2),
229–248.

Teakle, E. M., Wildsoet, C. F., & Vaney, D. I. (1993). The spatial organization of
tyrosine hydroxylase-immunoreactive amacrine cells in the chicken retina and
the consequences of myopia. Vision Research, 33(17), 2383–2396.
Tokoro, T. (1998). Atlas of posterior fundus changes in pathologic myopia. Tokyo:
Springer-Verlag.

Troilo, D., Xiong, M., Crowley, J. C., & Finlay, B. L. (1996). Factors controlling the
dendritic arborization of retinal ganglion cells. Visual Neuroscience, 13(4),
721–733.

Vitale, S., Sperduto, R. D., & Ferris, F. L. 3rd, (2009). Increased prevalence of myopia
in the United States between 1971–1972 and 1999–2004. Archives of
Ophthalmology, 127(12), 1632–1639.

Wakitani, Y., Sasoh, M., Sugimoto, M., Ito, Y., Ido, M., & Uji, Y. (2003). Macular
thickness measurements in healthy subjects with different axial lengths using
optical coherence tomography. Retina, 23(2), 177–182.

Wensor, M., McCarty, C. A., & Taylor, H. R. (1999). Prevalence and risk factors of
myopia in Victoria, Australia. Archives of Ophthalmology, 117(5), 658–663.

Wilder, H. D., Grünert, U., Lee, B. B., & Martin, P. R. (1996). Topography of ganglion
cells and photoreceptors in the retina of a New World monkey: The marmoset
Callithrix jacchus. Visual Neuroscience, 13, 335–352.

Wolsley, C. J., Saunders, K. J., Silvestri, G., & Anderson, R. S. (2008). Investigation of
changes in the myopic retina using multifocal electroretinograms, optical
coherence tomography and peripheral resolution acuity. Vision Research, 48(14),
1554–1561.

Wu, P. C., Chen, Y. J., Chen, C. H., Chen, Y. H., Shin, S. J., Yang, H. J., et al. (2008).
Assessment of macular retinal thickness and volume in normal eyes and highly
myopic eyes with third-generation optical coherence tomography. Eye, 22(4),
551–555.

Wu, H. M., Seet, B., Yap, E. P., Saw, S. M., Lim, T. H., & Chia, K. S. (2001). Does
education explain ethnic differences in myopia prevalence? A population-based
study of young adult males in Singapore. Optometry and Vision Science, 78(4),
234–239.

Xu, G. Z., Li, W. W., & Tso, M. O. (1996). Apoptosis in human retinal degenerations.
Transactions of the American Ophthalmological Society, 94, 411–430.

Yannuzzi, L. A., Sorenson, J. A., et al. (1993). Risk factors for idiopathic
rhegmatogenous retinal detachment. The Eye Disease Case-Control Study
Group. American Journal of Epidemiology, 137(7), 749–757.

Yanoff, M., & Fine, B. S. (2002). Ocular pathology (5th ed). St. Louis: Mosby.
Yinon, U., Koslowe, K. C., Lobel, D., Landshman, N., & Barishak, Y. R. (1982). Lid

suture myopia in developing chicks: Optical and structural considerations.
Current Eye Research, 2(12), 877–882.

Zhou, X., An, J., Wu, X., Lu, R., Huang, Q., Xie, R., et al. (2010). Relative axial myopia
induced by prolonged light exposure in C57BL/6 mice. Photochemistry and
Photobiology, 86(1), 131–137.


	Retinal thinning in tree shrews with induced high myopia: Optical coherence  tomography and histological assessment
	Introduction
	Materials and methods
	Animal model of myopia
	Optical coherence tomography and image processing
	Histological processing
	Selection of retinal locations for analysis
	Interpretation of the OCT signal
	Retinal thickness measurements
	Retinal thinning calculations
	Cell density calculations
	Areal density
	Volumetric density


	Results
	Refractive and ocular biometry
	Retinal morphology
	Total retinal thinning
	Differential thinning of retinal layers and axial shrinkage
	Cell density measurements

	Discussion
	Refractive and biometric results
	Total retinal thinning in high myopia
	Differential thinning of retinal layers in high myopia
	Mechanism of retinal thinning in axial myopia
	Regional variation of retinal thinning in high myopia

	Conclusions
	Acknowledgments
	References


