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Abstract 

The main aim of this paper is to show that an AB5* module whose small submodules have 
Krull dimension has a radical having Krull dimension. The proof uses the notion of dual Goldie 
dimension. @ 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Let R be an associative ring with unit and let M be a left unital R-module. Denote 

the socle of M, the intersection of all essential submodules of M, by &c(M). A well- 

known theorem by Goodearl (see [5, Proposition 3.61 or [I, Proposition 41) asserts that 

M/Sot(M) is noetherian if and only if every factor module MJN with N essential in M 

is noetherian. This can easily be extended to show that M/Sot(M) has Krull dimension 

if and only if M/N has Krull dimension for every essential submodule N of M (see 

[9, Proposition 21). Denote the radical of M, the sum of all small submodules of M, 

by R&(M). Dual to Goodearl’s result, Al-Khazzi and Smith proved that Rad( M) is 

artinian if and only if every small submodule of M is artinian (see [l, Theorem 51). 

They asked in [I]: If every small submodule has finite uniform dimension (Goldie 

dimension). Does Rad(M) have finite uniform dimension? 

Puczylowski answered this question in the negative and showed that there exists 

a Z-module M such that every small submodule is noetherian and hence has Krull 

dimension but R&(M) does not have Krull dimension (see [9, Example]). 

Since WC wish to dualize Goodearl’s Theorem it is natural to ask if the Al-Khazzi- 
Smith Theorem can be extended for arbitrary Krull dimension to modules which satisfy 

property AB5 * 
Theorem 5 is our main theorem and shows that for a module having AB5* the 

following implication holds. If every small submodules has finite hollow dimension 
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(dual Goldie dimension) then every submodule of &d(M) has finite hollow dimension. 

This can be seen as dual to [3, Lemma 5.141: If M/N has finite uniform dimension for 

every essential submodule N of M, then every factor module of M/Sot(M) has finite 

uniform dimension. 

2. Definitions 

For the definition of Km11 dimension we refer to [3, Ch. 61. A module M is said 

to be uniform if M # 0 and every non-zero submodule is essential in M. M is said to 

have finite uniform dimension (or finite Goldie dimension) if there is a monomorphism 

from a finite direct sum of proper uniform submodules of M to M such that the image 

is essential in M. It is well-known that this is equivalent to the property that M has 

no infinite independent family of non-zero submodules and that there is a maximal 

finite independent family of uniform submodules (see [3, Theorem 5.91). We denote 

the cardinality of this family by udim(A4) and call udim(M) the uniform dimension 

of M. 
A module M is said to be hollow if M # 0 and every proper submodule is small 

in M. Hollow modules were introduced by Fleury [4]. M is said to have finite hollow 
dimension if there is an epimorphism with a small kernel from M to a finite direct 

sum of non-zero hollow factor modules. It can be shown that in this case there is a 

number n such that M does not allow an epimorphism to a direct sum with more than 

n summands. We denote this by hdim(M)=n and call hdim(A4) the hollow dimension 

of M. For any submodule N of M we have hdim(M/N) I hdim(M). 

Definition. Let M be an R-module and {Nj.}n a family of proper submodules of M. 

{NA}~ is called coindependent (see [ 111) if for every A E n and finite subset J C A\(l), 

N),+nNj=M 
jEJ 

holds (convention: if J is empty, then set n, Nj :=M). 

It can be shown, that a module M has finite hollow dimension if and only if ev- 

ery coindependent family of submodules is finite (see [6, Corollary 131). For more 

information on dual Goldie dimension we refer to [6, l&12]. 

Definition. An R-module M has property AB5’ if for every submodule N and inverse 

systems {Mj}iEl of submodules of M the following holds: 

N+nMi=n(N+Mi) 
iE1 iE1 

Examples of modules with AB5* are artinian or linearly compact modules. Herbera 

and Shamsuddin proved the following result: 
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Lemma 1 (Herbera and Shamsuddin [7, Lemma 61 or Brodskii [2]). For a module M 

with property ABS the following statements are equivalent: 

(a) Every factor module of M has finite uniform dimension. 

(b) Every submodule of M has finite hollow dimension. 

It is easy to see that implication (b) + (a) always holds (see [ 13, Proposition 121) 

and that (a) + (b) is false in general (for example M =Z Z). 

Definition. Let M be an R-module and {Ni}n a family of proper submodules. Then 

{Nj.}n is called completely coindependent if for every J. E A, 

Nj.+ nNp=M 
!J#i 

holds. 

A completely coindependent family is coindependent, but the converse is not true in 

general (for example, {pi?} in ZZ where p runs through all prime numbers). Consid- 

ering Herbera and Shamsuddin’s proof of Lemma 1 we get: 

Lemma 2. Every coindependent family of submodules of a module with property 

ABS is completely coindependent. 

3. Modules whose small submodules have Krull dimension 

In this section we will prove our main theorem. First we prove: 

Lemma 3. Let M be an R-module, {NA}~ a completely coindependent family of 

proper submodules of M and IA\ > 2. Assume that for every J. E A there exists a sub- 

module L). such that Nn s LA. Let L := n,,, LA and N := n,,, Nl. Then {(NJ, flL)/N}” 

forms a completely coindependent family of proper submodules of LJN. 

Proof. Let i E A. Then Nl + L = LJ. n (N;_ + nr+n L,) = Li n M = LA. Since NA # L)~ 
we have NJ, n L E L. Moreover, (NA rl L) + nPp2(NP n L) = L is straightforward. Thus, 

{Nl, n L}, forms a completely coindependent family of proper submodules of L. Hence, 

N s Ni n L for all 1 E n and {(Nk n L)/N} n is a completely coindependent family of 

proper submodules of L/N. 0 

The next definition dualizes the notion of an essential extension. 

Definition. Let N CL CM be submodules of M. We say that L lies above N (in M) 
if LJN <M/N. Note that L lies above N if and only if N + K = M holds whenever 

L + K =M holds for a submodule K of M. 
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Lemma 4. Let M be an R-module with AB5*, {LA},+ a coindependent family of sub- 
modules such that for each /z E A there exists a submodule Ni CL), such that LA lies 

above Ni in M. Then n,, LA lies above n,, NA in M. 

Proof. Let Sz denote the set of all finite subsets of /1. Define for all J E Q AJ := njEJ Lj 

and BJ := n,,, NJ. By induction on the cardinality of J it is easy to show that AJ 

lies above BJ for all J E 52 (see [ 11, Proposition 1.61). Since {AJ}J~Q and {BJ}J~I~ 
are inverse systems, we get for K c M, 

M=K+~)L,=K+~A,=~(K+AJ)=~(K+B.~) 
i.EA JEO JEO JEQ 

=K+ r)BJ=K+ (7Nj.. •I 
JEQ i.EA 

Definition. Let M be an R-module and N, L submodules of M. Then N is called 

a supplement of L in M if N is minima1 with respect to N + L = M. Note that N 

is a supplement of L in M if and only if N + L = M and N n L<N (see [14, Ch. 

411). A module is called amply supplemented if whenever N + L = M holds for two 

submodules of M, then N contains a supplement of L in M. Any module with AB5* 
is amply supplemented (see [14, 47.91). As a generalization of a supplement, we say 

that N is a weak supplement of a module L in M if N + L = M and N fl L 4M 

holds. 

We will now state our main result: 

Theorem 5. Let M be an R-module having AB5* such that every small submodule of 
M has jinite hollow dimension. Then every submodule of Rad(M) has finite hollow 

dimension. 

Proof. Let G be a submodule of Rad(M) with G&M and assume {N;}n to be a 

coindependent family of proper submodules of G that can be assumed to be com- 

pletely coindependent by Lemma 2. Moreover, we assume that In] 2 2. For all 1 E ,4 

there exist elements xi. E Rad(M)\Ni since the N).‘s are proper submodules of G. 

Hence Rx). GM and L, := Ni + Rxi #Ni. Let N := n,, Nj. and L:= n, LA. Apply- 

ing Lemma 3, we get that {(N; f~ L)/N},, is a completely coindependent family of 

proper submodules of L/N. Next we will show that L/N has finite hollow dimension 

so that /i has to be finite. Since Li lies above N). for all 1 c/i, we get by applying 

Lemma 4 that L lies above N in M. Let K be a weak supplement of L in M. Then 

L/N E (L n K)/(N n K) yields hdim(L/N) < hdim(L n K). By assumption, L n K GM 
has finite hollow dimension. Thus, L/N has finite hollow dimension and A must be 

finite. This shows that every coindependent family of submodules of G must be finite. 

Hence every submodule of Rad(M) has finite hollow dimension. 0 
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Let us recall a result by Lemonnier to prove the next theorem. 

Proposition 6 (Lemonnier [S, Proposition 1.31). Let M be an R-module such that ev- 

ery non-zero factor module of M has Jinite uniform dimension und contains a non-zero 

submodule having Krull dimension. Then M has Krull dimension. 

Theorem 7. Let M be an R-module having AB5* such that every small submodule of 

M has Krull dimension. Then Rad(M) has Krull dimension. 

Proof. It is well-known that a module having Krull dimension has finite uniform di- 

mension (see [3, 6.21). Hence, every factor module of a small submodule N of M has 

finite uniform dimension. Since N has ABS every submodule of N has finite hollow 

dimension, by Lemma 1. Hence, by Theorem 5, every submodule of Rad(M) has finite 

hollow dimension. By Lemma 1 every factor module of Rad(M) has finite uniform 

dimension. In order to apply Lemonnier’s Proposition, we need to show that every non- 

zero factor module of Rad(M) contains a non-zero submodule having Krull dimension. 

Let f. c Rad( M) and x E Rad(M)\L; then Rx +M so that Rx has Krull dimension and 

hence (Rx + L)/L C Rad( M)/L has Krull dimension. Applying Proposition 6, Rad( M) 
has Krull dimension. 0 

Corollary 8. Let M be an R-module such that Rad(M) has ABY and every small 
submodule of M has Krull dimension. Then every submodule of Rad(M) that has a 
weak supplement in M has Krull dimension. 

Proof. By Theorem 7, the radical of every submodule contained in Rad(M) has Krull 

dimension. Since Rad(N) = N n Rad(M) holds for every supplement N in M (see [ 14, 

41 .l]), every supplement in M that is a submodule of Rad(M) has Krull dimension. 

Let L C Rad(M) and K CM a weak supplement of L in M. Then Rad(M) = L + 

(Rad(M) n K). Since Rad(M) has AB5* it is amply supplemented. Thus, there exists a 

supplement N C L of K n Rad( M) in Rad( M) such that Rad( M) = N + (Rad( M) n K) 
and NnRad(M)nK=NnK<N holds. Moreover L=N +(LnK) and M=N +K 

holds. Thus, N is a supplement of K in M, implying that N has Krull dimension. 

Because L/N E (L n K)/(N n K) with L n K 4M, L/N has Krull dimension and hence 

has L also. 0 
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