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Abstract

A uniqueness theorem for two distinct non-constant meromorphic functions that share three values of
finite weights is proved, which generalizes two previous results by H.X. Yi, and X.M. Li and H.X. Yi. As
applications of it, many known results by H.X. Yi and P. Li, etc. could be improved. Furthermore, with
the concept of finite-weight sharing, extensions on Osgood–Yang’s conjecture and Mues’ conjecture, and
a generalization of some prevenient results by M. Ozawa and H. Ueda, ect. could be obtained.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction and main result

In this paper, a meromorphic function always means meromorphic in the complex plane C.
For any non-constant meromorphic function f , we use the standard notations of Nevanlinna’s
value distribution theory of meromorphic functions such as the characteristic function T (r, f ),
the proximity function m(r,f ), and the counting function N(r,f ) of poles (see [3,4,19]). We
denote by E any set of finite linear measure in R

+, not necessarily the same at each occurrence.
For the function f , we denote by S(r, f ) any quantity satisfying S(r, f ) = o(T (r, f )) (r /∈ E).
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For a complex number a ∈ C, we say that two non-constant meromorphic functions f and g

share the value a CM (respectively IM), provided that they have the same a-points counting
(respectively ignoring) multiplicities. As for the value ∞, we consider the functions F = 1/f

and G = 1/g sharing the value 0 instead.
For a positive integer k, we denote by Nk)(r,1/(f − a)) the counting function of the a-points

of f with multiplicity � k, by N(k(r,1/(f − a)) the counting function of the a-points of f

with multiplicity � k, while by N̄k)(r,1/(f − a)) and N̄(k(r,1/(f − a)) the reduced form of
Nk)(r,1/(f − a)) and N(k(r,1/(f − a)), respectively. Also, we denote by N0(r) the counting
function of the zeros of f − g but not the zeros of f , f − 1 and 1/f , and those of g, g − 1 and
1/g, respectively, with proper multiplicity, while by N̄0(r) its reduced form.

In 1995, H.X. Yi proved the following

Theorem A. (See [12] or [22].) Let f and g be two distinct non-constant meromorphic functions
sharing 0, 1 and ∞ CM. If, for some a ∈ C \ {0,1}, we have

N

(
r,

1

f − a

)
�= T (r, f ) + S(r, f ),

then a is a lacunary value of f , and f is some bilinear transformation of g. Furthermore, f and
g satisfy one of the following three relations:

(i) f ≡ ag;
(ii) f + (a − 1)g ≡ a;
(iii) (f − a)(g + a − 1) ≡ a(1 − a).

Nine years after that, X.M. Li and H.X. Yi extended Theorem A and obtained the following

Theorem B. (See [12].) Let f and g be two distinct non-constant meromorphic functions sharing
0, 1 and ∞ CM. If, for some a ∈ C \ {0,1}, not a lacunary value of f , we have

N1)

(
r,

1

f − a

)
�= T (r, f ) + S(r, f ),

then we could derive

N1)

(
r,

1

f − a

)
= k − 2

k
T (r, f ) + S(r, f )

and

N(2

(
r,

1

f − a

)
= 2

k
T (r, f ) + S(r, f ),

and f and g assume one of the following six forms:

(i) f = e(k+1)γ − 1

esγ − 1
, g = e−(k+1)γ − 1

e−sγ − 1
,

(a − 1)k+1−s

ak+1
= ss(k + 1 − s)k+1−s

(k + 1)k+1
, a �= k + 1

s
;

(ii) f = esγ − 1
(k+1)γ

, g = e−sγ − 1
−(k+1)γ

,

e − 1 e − 1
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as(1 − a)k+1−s = ss(k + 1 − s)k+1−s

(k + 1)k+1
, a �= s

k + 1
;

(iii) f = esγ − 1

e−(k+1−s)γ − 1
, g = e−sγ − 1

e(k+1−s)γ − 1
,

(−a)s

(1 − a)k+1
= ss(k + 1 − s)k+1−s

(k + 1)k+1
, a �= − s

k + 1 − s
;

(iv) f = ekγ − 1

λesγ − 1
, g = e−kγ − 1

λ−1e−sγ − 1
,

λk �= 0,1,
(a − 1)k−s

λkak
= ss(k − s)k−s

kk
;

(v) f = esγ − 1

λekγ − 1
, g = e−sγ − 1

λ−1e−kγ − 1
,

λs �= 0,1, λsas(1 − a)k−s = ss(k − s)k−s

kk
;

(vi) f = esγ − 1

λe−(k−s)γ − 1
, g = e−sγ − 1

λ−1e(k−s)γ − 1
,

λs �= 0,1,
(−λa)s

(1 − a)k
= ss(k − s)k−s

kk
,

where γ is a non-constant entire function, and s and k � 2 are two positive integers such that s

and k +1 are mutually prime with 1 � s � k in cases (i)–(iii), and such that s and k are mutually
prime with 1 � s � k − 1 in cases (iv)–(vi).

Remark. In fact, Theorem B is an extension of Theorem A, since if two distinct non-constant
meromorphic functions f and g share the values 0, 1 and ∞ CM, then for any a ∈ C \ {0,1}, we
have N(3(r,1/(f − a)) = S(r, f ) (see [12, Lemma 3]). Therefore, the assumption on the value a

in Theorem B is equivalent to

N

(
r,

1

f − a

)
= T (r, f ) + S(r, f ) but N1)

(
r,

1

f − a

)
�= T (r, f ) + S(r, f ).

It is natural to ask whether the value-sharing assumptions of Theorems A and B could be
weakened anymore? The answer is affirmative. Now, let us introduce the definitions of finite-
weight sharing due to I. Lahiri (see [5–8,26]).

Definition 1. Let k be a non-negative integer, let f be a non-constant meromorphic function,
and let a ∈ C̄ = C ∪ {∞} be a complex number. Then, we denote by Ek(a,f ) the set of all the
a-points of f , where an a-point with multiplicity m is counted m times if m � k while k + 1
times if m > k.

Definition 2. Let k be a non-negative integer, let f and g be two non-constant meromorphic
functions, and let a ∈ C̄ be a complex number. If Ek(a,f ) = Ek(a, g), then we say that f and g

share the value a with weight k.

We also write f and g sharing (a, k) to mean that they share the value a with weight k. If f

and g share (a, k), then they share (a,p) for all integers p (0 � p < k). Clearly, f and g share



Q. Han, H.-X. Yi / J. Math. Anal. Appl. 334 (2007) 314–332 317
a value a CM if and only if they share (a, k) for all positive integers k, while f and g share a
value a IM if and only if they share (a,0).

By using the concept of finite-weight sharing, our main result states

Theorem 1. Let f and g be two distinct non-constant meromorphic functions sharing (0, k1),
(1, k2) and (∞, k3) with k1k2k3 > k1 + k2 + k3 + 2. If, for some a ∈ C \ {0,1}, we have

N1)

(
r,

1

f − a

)
�= T (r, f ) + S(r, f ), (1.1)

then f and g share the values 0, 1 and ∞ CM. Thus, the conclusions of Theorems A and B,
respectively, still hold.

Since f and g share the values 0, 1 and ∞ IM, then by the Second Main Theorem,
we could easily derive that T (r, f ) = O(T (r, g)) and T (r, g) = O(T (r, f )), which implies
S(r, f ) = S(r, g). In the following, we denote this term by S(r).

2. Some lemmas

Lemma 1. (See [26].) Let f and g be two distinct non-constant meromorphic functions sharing
(0, k1), (1, k2) and (∞, k3) with k1k2k3 > k1 + k2 + k3 + 2. Then, for h ∈ {f,g}, we have

N̄(2

(
r,

1

h

)
+ N̄(2

(
r,

1

h − 1

)
+ N̄(2(r, h) = S(r). (2.1)

Lemma 2. Let f and g be two distinct non-constant meromorphic functions sharing (0, k1),
(1, k2) and (∞, k3) with k1k2k3 > k1 + k2 + k3 + 2, and suppose that f is not any bilinear
transformation of g. Then, for h ∈ {f,g}, we have

(i) T (r, f ) + T (r, g) = N̄

(
r,

1

h

)
+ N̄

(
r,

1

h − 1

)
+ N̄(r, h) + N0(r) + S(r); (2.2)

(ii) N

(
r,

1

f − g

)
= N̄

(
r,

1

f − g

)
+ S(r), N0(r) = N̄0(r) + S(r). (2.3)

Proof. The method we employed here for the proof of Lemma 2 is similar to that of the main
result in [8] and [22], respectively. For the sake of convenience for the reader, we shall outline
a proof of it.

Noting that f and g share (0, k1), (1, k2) and (∞, k3) with k1k2k3 > k1 + k2 + k3 + 2, then
we define

h1 := f

g
, h2 := f − 1

g − 1
,

and thus

f = h2 − 1

h3 − 1
, g = h−1

2 − 1

h−1
3 − 1

(
h3 := h2

h1

)
. (2.4)

It is obvious that for h ∈ {f,g}, we have
∑3

j=1 T (r,hj ) = O(T (r,h)) and T (r,h) =
O(

∑3
j=1 T (r,hj )). By Lemma 1, we see that
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3∑
j=1

(
N̄(r, hj ) + N̄

(
r,

1

hj

))
� O

(
N̄(2

(
r,

1

h

)
+ N̄(2

(
r,

1

h − 1

)
+ N̄(2(r, h)

)
= S(r).

Therefore,

3∑
j=1

T

(
r,

h′
j

hj

)
= S(r). (2.5)

If one of h1, h2 and h3 is a constant, then f would be some bilinear transformation of g,
which contradicts the assumption. Thus, in the following, we suppose that none of h1, h2 and h3
is a constant.

Now, we define

ϕ :=
h′

2
h2

h′
3

h3

=
h′

2
h2

h′
2

h2
− h′

1
h1

.

Then, ϕ �≡ 0, 1 and by (2.5), T (r,ϕ) = S(r).
If

(ϕ − 1)
h′

2

h2
− ϕ′ ≡ 0,

then we have h2 ≡ c(ϕ − 1) for some constant c �= 0, and thus T (r,h2) = S(r). Also, we have

h′
3

h3
= h′

2

ϕh2
= ch′

2

h2(h2 + c)
= h′

2

h2
− h′

2

h2 + c
,

and hence h3 = c1
h2

h2+c
for some constant c1 �= 0, from which we have T (r,h3) = S(r), too.

By (2.4), we derive that T (r, f ) = S(r) and T (r, g) = S(r), a contradiction.

Hence, (ϕ − 1)
h′

2
h2

− ϕ′ �≡ 0. Noting that

f − ϕ = h2 − ϕh3 + ϕ − 1

h3 − 1
,

thus we define φ := (f −ϕ)(h3 − 1) = (h2 −ϕh3 +ϕ − 1), which combined with the expression
of ϕ could yield

φ′

φ
− h′

2

h2
= (h2 − ϕh3 + ϕ − 1)′ − (h2 − ϕh3 + ϕ − 1)

h′
2

h2

(f − ϕ)(h3 − 1)
= (ϕ − 1)

h′
2

h2
− ϕ′

f − ϕ
.

Hence, we obtain

1

f − ϕ
=

φ′
φ

− h′
2

h2

(ϕ − 1)
h′

2
h2

− ϕ′
,

which implies that

m

(
r,

1
)

= S(r) and N(2

(
r,

1
)

= S(r). (2.6)

f − ϕ f − ϕ
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Since f −g
g−1 = h2 − 1 and g = h2−1

h2−h1
, then we have

g′

g

f − g

g − 1
= (

h′
1

h1
− h′

2
h2

)h2 + h3
h′

2
h2

− h′
1

h1

h3 − 1
.

Also, we have

(f − ϕ)

(
h′

1

h1
− h′

2

h2

)
= (

h′
1

h1
− h′

2
h2

)h2 + h3
h′

2
h2

− h′
1

h1

h3 − 1
,

too. Therefore,

(f − ϕ)

(
h′

1

h1
− h′

2

h2

)
= g′

g

f − g

g − 1
. (2.7)

By (2.1), (2.5), the second equation of (2.6) and (2.7), and noting the fact that T (r,ϕ) = S(r),
we derive

N̄

(
r,

1

f − ϕ

)
= N0(r) + N0

(
r,

1

g′

)
+ S(r),

and hence N0(r) = N̄0(r) + S(r), which is the second equation of (2.3), where N0(r,1/g′) de-
notes the counting function of the zeros of g′ but not the multiple zeros of g(g − 1).

Also, by (2.6), the above equation and the First Main Theorem, we have

T (r, f ) = N0(r) + N0

(
r,

1

g′

)
+ S(r). (2.8)

Applying the Second Main Theorem to the function g with the values 0, 1 and ∞, noting (2.8)
and the fact that N̄(r, f ) = N̄(r, g) + O(1), to conclude

T (r, f ) + T (r, g) � T (r, f ) + N̄(r, g) + N̄

(
r,

1

g

)
+ N̄

(
r,

1

g − 1

)
− N0

(
r,

1

g′

)
+ S(r)

� N0(r) + N̄(r, g) + N̄

(
r,

1

g

)
+ N̄

(
r,

1

g − 1

)
+ S(r)

� N̄(r, g) + N̄

(
r,

1

f − g

)
+ S(r)

� N̄(r, g) + N

(
r,

1

f − g

)
+ S(r)

� T (r, f − g) + N̄(r, g) + S(r)

� m(r,f ) + m(r,g) + N(r,f ) + N(r, g) + S(r)

� T (r, f ) + T (r, g) + S(r),

which implies that (2.2) and the first equation of (2.3). �
Lemma 3. Let f and g be two distinct non-constant meromorphic functions sharing (0, k1),
(1, k2) and (∞, k3) with k1k2k3 > k1 + k2 + k3 + 2. Then, for any a ∈ C \ {0,1} and h ∈ {f,g},
we have

N(3

(
r,

1

h − a

)
= S(r). (2.9)
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Proof. Without loss of generality, we might assume h = f . If f is some bilinear transfor-
mation of g, then the conclusion is trivial since now, for any a ∈ C \ {0,1}, we have either
T (r, f ) = N1)(r,1/(f − a)) + S(r) by the Second Main Theorem, or a is a lacunary value of f

(see [12, Lemmas 1 and 2]). Thus, we suppose that f is not any bilinear transformation of g in
the following.

With the same notations such as h1, h2, h3 and ϕ in the proof of Lemma 2, we know that
neither h2 nor h3 is a constant, and have

f − a = h2 − ah3 + (a − 1)

h3 − 1
. (2.10)

Take za to be an a-point of f with multiplicity p � 3 but not a zero or a pole of h2 and h3.
Thus, by assumption, we have

h2(za) − ah3(za) + (a − 1) = 0,

h′
2(za) − ah′

3(za) = 0,

and

h′′
2(za) − ah′′

3(za) = 0.

The above last two equations imply

h′′
2(za)

h′
2(za)

− h′′
3(za)

h′
3(za)

= 0.

If
h′′

2
h′

2
− h′′

3
h′

3
≡ 0, then by integrating it twice, we have h2 ≡ c0h3 + c1 for two constants

c0 �= 0, c1. If c1 �= 0, then by the proof of Lemma 2, we have

N̄

(
r,

1

h3 + c1
c0

)
= N̄

(
r,

1

h2

)
+ O(1) = S(r),

which means

T (r,h3) � N̄

(
r,

1

h3 + c1
c0

)
+ N̄

(
r,

1

h3

)
+ N̄(r, h3) + S(r) = S(r).

Then, T (r,h2) = S(r), too. Hence, T (r, f ) = S(r) by (2.4), a contradiction. So, c1 = 0. If c0 �= a,
then by (2.10), the First Main Theorem, the lemma of logarithmic derivative, and the fact that

3∑
j=1

(
N̄(r, hj ) + N̄

(
r,

1

hj

))
= S(r),

we obtain

N̄(3

(
r,

1

f − a

)
� N̄

(
r,

1

h′
2

)
� N̄

(
r,

h2

h′
2

)
+ N̄

(
r,

1

h2

)
+ O(1)

� T

(
r,

h′
2

h2

)
+ N̄

(
r,

1

h2

)
+ O(1)

� N̄(r, h2) + 2N̄

(
r,

1
)

+ S(r) = S(r). (2.11)

h2
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If c0 = a, then by (2.10), we see that N̄(3(r,1/(f −a)) � N̄(r, h3)+O(1) = S(r). Hence, (2.11)
holds, too.

If
h′′

2
h′

2
− h′′

3
h′

3
�≡ 0, combining this with the lemma of logarithmic derivative and the facts that

N̄

(
r,

1

h′
j

)
� N̄(r, hj ) + 2N̄

(
r,

1

hj

)
+ S(r) = S(r)

(shown in the proof in (2.11)) and N̄(r, h′
j ) = N̄(r, hj ) + O(1) = S(r) for j = 2,3, yields

N̄(3

(
r,

1

f − a

)
� O

(
3∑

j=2

(
N̄(r, hj ) + N̄

(
r,

1

hj

)))
+ S(r) = S(r).

Also, (2.11) holds well.
Noting that za is an a-point of f with multiplicity p � 3, then it is a zero of f ′(f − g) with

multiplicity at least p − 1 � 2. Combining the second equation of (2.6), (2.7) (interchanging
positions of f and g, respectively) with (2.5) yields

N(3

(
r,

1

f − a

)
− N̄(3

(
r,

1

f − a

)
� N(2

(
r,

1

f ′

)
+ O(1)

� N(2

(
r,

1

f ′(f − g)

)
+ O(1)

� N(2

(
r,

1

g − ϕ

)
+ S(r) = S(r), (2.12)

which together with (2.11) implies (2.9). �
Lemma 4. Let f and g be two distinct non-constant meromorphic functions sharing 0, 1 and
∞ IM. Furthermore, if we assume that f is some bilinear transformation of g, then they satisfy
one of the following six relations:

(i) fg ≡ 1,
(ii) f + g ≡ 1,

(iii) (f − 1)(g − 1) ≡ 1,
(iv) f ≡ αg,
(v) f − 1 ≡ α(g − 1),

(vi) (f − α)(g + α − 1) ≡ α(1 − α),

where α �= 0,1 is a constant.

Proof. Without loss of generality, we may suppose that

f = ag + b

cg + d
, (ad − bc �= 0).

Noting that f and g are distinct, we shall discuss the following six cases.
Case (i). If 0 and ∞ are lacunary values of f and g, then a + b = c + d and a = d = 0, since

f and g have infinitely many 1-points, which means fg ≡ 1.
Case (ii). If 0 and 1 are lacunary values of f and g, then c = 0 and f = a

d
g + b

d
. Further, we

have a + b = 0 and b = 1, which is just f + g ≡ 1.

d d d
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Case (iii). If 1 and ∞ are lacunary values of f and g, then b = 0 and c = −d . Thus, f =
ag

c(g−1)
, which could be rewritten as (f − 1)(g − 1) ≡ 1.

Case (iv). If only 1 is a lacunary value of f and g, then b = c = 0 and thus we have f ≡ αg,
where α = a

d
�= 0,1.

Case (v). If only 0 is a lacunary value of f and g, then c = 0 and d = a + b. Then, we have
f − 1 ≡ α(g − 1) with α = a

d
�= 0,1.

Case (vi). If only ∞ is a lacunary value of f and g, then b = 0 and a = c + d . Therefore,
(f − α)(g + α − 1) ≡ α(1 − α) with α = 1 + d

c
�= 0,1. �

Lemma 5. (See [2] or [27].) Let ω1 and ω2 be two non-constant meromorphic functions satis-
fying N̄(r,ωj ) + N̄(r,1/ωj ) = S∗(r) for j = 1,2. If ωs

1ω
t
2 − 1 is not identically equal to zero

for all integers s and t satisfying |s| + |t | > 0, then we have N0(r,1;ω1,ω2) = S∗(r). Where
N0(r,1;ω1,ω2) denotes the reduced counting function of the common 1-points of ω1 and ω2,
and S∗(r) = o(T (r) := T (r,ω1) + T (r,ω2)) (r /∈ E) only depends on ω1 and ω2.

3. Proof of Theorem 1

Let us proceed the proof of Theorem 1 with two cases.

Case 1.

N

(
r,

1

f − a

)
�= T (r, f ) + S(r). (3.1)

If f is a bilinear transformation of g, then from the conclusions of Lemma 4, we could easily
see that f and g share the values 0, 1 and ∞ CM. Cases (i)–(iii) in Lemma 4 contradict (3.1),
and thus might be ruled out. Case (iv) in Lemma 4 means a = α, a lacunary value of f , and then
case (i) in Theorem A occurs. Also, case (v) in Lemma 4 means a = 1−α, a lacunary value of f ,
and then case (ii) in Theorem A occurs. At last, case (vi) in Lemma 4 means a = α, a lacunary
value of f , and hence case (iii) in Theorem A occurs.

If f is not any bilinear transformation of g, then by (2.2) and (2.8) (with interchanged posi-
tions of f and g), plus the Second Main Theorem, we see

2T (r, f ) � N

(
r,

1

f

)
+ N

(
r,

1

f − 1

)
+ N̄(r, f ) + N

(
r,

1

f − a

)
− N

(
r,

1

f ′

)
+ S(r)

� N̄

(
r,

1

f

)
+ N̄

(
r,

1

f − 1

)
+ N̄(r, f ) + N

(
r,

1

f − a

)
− N̄0

(
r,

1

f ′

)
+ S(r)

� T (r, f ) + N

(
r,

1

f − a

)
+ S(r) � 2T (r, f ) + S(r),

which implies that T (r, f ) = N(r,1/(f − a)) + S(r), a contradiction against (3.1).

Case 2.

N

(
r,

1

f − a

)
= T (r, f ) + S(r). (3.2)

Noting (1.1) and (2.9), we know that
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N̄(2

(
r,

1

f − a

)
�= S(r). (3.3)

We continue to use those notations such as h1, h2 and h3 in the proof of Lemma 2. Then, from
(2.10), (3.3) and the fact that

∑3
j=1(N̄(r, hj ) + N̄(r,1/hj )) = S(r), it is not difficult to claim

that T (r,hj ) �= S(r) for j = 1,2,3.
In fact, if T (r,h1) = S(r), then we rewrite (2.10) as

f − a = (h1 − a)h3 + a − 1

h3 − 1
,

and obtain T (r, f ) = T (r,h3) + S(r). Obviously, h1 − a �≡ 0. Otherwise, it might derive that
f ≡ ag, which implies that 1 and a are lacunary values of f , a contradiction against (3.2). Now,
applying the Second Main Theorem concerning three small functions (see [19, Theorem 1.36])
to the function h3 with its small functions 0, ∞ and β := −(a − 1)/(h1 − a) to conclude that

T (r,h3) � N̄(r, h3) + N̄

(
r,

1

h3

)
+ N̄

(
r,

1

h3 − β

)
+ S(r)

� N̄

(
r,

1

h3 − β

)
+ S(r) � N̄

(
r,

1

h3 − β

)
+ 1

2
N(2

(
r,

1

h3 − β

)
+ S(r)

� N

(
r,

1

h3 − β

)
+ S(r) � T (r,h3) + S(r),

which implies that N(2(r,1/(h3 − β)) = S(r). Hence, we could immediately derive that
N̄(2(r,1/(f − a)) � N(2(r,1/(h3 − β)) + S(r) = S(r), a contradiction against (3.3). Analogous
discussions could yield T (r,h2) �= S(r) and T (r,h3) �= S(r).

Let za be a multiple a-point of f but not a zero or a pole of
h′

2
h2

,
h′

3
h3

and
h′

2
h2

− h′
3

h3
. Since

h2(za) − ah3(za) + (a − 1) = 0 and h′
2(za) − ah′

3(za) = 0, we have

h2(za) = (a − 1)
h′

3(za)

h3(za)

h′
2(za)

h2(za)
− h′

3(za)

h3(za)

and h3(za) = (a − 1)
h′

2(za)

h2(za)

a(
h′

2(za)

h2(za)
− h′

3(za)

h3(za)
)
.

Now, let us define

ω1 := h2(
h′

2
h2

− h′
3

h3
)

(a − 1)
h′

3
h3

, ω2 := ah3(
h′

2
h2

− h′
3

h3
)

(a − 1)
h′

2
h2

, (3.4)

and

T (r) := T (r,ω1) + T (r,ω2), S∗(r) := o
(
T (r)

)
(r /∈ E).

It is easily seen that for h ∈ {f,g}, we have

2∑
j=1

T (r,ωj ) = O
(
T (r,h)

)
, T (r, h) = O

(
2∑

j=1

T (r,ωj )

)
,

and

S∗(r) = S(r),

2∑(
N̄(r,ωj ) + N̄

(
r,

1

ωj

))
= S(r).
j=1
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Since now

N̄(2

(
r,

1

f − a

)
� N0(r,1;ω1,ω2) + S(r),

thus by (3.3) and the conclusion of Lemma 5, we know that there exist two integers s and t such
that |s| + |t | > 0, and such that ωs

1ω
t
2 ≡ 1. It could be rewritten as

hs
2h

t
3 ≡

(
(a − 1)

h′
3

h3

h′
2

h2
− h′

3
h3

)s( (a − 1)
h′

2
h2

a(
h′

2
h2

− h′
3

h3
)

)t

. (3.5)

Applying logarithmic differentiation to (3.5) to obtain

s
h′

2

h2
+ t

h′
3

h3
≡ s

h′
2

h2
+ t

h′
3

h3

h′
2

h2
(1 − h′

2
h2

h3
h′

3
)

(
h′

2

h2

h3

h′
3

)′
. (3.6)

If s
h′

2
h2

+ t
h′

3
h3

�≡ 0, then we have

h′
2

h2
≡

(
h′

2
h2

h3
h′

3
)′

1 − h′
2

h2

h3
h′

3

.

Applying integration to it twice, we obtain h3 ≡ c2(h2 − c1), where c1, c2 are two non-zero
constants. So,

T (r,h2) � N̄

(
r,

1

h2 − c1

)
+ S(r) = N̄

(
r,

1

h3

)
+ S(r) = S(r),

a contradiction against the fact that T (r,hj ) �= S(r) for j = 1,2,3.

Therefore, s
h′

2
h2

+ t
h′

3
h3

≡ 0. Hence, by integration, we get hs
2h

t
3 ≡ c for a non-zero constant c.

Since none of h1, h2 and h3 is a constant, then we have st (s + t) �= 0. Rewrite it in terms of f

and g as(
g

f

)t(
f − 1

g − 1

)s+t

≡ c,

which implies that f and g share the values 0, 1 and ∞ CM.

4. Applications of Theorem 1

In the same paper, X.M. Li and H.X. Yi obtained the following two theorems, the former of
which was an extension of a previous result by P. Li (see [10]).

Theorem C. (See [12].) Let f and g be two distinct non-constant meromorphic functions sharing
0, 1 and ∞ CM. If, for some a ∈ C \ {0,1}, not a lacunary value of f , we have

N1)

(
r,

1

f − a

)
� uT (r, f ) + S(r),
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where u < 1
3 , then

N1)

(
r,

1

f − a

)
= O(1),

and f and g assume one of the following nine forms:

(i) f = e3γ − 1

eγ − 1
, g = e−3γ − 1

e−γ − 1
, a = 3

4
;

(ii) f = e3γ − 1

e2γ − 1
, g = e−3γ − 1

e−2γ − 1
, a = −3;

(iii) f = eγ − 1

e3γ − 1
, g = e−γ − 1

e−3γ − 1
, a = 4

3
;

(iv) f = e2γ − 1

e3γ − 1
, g = e−2γ − 1

e−3γ − 1
, a = −1

3
;

(v) f = e2γ − 1

e−γ − 1
, g = e−2γ − 1

eγ − 1
, a = 1

4
;

(vi) f = eγ − 1

e−2γ − 1
, g = e−γ − 1

e2γ − 1
, a = 4;

(vii) f = e2γ − 1

λeγ − 1
, g = e−2γ − 1

λ−1e−γ − 1
, λ2 �= 1, a2λ2 = 4(a − 1);

(viii) f = eγ − 1

λe2γ − 1
, g = e−γ − 1

λ−1e−2γ − 1
, λ �= 1, 4a(1 − a)λ = 1;

(ix) f = eγ − 1

λe−γ − 1
, g = e−γ − 1

λ−1eγ − 1
, λ �= 1, (1 − a)2 + 4aλ = 0,

where γ is a non-constant entire function.

Theorem D. (See [12].) Let f and g be two distinct non-constant meromorphic functions sharing
0, 1 and ∞ CM. If, for some a ∈ C \ {0,1}, we have

N1)

(
r,

1

f − a

)
� uT (r, f ) + S(r),

N̄(r, f ) � vT (r, f ) + S(r),

and

N1)

(
r,

1

g − a

)
�= T (r, g) + S(r),

where u < 1
3 and v < 1

2 , then

N1)

(
r,

1

f − a

)
= O(1),

and one of the following three cases holds:
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(i)

(
f − 1

2

)(
g − 1

2

)
≡ 1

4
, a = 1

2
;

(ii) f = −e2γ − eγ , g = −e−2γ − e−γ , a = 1

4
;

(iii) f = e2γ + eγ + 1, g = e−2γ + e−γ + 1, a = 3

4
,

where γ is a non-constant entire function.

From the conclusions of Theorem 1, we could show the following

Theorem 2. Let f and g be two distinct non-constant meromorphic functions sharing (0, k1),
(1, k2) and (∞, k3) with k1k2k3 > k1 + k2 + k3 + 2. If we retain the other assumptions in Theo-
rems C and D, respectively, then their conclusions hold.

Proof. Since we have the inequality N1)(r,1/(f − a)) � uT (r, f ) + S(r) anyway, thus (1.1)
holds. Combining the methods in the original proof of Theorems C and D, respectively, with the
conclusions of Theorem 1 yields the desired results. �

Also, in that same paper, X.M. Li and H.X. Yi gave a concise proof of the following The-
orem E, which was a beautiful result in the earlier studies of unique range sets and also an
extension of a previous result of H.X. Yi in [20].

Now, let us introduce the idea of finite-weight sharing concerning sets firstly.

Definition 3. Let k be a non-negative integer, let f and g be two non-constant meromorphic
functions, and let S ⊆ C ∪ {∞} be a set with distinct elements. Then, we define Ek(S, f ) :=⋃

a∈S
Ek(a,f ). If Ek(S, f ) = Ek(S, g), then we say that f and g share the set S with weight k.

Theorem E. (See [10] or [12] or [23].) Let S1 = {a1, a2} and S2 = {b1, b2} be two sets of distinct
elements with a1 + a2 = b1 + b2 but a1a2 �= b1b2, and set S3 = {∞}. Suppose that two distinct
non-constant meromorphic functions f and g share S1, S2 and S3 CM, then f and g have one
of the following four relations:

(i) f + g ≡ a1 + a2;

(ii)

(
f − c

2

)(
g − c

2

)
≡

(
a1 − a2

2

)2

(c = a1 + a2);

(iii) (f − aj )(g − ak) ≡ (−1)j+k(a1 − a2)
2 (j, k = 1,2);

(iv) (f − bj )(g − bk) ≡ (−1)j+k(b1 − b2)
2 (j, k = 1,2),

where case (ii) occurs only for (a1 −a2)
2 +(b1 −b2)

2 = 0, case (iii) occurs only for 3(a1 −a2)
2 +

(b1 − b2)
2 = 0, while case (iv) occurs only for (a1 − a2)

2 + 3(b1 − b2)
2 = 0.

Combining analogous method as that in the proof of Theorem E in [12] with the conclusions of
Theorem 1 could yield the same conclusions if we weaken the assumption that f and g share the
sets S1, S2 and S3 CM to Ek1(S1, f ) = Ek1(S1, g), Ek2(S2, f ) = Ek2(S2, g) and Ek3(S3, f ) =
Ek3(S3, g) for three positive integers k1, k2 and k3 such that k1k2k3 > k1 + k2 + k3 + 2.
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5. On conjectures of Osgood–Yang and Mues

It is well known that C.F. Osgood and C.C. Yang conjectured that if two distinct non-constant
entire functions f and g share the values 0 and 1 CM, then

T (r, f ) ∼ T (r, g) (r → ∞, r /∈ E).

Nineteen years after they proposed the above conjecture, in 1995, E. Mues extended it to
meromorphic functions and conjectured that if two distinct non-constant meromorphic functions
f and g share the values 0, 1 and ∞ CM, then(

1

2
+ o(1)

)
� T (r, f )

T (r, g)
�

(
2 + o(1)

)
(r → ∞, r /∈ E).

Also, the bounds 1/2 and 2 could not be sharpened any more as shown in [1].
The first promising result that shows the above two conjectures could be solved was obtained

by P. Li and C.C. Yang in 1998 (see [9]). Then, in 1999, by employing a result of Y.H. Li and Q.C.
Zhang (see [11]), which plays quite an important role in sharpening the Second Main Theorem
concerning small functions (see [13,15,18]), the second author of that paper proved the following
result, whose embryonic form could be found in [9].

Theorem F. (See [2] or [27].) Let f and g be two distinct non-constant meromorphic functions
sharing 0, 1 and ∞ CM. If N0(r) �= S(r), then f is not any bilinear transformation of g if and
only if

0 < lim sup
r→∞, r /∈E

N0(r)

T (r, f )
� 1

2
,

and then

N0(r) = 1

k
T (r, f ) + S(r).

Furthermore, f and g assume one of the following three forms:

(i) f = esγ − 1

e(k+1)γ − 1
, g = e−sγ − 1

e−(k+1)γ − 1
, 1 � s � k;

(ii) f = e(k+1)γ − 1

e(k+1−s)γ − 1
, g = e−(k+1)γ − 1

e−(k+1−s)γ − 1
, 1 � s � k;

(iii) f = esγ − 1

e−(k+1−s)γ − 1
, g = e−sγ − 1

e(k+1−s)γ − 1
, 1 � s � k,

where s and k � 2 are two positive integers such that s and k + 1 are mutually prime, and γ is a
non-constant entire function.

In 2003, by using the conclusions of Theorem F and an equality in [22] like (2.2), H.X. Yi
and Y.H. Li completely solved the above two conjectures (see [24]). Some extensions on their
results could be found in [2,8]. Here, we give a concise proof of the above two conjectures with
finite-weight sharing assumptions.

Theorem 3. Let f and g be two distinct non-constant meromorphic functions sharing (0, k1),
(1, k2) and (∞, k3) with k1k2k3 > k1 + k2 + k3 + 2. Then,
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(
1

2
+ o(1)

)
� T (r, f )

T (r, g)
�

(
2 + o(1)

)
(r → ∞, r /∈ E). (5.1)

In particular, if f and g are entire, then we just consider f and g sharing (0, k1) and (1, k2)

with k1k2 > 1 and have

T (r, f ) ∼ T (r, g) (r → ∞, r /∈ E). (5.2)

Proof. If f is some bilinear transformation of g, then (5.2) holds well. If f is not any bilinear
transformation of g, then, with the same notations such as h1, h2 and h3 in the proof of Lemma 2,
we know that none of h1, h2 or h3 is a constant. Furthermore, if N0(r) �= S(r), then by the second
equality in (2.3), and noting the fact that N̄0(r) � N0(r,1;h1, h2) + S(r) anyway, it implies that
f and g share the values 0, 1 and ∞ CM from the conclusion of Lemma 5. In fact, there exist
two integers u and v such that hu

1hv
2 ≡ 1 with uv(u + v) �= 0. Hence,(

f

g

)u(
f − 1

g − 1

)v

≡ 1,

from which we could immediately derive that f and g share the values 0, 1 and ∞ CM. So,
the conclusions of Theorem F hold well. Valiron’s theorem (see [17, pp. 34–37] and [19, The-
orem 1.13]) applied to the three cases in Theorem F yields (5.2). If N0(r) = S(r), then we get
(5.1) by (2.2). When f and g are entire, we just assume that f and g share (0, k1) and (1, k2).
Hence, the inequality k1k2k3 > k1 + k2 + k3 + 2 with k3 = ∞ turns out to be k1k2 > 1. Noting
the fact that N(r,f ) = O(1) and N(r, g) = O(1), we have (5.2) similarly. �
Remark. If {k1, k2, k3} = {1,2,6} or {1,3,4} or {2,2,3} for two distinct non-constant mero-
morphic functions f and g, and {k1, k2} = {1,2} for two distinct non-constant entire functions f

and g, then the conclusions of Theorem 3 hold.

6. On results of Ozawa and Ueda

In 1976, M. Ozawa proved the following

Theorem G. (See [14].) Let f and g be two non-constant entire functions of finite order sharing
0 and 1 CM. If δ(0, f ) > 1

2 , then either fg ≡ 1 or f ≡ g.

Seven years later, H. Ueda removed the restriction on order and extended the above result to
meromorphic functions as the following

Theorem H. (See [16].) Let f and g be two non-constant meromorphic functions sharing 0, 1
and ∞ CM. If

lim sup
r→∞, r /∈E

N(r,f ) + N(r, 1
f
)

T (r, f )
<

1

2
,

then either fg ≡ 1 or f ≡ g.

In 1990, H.X. Yi generalized the above two theorems and obtained
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Theorem I. (See [21].) Let f and g be two non-constant meromorphic functions sharing 0, 1
and ∞ CM. If

lim sup
r→∞, r /∈E

N1)(r, f ) + N1)(r,
1
f
)

T (r, f )
<

1

2
,

then either fg ≡ 1 or f ≡ g.

Some results concerning weighted sharing on this topic and its related problems could be
found in [5–7,25,26]. Here, we derive a theorem which generalizes Theorems G–I and some
other results through the conclusions of Theorem F.

Theorem 4. Let f and g be two distinct non-constant meromorphic functions sharing (0, k1),
(1, k2) and (∞, k3) with k1k2k3 > k1 + k2 + k3 + 2. If, for h ∈ {f,g}, we have

lim sup
r→∞, r /∈E

N1)(r, h) + N1)(r,
1
h
) + N1)(r,

1
h−1 )

T (r, f ) + T (r, g)
< 1, (6.1)

then f and g assume the following three forms:

(i) f = esγ − 1

e(k+1)γ − 1
, g = e−sγ − 1

e−(k+1)γ − 1
, 1 � s � k;

(ii) f = e(k+1)γ − 1

e(k+1−s)γ − 1
, g = e−(k+1)γ − 1

e−(k+1−s)γ − 1
, 1 � s � k;

(iii) f = esγ − 1

e−(k+1−s)γ − 1
, g = e−sγ − 1

e(k+1−s)γ − 1
, 1 � s � k,

where s and k are two positive integers such that s and k + 1 are mutually prime, and γ is a
non-constant entire function. Furthermore, we have

N1)(r, h) + N1)

(
r,

1

h

)
+ N1)

(
r,

1

h − 1

)
=

(
2 − 1

k

)
T (r,h) + S(r). (6.2)

Proof. Let us also proceed the proof with two cases.

Case 1. If f is some bilinear transformation of g, then from the conclusions of Lemma 4, we
derive that

If fg ≡ 1, then 0 and ∞ are lacunary values of f and g, thus we may write f = eβ and
g = e−β , which means that f and g satisfy case (iii) in the statement of Theorem 4 with k = s = 1
and γ = β + (2μ + 1) · πi (μ ∈ Z) and (6.2) holds.

If f + g ≡ 1, then 0 and 1 are lacunary values of f and g, thus we may write f = 1
1−eβ

and g = eβ

eβ−1
, which implies that f and g satisfy case (i) in the statement of Theorem 4 with

k = s = 1 and γ = β + (2μ + 1) · πi (μ ∈ Z) and (6.2) holds.
If (f − 1)(g − 1) ≡ 1, then 1 and ∞ are lacunary values of f and g. Set f = eβ + 1 and

g = 1 + e−β . Then, f and g satisfy case (ii) in the statement of Theorem 4 with k = s = 1 and
γ = β + 2μ · πi (μ ∈ Z) and (6.2) holds.

If f ≡ αg (α �= 0,1), then 1 and α are lacunary values of f , and 1 and 1/α are lacunary values
of g. By the Second Main Theorem and (2.1), T (r,h) = N̄(r, h) + S(r) = N1)(r, h) + S(r) and
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T (r,h) = N̄(r,1/h) + S(r) = N1)(r,1/h) + S(r). Hence, we have a contradiction against (6.1)
since now T (r, f ) = T (r, g) + S(r).

If f − 1 ≡ α(g − 1) (α �= 0,1), then 0 and 1 − α are lacunary values of f , and 0 and 1 − 1/α

are lacunary values of g. A contradiction follows analogously.
If (f − α)(g + α − 1) ≡ α(1 − α) (α �= 0,1), then ∞ and α are lacunary values of f , and ∞

and 1 − α are lacunary values of g. Similarly, we get a contradiction.

Case 2. If f is not any bilinear transformation of g, then by (2.1), (2.2), the second equality of
(2.3) and (6.1), we see N̄0(r) �= S(r). Therefore, it implies that f and g share the values 0, 1 and
∞ CM by the proof of Theorem 3. Employing the conclusions of Theorem F, we know that f

and g assume the three forms in the statement of Theorem 4 with k � 2.
If case (i) holds, then we have

T (r, f ) = kT
(
r, eγ

) + S(r),

N1)(r, f ) = kT
(
r, eγ

) + S(r),

N1)

(
r,

1

f

)
= (s − 1)T

(
r, eγ

) + S(r),

N1)

(
r,

1

f − 1

)
= (k − s)T

(
r, eγ

) + S(r).

Thus, we have (6.2).
If case (ii) holds, then we have

T (r, f ) = kT
(
r, eγ

) + S(r),

N1)(r, f ) = (k − s)T
(
r, eγ

) + S(r),

N1)

(
r,

1

f

)
= kT

(
r, eγ

) + S(r),

N1)

(
r,

1

f − 1

)
= (s − 1)T

(
r, eγ

) + S(r).

Thus, we have (6.2), too.
If case (iii) holds, then we have

T (r, f ) = kT
(
r, eγ

) + S(r),

N1)(r, f ) = (k − s)T
(
r, eγ

) + S(r),

N1)

(
r,

1

f

)
= (s − 1)T

(
r, eγ

) + S(r),

N1)

(
r,

1

f − 1

)
= kT

(
r, eγ

) + S(r).

Thus, we have (6.2), too. �
Corollary. Let f and g be two distinct non-constant meromorphic functions sharing (0, k1),
(1, k2) and (∞, k3) with k1k2k3 > k1 + k2 + k3 + 2. If

lim sup
N1)(r, f ) + N1)(r,

1
f
)

T (r, f )
<

1

2
,

r→∞, r /∈E
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then fg ≡ 1.

Remark. Under the same value-sharing assumptions as those in Theorem 4 and its Corollary,
and furthermore, if we assume that

lim sup
r→∞, r /∈E

N1)(r, f ) + N1)(r,
1

f −1 )

T (r, f )
<

1

2
,

or

lim sup
r→∞, r /∈E

N1)(r,
1
f
) + N1)(r,

1
f −1 )

T (r, f )
<

1

2
,

then either (f − 1)(g − 1) ≡ 1 or f + g ≡ 1.
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