
Towards the Correctness of Security Protocols

Mourad Debbabi1

Panasonic Information and Networking Technologies Laboratory
Princeton, New Jersey, USA

Mohamed Mejri2

Computer Science Department, Laval University
Sainte Foy, Quebec, Canada

Abstract

In [19], the authors presented a type-theoretic approach to the verification of security protocols. In this
approach, a universal type system is proposed to capture in a finite way all the possible computations
(internal actions or protocol instrumentations) that could be performed by a smart malicious intruder. This
reduces the verification of cryptographic protocols to a typing problem where types are attack scenarios.
In this paper, we recall this type system and we prove its completeness i.e. if the intruder can learn a
message from a given protocol instrumentation, then this message could be infered from the type system.
A significant result of this paper is the presentation of a new transformation that allows us to abstract a
non-terminating type inference system into a terminating deductive proof system. We demonstrate how
these results could be used to establish the security of cryptographic protocols from the secrecy standpoint.
Finally, the usefulness and the efficiency of the whole approach is illustrated by proving the correctness of
a new version of the Needham-Shoreder protocol with respect to the secrecy property.

1 Motivations and Background

Information technology is becoming, more and more, a vitally important underpin-

ning of our economy and society. It is embedded in our everyday applications and

animates a wide class of systems that range from small to large, and from simple to

extremely complex. Actually, information systems increasingly govern nearly every

aspect of our lives. This omnipresence is largely increased by the dazzling expansion

of Internet, World Wide Web, parallel and distributed systems and mobile com-

putation. In such contexts, information must be protected against mystification,

destruction and disclosure. Accordingly, a great deal of interest has been expressed

in the development and use of cryptographic protocols.

1 Email: debbabim@research.panasonic.com
2 Email: mejri@ift.ulaval.ca

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82366641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:debbabim@research.panasonic.com
mailto:mejri@ift.ulaval.ca

A protocol is an orderly defined sequence of communication and computation

steps. A communication step transfers messages from one principal (sender) to

another (receiver), while a computation step updates a principal’s internal state. A

protocol with a security objective is called a cryptographic protocol. Cryptographic

functions are used to achieve such an objective. In the literature, two major classes

of cryptographic protocols have been advanced: authentication protocols and key

distribution protocols. The primary objective of authentication protocols is to allow

principals to identify themselves to each other. Key distribution protocols aim to

distribute cryptographic keys between principals.

Today, it is well known that the design of cryptographic protocols is error prone.

Several protocols have been shown flawed in computer security literature [14] many

years after their publication and use. Moreover, the correctness of these protocols

is paramount, especially when we consider the size of the networks involved and

the desire of principals to put confidential information and to allow for financial

transactions to take place across the network.

The primary objective of this work is to build on top of the work proposed in

[19] to contribute to the correctness of security protocols. Actually, in [19], the

authors presented a type-theoretic approach to the verification of security protocols.

In this approach, a universal type system is proposed to capture in a finite way

all the possible computations (internal actions or protocol instrumentations) that

could be performed by a smart malicious intruder. This reduces the verification

of cryptographic protocols to a typing problem where types are attack scenarios.

In this paper, we recall this type system and we prove its completeness i.e. if

the intruder can learn a message from a given protocol instrumentation, then this

message could be infered from the type system. A significant result of this paper is

the presentation of a new transformation that allows us to abstract a non-terminating

type inference system into a terminating deductive proof system. We demonstrate

how these results could be used to establish the security of cryptographic protocols

from the secrecy standpoint. Finally, the usefulness and the efficiency of the whole

approach is illustrated by proving the correctness of a new version of the Needham-

Shoreder protocol with respect to the secrecy property.

The rest of this paper is organized as follows: In Section 2, we present an overview

of related work in the area of modeling and verification of cryptographic protocols.

In Section 3, we review the basic notation and terminology used for cryptographic

protocols. In Section 4, we present the type system and the results related to its

correctness and completeness. In Section 5, we present a new schema allowing to

handle the termination problem within the type system. The efficiency on this

schema is illustrated on a concret example. Finally, in Section 6, some concluding

remarks are ultimately sketched as a conclusion.

2 Related Work

Formal modeling and verification of cryptographic protocols has received much at-

tention in recent years. Several frameworks for the description and analysis of cryp-

56

tographic protocols have been proposed. A complete bibliography and a comparative

study of these methods can be found in [12,13,14,31,34,40,50,49] [55,56]. These meth-

ods could be classified as follows: logical methods, general purpose formal methods

and process algebra methods.

Typically, logical methods rest on the use of modal (epistemic, temporal and/or

doxatic) logics. The logic is used to specify the protocol (idealization) as well as the

security properties. In 1989, Burrows, Abadi and Needham devised BAN, a modal

logic of belief for the specification and verification of cryptographic protocols [10,11].

BAN is the most known and famous logic dedicated to cryptographic protocols.

Since then, plenty of derived logics have been advanced [3,23,27,28,39]. In 1990,

Bieber [4] developed CKT5, a modal logic of knowledge that has been revised and

extended by Carlsen in [13] and Snekkenes in [54]. Concurrently, many other logics

attempted to combine several aspects of modal logic such as belief, knowledge and

trust [26,46,47,58]. These methods have been successfully used to detect many flaws

in cryptographic protocols and they are very expressive while specifying security

properties. Nevertheless, they are not very suitable for specifying the protocols

themselves. In fact, the protocols are often translated into a set of logical formulas.

The translation process, often referred to as idealization, is error-prone since it

aims to translate an operational description into a logical one. Furthermore, the

idealization is not systematic. Moreover, most of the proposed logics, while proved

sound with respect to some semantics are generally incomplete. In addition, the

verification of the protocol is always manual and semi-formal.

Another trend in formal cryptographic development is to make use of some well-

known general purpose formal methods. Representative specification languages that

have been used include LOTOS [9,60,61,62], B, VDM [5,6,59], HOL [54], Ina Jo

[32,33], Z [8,53] and Coq [7]. Although these formal methods are now firmly es-

tablished and known to be of great use in specification and verification, it remains

that these methods are not dedicated to cryptographic protocols. In addition, these

methods need much expert assistance during the verification process. In fact, they

rely on manual or interactive theorem proving techniques.

Recently, the use of process algebra for cryptographic protocol specification and

verification has been explored. In 1995, Gavin Lowe [35,36,37,38] was the first to use

CSP [29] and model-checking techniques for cryptographic protocol analysis. The

protocol is specified as a set of communicating sequential processes that are running

in parallel and interacting with their surroundings. The verification is performed

by extracting a model (usually a finite state transition system) from the specifica-

tion and checking that model against a logical specification (a formula over a modal

temporal logic) or a behavioral specification (a process term). A similar approach

was developed by Bill Roscoe, Paul Gardiner, Dave Jackson and Janson Hulance in

[24,25,48] and Steve Schneider in [51]. In [44,45,52] Mitchell et al. analyzed cryp-

tographic protocols using the general-purpose state enumeration tool Murφ [15].

Abadi and Gordon [1,2] advanced Spi, a calculus for cryptographic protocols. Spi

is built on top of the π-calculus [41,42,43], a mobile process algebra. It has been

devised for the description and analysis of security protocols. Many other approachs

57

[30,50,57] are based on the Dolev-Yao model [22] that consider protocols from an

attacker’s standpoint. The process algebra-based methods have been successfully

used to detect several flaws in well-known cryptographic protocols. The approach

seems to be very promising and useful. However, it is well known that the under-

lying verification techniques, mainly those based on model-checking, are generally

problematic in the presence of processes that exhibit infinite behaviors. Accordingly,

the infinite aspects of cryptographic protocols are usually not supported in the veri-

fication process. Notice also that the specification of security properties in terms of

process agents or modal formulae is neither straightforward nor systematic (except

in the case of Spi).

3 Basics

In this section, we introduce the basic notations that will be used throughout this

paper. This protocol notation, which we refer to as the standard notation, is based

on a fairly standard informal notation used by the security protocol community.

The statement A → B : m denotes the transmission of a message m from the

principal A to the principal B. A message is composed of one or more primitive

words. A message m encrypted with key k is written {m}k and forms a word by

itself. Concatenated messages are separated by commas. Message contents (words)

have the following naming conventions: Encryption keys and nonces are respectively

written k and N . Principals are written A, B, S and I, where A and B stand for

principals who wish to communicate, S for a trusted server and I for a potential

intruder. Subscripts will be used to denote an association to a principal; thus, for

example Na is a nonce that belongs to A and kas is a shared key between A and S.

Here is the BNF syntax of messages:

m ::= A Principal Identifier

| Na Nonce

| k Key

| n Numeral

| X Message Variable

| {m}k Encrypted Message

| m,m′ Message Concatenation

| m op m′ Arithmetic Operation

where op ∈ {+,−, ∗, /}.

A message m is said to be atomic if it is a principal identity, a nonce, a key, or a

numeral. As an example, we show in Table 1 the Needham Schroeder protocol with

symmetric keys. This protocol achieves both authentication and key distribution

between two principals A and B by the means of a trusted server S.

58

1. A → S : A,B,Na

2. S → A : {Na, B, kab, {kab, A}kbs}kas

3. A → B : {kab, A}kbs

4. B → A : {Nb}kab

5. A → B : {Nb − 1}kab

Table 1
The Needham Schroeder Protocol with Conventional Keys

Here Na and Nb are nonces, i.e.random numbers generated respectively by A and

B especially for this protocol run. S is a server and kas and kbs are keys that A and

B initially share with S. The key kab is a fresh key dynamically generated by the

server S, for use by the principals A and B. The description of the protocol can be

read as follows: First, A initiates the protocol and claims to the server S its desire

to authenticate and communicate with B by sending the message A,B,Na. Second,

the server S generates a fresh key kab and sends it back to A wrapped in the message

{Na, B, kab, {kab, A}kbs}kas . Third, the principal A decrypts the previous message,

extracts the component {kab, A}kbs and sends it back to B. Fourth, receiving the

previous message, the principal B decrypts it and extracts the key kab that it uses

to encrypt a fresh nonce Nb to get {Nb}kab , which it sends to A. Finally, A extracts

the nonce Nb, decrements it by 1, and sends the result back to B encrypted by the

key kab, thus proving A’s identity to B.

4 Type System

The main idea underlying the type system is to come up with a universal model

that captures in a finite way all the intruder abilities. In addition, the intruder

is made powerful, smart and lazy. By powerful, we mean that the intruder has a

complete control over the network. By smart, we mean that the intruder knows

which messages he needs to break a security property. By lazy, we mean that the

intruder will act in a goal-directed manner. He will neither generate nor send any

message that is not useful to achieve an attack. Furthermore, the intruder is able

to:

• overhear every message and decrypt cyphertext when he has the appropriate key,

• intercept and store messages,

• generate new messages using his initial knowledge and the intercepted messages.

The intruder abilities are formally captured as a type system in which protocols

are represented as static environments, messages as programs and attack scenarios

as types. The type system captures an insecurity property. When a message is

provable under the typing rules this means that the intruder could get that message

by combining its traditional abilities together with protocol instrumentations.

59

Fig. 1. Approach Outline

As shown by Fig. 1, the type system aims to transform the problem of the

cryptographic protocol analysis to a typing problem.

4.1 Protocols, Roles and Environments

In this sequel, we explain how to generate a role-based specification from protocol

descriptions written in the standard notation. These specifications will be used

to provide static environments for the type system. These specifications were first

introduced in [16,17,18] for the purpose of verification of authentication protocols.

First, we review the definition of a role and a generalized role, in order to introduce

the notion of a static environment. We will illustrate this concept on the Needham

Schroeder Protocol.

4.1.1 Role

A role is a protocol abstraction where the emphasis is put on a particular principal.

More precisely, roles are extracted from the protocol according to the following steps:

• For each principal, we extract all the steps in the protocol in which it participates.

Furthermore, we add the same session identifier i to all those steps. Finally, to

each fresh message we add i as exponent to indicate the fact that those messages

change their values from one execution of the protocol to another.

• We introduce explicitly an intruder I to indicate that all the messages sent or

received by the principal of the role have to be sent or received to/from the

intruder.

For instance, in the case of the Needham Schroeder protocol of Table 1, three roles

can be extracted, A, B and S. They respectively correspond to principals playing

the roles A, B and S. Note that throughout the rest of this paper the terms “role”

and “principal” will be used interchangeably, whenever the meaning is unambiguous.

For example, in the following, “S” should be understood as “a principal playing the

role of S”, and similarly for A and B.

60

The first step of the role generation gives the following:

A = 〈i.1, A → S : A,B,N i
a〉

〈i.2, S → A : {N i
a, B, kiab, {k

i
ab, A}kbs}kas〉

〈i.3, A → B : {kiab, A}kbs〉

〈i.4, B → A : {N i
b}kiab

〉

〈i.5, A → B : {N i
b − 1}kiab

〉

S = 〈i.1, A → S : A,B,N i
a〉

〈i.2, S → A : {N i
a, B, kiab, {k

i
ab, A}kbs}kas〉

B = 〈i.3, A → B : {kiab, A}kbs〉

〈i.4, B → A : {N i
b}kiab

〉

〈i.5, A → B : {N i
b − 1}ki

ab
〉

After the second step, the following results are obtained. Here I(S) indicates the

intruder acting in the role of S, etc.

A = 〈i.1, A → I(S) : A,B,N i
a〉

〈i.2, I(S) → A : {N i
a, B, kiab, {k

i
ab, A}kbs}kas〉

〈i.3, A → I(B) : {kiab, A}kbs〉

〈i.4, I(B) → A : {N i
b}kiab

〉

〈i.5, A → I(B) : {N i
b − 1}kiab

〉

S = 〈i.1, I(A) → S : A,B,N i
a〉

〈i.2, S → I(A) : {N i
a, B, kiab, {k

i
ab, A}kbs}kas〉

B = 〈i.3, I(A) → B : {kiab, A}kbs〉

〈i.4, B → I(A) : {N i
b}kiab

〉

〈i.5, I(A) → B : {N i
b − 1}ki

ab
〉

4.1.2 Generalized Roles

From the roles, we extract what we call generalized roles. A generalized role is an

abstraction of a role where some messages are replaced by variables. Intuitively, we

replace a message or a component of message by a variable, if the receiver of this

61

message could not do any verification on it. Generalized roles give a precise idea

about the principals’ behaviours during the protocol execution.

For instance, the principal, playing the role A, participates in the protocol

through these 5 steps:

(i) The principal A initiates the protocol by sending the message A,B,N i
a to the

principal S.

(ii) The principal A receives the message

{N i
a, B, kab, {kab, A}kbs}kas

from S. Actually, A receives a message of the form {N i
a, B,X, Y }kas where

X and Y are message variables. Here, we replace the message kab by X and

{kab, A}kbs by Y . The rationale underlying such substitutions is that the prin-

cipal A is waiting for a message (kab, A) encrypted under a key (kbs) that is not

known to A. The principal A has no means to check either that the received

message at the second step is actually encrypted under kbs, or that its content

is “kab, A”. Hence, A can accept any message, say Y , at this second step. A

similar argument applies to the substitution of kab by X.

(iii) The principal A reacts according to the protocol by sending the message Y to

B.

(iv) The principal A receives the message {N i
b}kab and is supposed to react by

sending {N i
b − 1}kab . However, notice that: (i) The principal A has no prior

knowledge about the value of the expected nonce, so A has no means to verify

the value of the received message at that step; (ii) The freshness of N i
b is a

local property. In other words, the freshness of the nonce cannot be attested by

any principal other than B. So, A cannot require the freshness of the received

message; (iii) For the sake of generality, we assume that the exchanged messages

are not typed. Consequently, A is unable to verify the type of the message

received at the fourth step of the protocol. Owing to these three facts, A can

verify neither the value, the freshness nor the type of the message received at

the fourth step of the protocol. Accordingly, N i
b will be replaced by Z.

(v) Finally, A sends the message {Z − 1}X to B.

In summary, the role associated with A, for a session i, can be written as the

following sequence of actions:

A = 〈i.1, A → I(S) : A,B,N i
a〉

〈i.2, I(S) → A : {N i
a, B,X, Y }kas〉

〈i.3, A → I(B) : Y 〉

〈i.4, I(B) → A : {Z}X〉

〈i.5, A → I(B) : {Z − 1}X〉

More formally, a generalized role could be introduced as follows. Let A, be the

62

role of A, KA the initial knowledge of the principal A (for the sake of simplicity,

we suppose that KA contains only atomic messages) and MA the set of messages

exchanged in the role A. We define the component of MA that is unknown to A,

denoted by MA
→KA

, using the following rewriting rules:

M ∪ {m} →K∪{m} M

M ∪ {{m}k} →K∪{k} M ∪ {m}

M ∪ {{m}k} ∪ {k} →K M ∪ {m} ∪ {k}

M ∪ {m.m′} →K M ∪ {m} ∪ {m′}

M ∪ {m op m′} →K M ∪ {m} ∪ {m′}

Now let f be any injective function from MA
→KA

to the set of message variables.

The generalized role of A, is obtained from A by replacing each exchanged message

m by Gf (m), where Gf (m) is defined as follows:

Gf (m) = f(m) If f(m) is defined

Gf (m) = m If m is atomic and

f(m) is not defined

Gf (m.m′) = Gf (m).Gf (m
′)

Gf (m op m′) = Gf (m) op Gf (m
′)

Gf ({m}k) = {Gf (m)}Gf (k)Iff({m}k)

is not defined

Notice that for the sake of simplicity, we deal only with symmetric key protocols

and the results could be easily extended to others kind of protocols.

For the role S, we have:

MS = {A.B.N i
a, {N

i
a, B, kiab, {k

i
ab, A}kbs}kas}

Let KS = {A,B, S, kas, kbs, k
i
ab} be the initial knowledge of S, therefore:

MS
→KS

= {N i
a}

Now, let f be the injective function from MS
→KS

to the set of message variables

defined as follows:

f(N i
a) = X

Since:

Gf (A.B.N i
a) = A.B.X

and

Gf ({N
i
a, B, kiab, {k

i
ab, A}kbs}kas) =

{X,B, kiab, {k
i
ab, A}kbs}kas

We conclude that the generalized role of S is:

63

S = 〈i.1, I(A) → S : A,B,X〉

〈i.2, S → I(A) : {X,B, kiab,

{kiab, A}kbs}kas〉

Similarly, the generalized roles associated with B could be written as follows:

B = 〈i.3, I(A) → B : {X,A}kbs 〉

〈i.4, B → I(A) : {N i
b}X〉

〈i.5, I(A) → B : {N i
b − 1}X〉

4.1.3 Environment

We are interested in role instrumentation by an active, malicious intruder. The idea

is to supply a given role with the messages it expects, in order to get the role to

produce a particular message that will be used in an attack. Hence, we are interested

in the output communication steps of the roles. We split each role into many sub-

roles, each of which ends with an output communication step. In the case of the

principal A, we have three outputs. Accordingly, we will split A into three sub-roles

A1, A2 and A3. Thus, we get the following:

A1 = 〈i.1, A → I(S) : A,B,N i
a〉

A2 = 〈i.1, A → I(S) : A,B,N i
a〉

〈i.2, I(S) → A : {N i
a, B,X, Y }kas〉

〈i.3, A → I(B) : Y 〉

A3 = 〈i.1, A → I(S) : A,B,N i
a〉

〈i.2, I(S) → A : {N i
a, B,X, Y }kas〉

〈i.3, A → I(B) : Y 〉

〈i.4, I(B) → A : {Z}X〉

〈i.5, A → I(B) : {Z − 1}X 〉

In the case of the principals S and B, we have only one output communication

step. Consequently, we will have S1 and B1 defined as follows:

64

S1 = 〈i.1, I(A) → S : A,B,X〉

〈i.2, S → I(A) : {X,B, kiab,

{kiab, A}kbs}kas〉

B1 = 〈i.3, I(A) → B : {X,A}kbs〉

〈i.4, B → I(A) : {N i
b}X〉

Each sub-role ends with an output communication step. The last step of the

protocol, i.e:

〈i.5, I(A) → B : {N i
b − 1}X 〉

is then removed from B1. This is motivated by the fact that this step is not needed

to get the message {N i
b}X from B.

Now we are ready to introduce the notion of static environment. This is simply

a mapping that takes a multiset containing the last messages output by a given

sub-role to the sequence of communication steps representing this sub-role. We will

see later why the notion of a multiset is useful. An empty sequence of communica-

tion steps corresponds to the multiset containing the intruder’s initial knowledge. A

multiset will be written between the following curly brackets {| . . . |} (to avoid ambi-

guity, two concatenated messages m1,m2 used in a set or a multiset will be denoted

by m1.m2). If M is a multiset, then we use M to denote the set containing all the

messages in M . An empty sequence of communication steps is denoted by ǫ. As an

illustration, the static environment associated with the Needham Schroeder protocol

of Table 1 is shown in Table 2. The multiset KI contains messages initially known

by the intruder. Notice that these roles and the corresponding environments can

be generated automatically from the protocol descriptions written in the standard

notation. The underlying algorithms are detailed in [16,17,18].

In the remainder of this paper, we use the following notation: If A is a generalized

role, then A∗ will denote the following set:

A∗ =
⋃

σ∈Γ

{Aσ}

where Γ is the set of all possible substitutions. Also, if A1 . . .An1
, B1 . . .Bn2

, . . . are

the generalized roles associated with a given protocol P , then P∗ is the following

set:

P∗ = A∗
1 ∪ . . . ∪ A∗

n1
∪ B∗

1 ∪ . . . ∪ B∗
n2

. . .

If ξ is a static environment, we will use the notation ξ∗ to denote the following

set:

ξ∗ =
⋃

σ∈Γ

⋃

A∈Rng(ξ)

{Aσ}

65

ξ = {

KI 7→ ǫ

{|A.B.N i
a|} 7→ 〈i.1, A → I(S) : A,B,N i

a〉

{|Y |} 7→

〈i.1, A → I(S) : A,B,N i
a〉

〈i.2, I(S) → A : {N i
a, B,X, Y }kas〉

〈i.3, A → I(B) : Y 〉

{|{Z − 1}X |} 7→

〈i.1, A → I(S) : A,B,N i
a〉

〈i.2, I(S) → A : {N i
a, B,X, Y }kas〉

〈i.3, A → I(B) : Y 〉

〈i.4, I(B) → A : {Z}X〉

〈i.5, A → I(B) : {Z − 1}X 〉

{|{X,B, kiab, {k
i
ab, A}kbs}kas |} 7→

〈i.1, I(A) → S : A,B,X〉

〈i.2, S → I(A) : {X,B, kiab, {k
i
ab, A}kbs}kas〉

{|{N i
b}X |} 7→

〈i.3, I(A) → B : {X,A}kbs 〉

〈i.4, B → I(A) : {N i
b}X〉

}

Table 2
The Needham Schroeder Environment

4.2 Scenario

Our typing rules will make use of the notion of a scenario, which we formalize here.

Given a static environment ξ, we associate a scenario τ (a type) to a message m

(a program). This means that the message m could be inferred by the intruder

by following the scenario τ in which the intruder uses some of its usual abilities

and some instrumentations of the protocol ξ. Intuitively, a scenario is a valid trace

denoting a protocol execution, i.e., a sequence of communication steps in which

principals act according to the protocol specification and all the messages sent by

the intruder are derivable from its knowledge.

A message m is said to be derivable by the intruder from its knowledge, say M

(a message set), whenever m can be obtained from M by using the intruder’s con-

ventional abilities (encryption, decryption, composition, and decomposition). More

formally, we say that m is derivable from M if m ∈ M⇓, where M⇓ is the closure of

66

the message set M under the conventional operations. Here is the formal definition:

Definition 4.1 [Closure] Let M be a message set. We denote by M⇓ the closure of

the set M under the conventional intruder computations. The closure M⇓ is defined

as the least set satisfying the following conditions:

(i) M ⊆ M⇓,

(ii) (k ∈ M⇓) ∧ ({m}k ∈ M⇓) ⇒ m ∈ M⇓,

(iii) (m ∈ M⇓) ∧ (m′ ∈ M⇓) ⇒ m op m′ ∈ M⇓

(iv) (m op m′ ∈ M⇓) ∧ (m′ ∈ M⇓) ⇒ m ∈ M⇓,

(v) (m op m′ ∈ M⇓) ∧ (m ∈ M⇓) ⇒ m′ ∈ M⇓,

(vi) (k ∈ M⇓) ∧ (m ∈ M⇓) ⇒ {m}k ∈ M⇓,

(vii) (m ∈ M⇓) ∧ (m′ ∈ M⇓) ⇒ m.m′ ∈ M⇓,

(viii) (m.m′ ∈ M⇓) ⇒ {m,m′} ⊆ M⇓.

where op ∈ {+,−, ∗, /},

Now, we need to define the algebra T of types. The structure of T is given by

the following BNF grammar:

τ ::= ǫ

| 〈i.j, I(A) → B : m〉.τ

| 〈i.j, A → I(B) : m〉.τ

where the type 〈i.j, I(A) → B : m〉.τ stands for the sequence in which the intruder

starts by an usurpation of the principal A and then sends the message m to the

principal B. The rest of the sequence is τ . The type 〈i.j, A → I(B) : m〉.τ stands

for the sequence whose first step is a combination of an usurpation of the principal

B by the intruder together with an interception of the message m. The rest of the

sequence is τ . The term i.j denotes the identifier of the session i and the number of

the communication step j according to the protocol description.

Throughout the rest of this paper, we denote by Ci,j the set of all possible com-

munication steps labeled with i.j. We write ci,j to denote a communication step in

Ci,j and label(c) to denote the label of the communication step c. Also, we use the

notation C, Ci, C
A and CA

i to denotes the following sets:

67

C =
⋃

i,j Ci,j

Ci =
⋃

j Ci,j

CA = {c ∈ C | c = 〈i.j, I(B) → A : m〉 or

c = 〈i.j, A → I(B) : m〉}

CA
i = CA ∩ Ci

CA
ij = CA ∩ Cij

To lighten the notation, we will omit the sequence concatenation operator “.”

and the trivial type ǫ when the meaning is unambiguous.

Although the intuitive meaning of a valid trace seems to be clear at first glance,

we define the notion more precisely here. In what follows, we will introduce a set of

conditions on traces of communication steps that characterizes valid scenarios.

The most important condition that has to be satisfied by a valid trace is a data-

flow constraint. Such a constraint is inspired by dataflow analysis which stipulates

that a variable should be defined before its use. Analogously, in a cryptographic

protocol setting, we require that a message should be defined (i.e.in the initial

knowledge, previously received, or deducible by a closure) before its use (sending

over the network). For that, we need to introduce the following Def/Use definitions:

Definition 4.2 [Def/Use] Let τ be a type and ki a message set denoting the intruder

initial knowledge. We define the operations Def and Use as follows:

• The set Defki(τ) stands for the messages received by the intruder in the commu-

nication steps reported in the type τ together with its initial knowledge. It is

inductively defined as follows:

Defki(ǫ) = ki

Defki(〈i.j, A → I(B) : m〉.τ) = {m} ∪ Defki(τ)

Defki(〈i.j, I(A) → B : m〉.τ) = Defki(τ)

• The set Use(τ) stands for the set of messages sent by the intruder in the commu-

nication steps reported in the type τ . This set is inductively defined as follows:

68

Use(ǫ) = ∅

Use(〈i.j, A → I(B) : m〉.τ) = Use(τ)

Use(〈i.j, I(A) → B : m〉.τ) = {m} ∪ Use(τ)

Throughout all this paper and when there is no ambiguity, Defki(τ) will be merely

written Def(τ). We need to introduce the multiset extension Use of Use and Def

of Def as follows:

Use(ǫ) = ∅

Use(〈i.j, A → I(B) : m〉.τ) = Use(τ)

Use(〈i.j, I(A) → B : m〉.τ) = {|m|} ∪ Use(τ)

Defki(ǫ) = ki

Defki(〈i.j, A → I(B) : m〉.τ) = {|m|} ∪ Defki(τ)

Defki(〈i.j, I(A) → B : m〉.τ) = Defki(τ)

Now, we are able to formalize the condition that captures the dataflow constraint.

This condition states that at each communication step c in a trace τ , the messages

used by the intruder have to be previously defined, i.e.they could be derived form

its initial knowledge and the messages received before this step.

Definition 4.3 [Well-Defined Type] A type τ is well-defined if, for each communi-

cation step c, with type τ1 and type τ2 such that τ = τ1.c.τ2, we have:

Use(c) ⊆ Def(τ1)⇓.

The second important condition that has to be satisfied by a valid trace is an

ordering relation between the communication steps used in a valid trace. This

condition states that the communication steps used in a valid trace have to follow

the order established by the protocol specification. For example, in the same session

i, the communication step ci,2 cannot occur before the communication step ci,1.

Furthermore, a valid trace should not contain duplicated communication steps. To

formalize such an ordering condition, we need to introduce the definition of the so-

called flattening operation. This operation takes a type to the set of communication

steps that form it. The flattening is defined as follows:

Definition 4.4 [Flattening] Let τ be a type. We define the flattening of τ , written

τ , as follows:

ǫ = ∅

c.τ = {c} ∪ τ

where c is a communication step in C.

69

Next we introduce a precedence order between communication steps in a given

type.

Definition 4.5 [≺τ] Let τ ∈ T , and c and c′ be two communication steps such that

{c, c′} ⊆ τ . We say that c precedes c′ in τ , and we write c ≺τ c′, if there exist two

types τ1 and τ2 in T such that τ = τ1.τ2, {c
′} ∩ τ1 = ∅ and {c} ∩ τ2 = ∅.

Types that respect the ordering relation will be called well-ordered types. They

are formally defined as follows:

Definition 4.6 [Well-Ordered Type] We say that a type τ ∈ T is a well-ordered

type if it satisfies the following two conditions:

(i) For each session identifier i and for each natural number j, there exists at most

one communication step in τ labeled with i.j. In other words, if there exist

three types τ1, τ2 and τ3 and two communication steps c1 and c2 such that τ =

τ1.c1.τ2.c2.τ3, then label(c1) 6= label(c2),

(ii) If there exist two communication steps ci,j and ci,j′ , and a role identifier A such

that {ci,j, ci,j′} ⊆ τ ∩ CA
i and j < j′, then ci,j ≺τ ci,j′ .

It is straightforward to see that the two previous constraints (well-defined and

well-ordered) do not guarantee that the honest principals will act according to the

protocol specification. For that reason, we need another condition to complete the

characterization of a valid trace. Given some trace, to verify whether principals

have acted with respect to the protocol specification or not, we need to compare

the behaviors of these principals with their generalized roles. Each session in the

scenario has to correspond to an instantiation of some generalized role from a static

environment ξ. This is captured by the notion of ξ-induced types introduced here-

after.

Let S be a set of communication steps. We say that S is ξ-induced if all its

communication steps that belong to the same session are generated from a certain

role in the protocol specification ξ. More formally:

Definition 4.7 [ξ-Induced Set] Let ξ be a static environment denoting a protocol

specification and S a set of communication steps. We say that S is ξ-induced if for

each session identifier i and role identifier A such that S ∩ CA
i 6= ∅, there exists τ in

ξ∗ such that τ = S ∩ CA
i .

Notice that we say that a type τ is ξ-induced if τ is a ξ-induced set.

To sum up, we have now 3 constraints: First, the Def/Use condition ensures

that all the messages sent by the intruder can be derived from its initial knowledge

and the received messages. Second, the well-ordered type condition ensures that

the communication steps are well-ordered with respect to a given session. Third,

the ξ-induced type condition ensures that the honest principals act according to

the protocol specification. Now, we define a valid trace with respect to a static

environment ξ (also called a ξ-scenario), as follows:

Definition 4.8 [ξ-Scenario] Let τ be a type and ξ a static environment denoting a

70

protocol specification. We say that τ is a ξ-scenario if:

(i) τ is a well-ordered type.

(ii) τ is a well-defined type.

(iii) τ is a ξ-induced type.

4.3 Typing Rules

In the sequel, we present a type system that propagates sequences of communication

steps in order to construct the sequence needed by the intruder to compute a given

message. The type system gives a type to a multiset of messages with respect to

an environment generated according to the protocol specification. The notion of

multiset is introduced to allow the extraction of a wide variety of protocol flaws. In

particular, this notation allows us to extract flaws that contain two different types

for the same message. To illustrate this, let us take a concrete example. Suppose

that we have a static environment that contains the following association:

{|m|} 7→

〈i.1, I(B) → A : m1〉

〈i.2, A → I(B) : m2〉

〈i.3, I(B) → A : m1〉

〈i.4, A → I(B) : m3〉

〈i.5, I(B) → A : m4〉

〈i.6, A → I(B) : m〉

The association above means that the intruder has to derive the messages m1

and m4 to get the message m. A type of the message m reflects the scenario that

leads the intruder to the message m. Such a type must also contain the types of the

messages m1 and m4. In the example above, what makes the use of the multiset

notation more beneficial than the set notation is the multiple presence of the message

m1. Suppose that we use a simple set and we say that the intruder must infer a type

for the set of messages {m1,m4} to obtain the message m. In this case, the intruder

needs types for the messages m1 and m4. Furthermore, the type of the message m1

will be used twice since this message is needed in two places. Then, the scenario

will have the following form:

71

Type of message m1

〈i.1, I(B) → A : m1〉

〈i.2, A → I(B) : m2〉

〈i.3, I(B) → A : m1〉

〈i.4, A → I(B) : m3〉

Type of message m4

〈i.5, I(B) → A : m4〉

〈i.6, A → I(B) : m〉

However, if we use the multiset, we can say that the intruder has to prove the

following multiset of messages

{|m1,m1,m4|}

and in this case we have to prove the message m1 twice, as well as the message

m4. Suppose that there are many types that could be associated to the message

m1. Then, we can obtain a scenario in which we associate two different types to the

message m1, as shown below.

Type 1 of message m1

〈i.1, I(B) → A : m1〉

〈i.2, A → I(B) : m2〉

Type 2 of message m1

〈i.3, I(B) → A : m1〉

〈i.4, A → I(B) : m3〉

Type of message m4

〈i.5, I(B) → A : m4〉

〈i.6, A → I(B) : m〉

Thus, with a multiset notation, we are no longer confined to have the same types

at the two occurrences where types for m1 are needed.

Our static semantics manipulates judgments of the form:

ξ ⊢ M : τ

meaning that the message multiset M has the type τ in the environment ξ. In other

words, the intruder could get all the messages in M by executing the sequence τ of

communication steps which may instrument the protocol ξ.

Before we introduce the typing rules, we need a way to merge the types of two

72

(Triv) 2

ξ ⊢ {||} : ǫ

(Op1)
ξ ⊢ {|m|} : τ1 ξ ⊢ {|m′|} : τ2 op ∈ {+,−, ∗, /} τ1♯ξτ2

ξ ⊢ {|m op m′|} : τ1 † τ2

(Op2)
ξ ⊢ {|m|} : τ1 ξ ⊢ {|m op m′|} : τ2 op ∈ {+,−, ∗, /} τ1♯ξτ2

ξ ⊢ {|m′|} : τ1 † τ2

(Op3)
ξ ⊢ {|m′|} : τ1 ξ ⊢ {|m op m′|} : τ2 op ∈ {+,−, ∗, /} τ1♯ξτ2

ξ ⊢ {|m|} : τ1 † τ2

(Comp)
ξ ⊢ {|m|} : τ1 ξ ⊢ {|m′|} : τ2 τ1♯ξτ2

ξ ⊢ {|m.m′|} : τ1 † τ2

(Dec1)
ξ ⊢ {|m.m′|} : τ
ξ ⊢ {|m|} : τ

(Dec2)
ξ ⊢ {|m.m′|} : τ
ξ ⊢ {|m′|} : τ

(Encr)
ξ ⊢ {|m|} : τ1 ξ ⊢ {|k|} : τ2 τ1♯ξτ2

ξ ⊢ {|{m}k|} : τ1 † τ2

(Decr)
ξ ⊢ {|{m}k|} : τ1 ξ ⊢ {|k|} : τ2 τ1♯ξτ2

ξ ⊢ {|m|} : τ1 † τ2

(Inst)
ξ † [M 7→ τ1] ⊢ Use(τ1σ) : τ2 M1 ⊆ Mσ τ1σ♯ξτ2

ξ † [M 7→ τ1] ⊢ M1 : τ2 † τ1σ

(Cup)
ξ ⊢ M1 : τ1 ξ ⊢ M2 : τ2 τ1♯ξτ2

ξ ⊢ M1 ∪M2 : τ1 † τ2

(Equiv)
ξ ⊢ M : τ1 τ1 ≈ τ2

ξ ⊢ M : τ2

Table 3
The Typing Rules

73

multisets of messages into one multiset, and to check for compatible types. Suppose

for example that we want to merge the following two types:

type 1 =



















. . .

〈i.1, I(A) → B : m1〉

. . .

type 2 =



















. . .

〈i.1, I(A) → B : m2〉

. . .

Suppose also that m1 and m2 are different messages. It is straightforward that

these two types cannot be merged since we have two different communication steps

having the same label.

The compatibility notion is more complicated than to simply guarantee that

there is no more than one communication step having the same label. In fact, we

must also ensure that each principal will not play more than one role in the same

session. Let us take a concrete example to explain this fact clearly. Suppose that

we have the following protocol:

〈i.1, A → S : {A,B, k}kas〉

〈i.2, S → B : {B,A, k}kbs〉

Suppose also that we have the following two scenarios:

type 1 =



















. . .

〈i.1, C → I(S) : {C,D, k}kcs〉

. . .

type 2 =



















. . .

〈i.2, I(S) → C : {C,D, k}kcs〉

. . .

Those two scenarios could not be combined. In fact, in the first scenario, the

principal C plays the role of A in the session i. However, in the second scenario, the

principal C plays the role of B in the session i. Then, if we put together these two

scenarios, we will obtain a type that contains the same honest principal playing two

different roles in the same session. To avoid this situation, we require that the set of

communication steps used in the two merged scenarios form a ξ-induced set. Now,

we give the following definition that stipulates whether two types are compatible or

not.

74

Definition 4.9 [Compatible Set] Let S be a set of communication steps. We say

that S is compatible with respect to an environment ξ, if the two following conditions

hold:

(i) S is a ξ-induced set.

(ii) For each session label i and each step label j, we have |Cij ∩ S| ≤ 1.

Suppose that τ1 and τ2 are two types and ξ is an environment. We say that τ1
and τ2 are compatible in ξ, and we write τ1♯ξτ2, if the set τ1 ∪ τ2 is compatible in ξ.

Finally, if τ♯ξτ , we say that τ is a self-compatible type in ξ.

Now, if we have two compatible scenarios τ1 and τ2, then the type τ1.τ2 is well-

defined and ξ-induced. Therefore, it remains only to check that the type τ1.τ2 forms

a well-ordered type to guarantee that the two concatenated types form a scenario.

For that reason, we need a definition of type merging that specifies how two types

will be gathered in order to ensure that the merge of two compatible scenarios gives

another scenario. Actually, the merge of two types τ1 and τ2 is a sort of type

concatenation that eliminates the redundant steps in τ2 with respect to the type τ1.

Definition 4.10 [Type Merge] Let τ1 and τ2 be two types and c a communication

step. The merge of τ1 and τ2, denoted by τ1 † τ2, is defined as follows:

τ † ǫ = τ

τ † c.τ ′ = τ † τ ′ if c ∈ τ

τ † c.τ ′ = τ.c † τ ′ if c /∈ τ

Actually, there are many ways to merge subproofs in order to construct the global

attack scenario. Suppose that τ1 is a type of m1 and τ2 a type of m2. Suppose also

that τ1 and τ2 are two compatible types. Therefore, we can easily prove that τ1 † τ2
and τ2 † τ1 are two scenarios for the message m1.m2. Obviously, τ1 † τ2 could be

different from τ2†τ1. Consequently, in order to allow the inference of many equivalent

communication sequences, we need to introduce the following equivalence on types.

Definition 4.11 [Equivalence] Let τ and τ ′ be two well-ordered and well-formed

types. We say that τ is equivalent to τ ′ and we write τ ≈ τ ′ if τ = τ ′.

Let T1 be a subset of T . In the sequel, we use the notation T ≈
1 to denote the

following set:

T ≈
1 = {τ ∈ T | ∃ τ1 ∈ T1 and τ ≈ τ1}

The typing rules are given in Table 3. The intuitive ideas underlying each rule

are as follows:

Triv: According to this rule, the empty communication step sequence, ǫ, is the type

of the empty multiset, {||}.

Op1: If τ1 is a type for the multiset {|m|}, τ2 is a type for the multiset {|m′|} and

τ1 and τ2 are two compatible types, then τ1 † τ2 is a type for {|m op m′|}, where

75

op ∈ {+,−, ∗, /}. Since many cryptographic protocols use arithmetic operations,

like

〈i.1, A → B : {Nb + 1}kab〉,

we have introduced the set of operators {+,−, ∗, /} to deal with a large class

of protocols. The rules Op1, Op2 and Op3 show how to cope with messages

containing an operator in {+,−, ∗, /}. There is no evaluation of messages that

contain operators. For example, the message m ∗ 0 is treated differently from the

message 0.

Comp: This is a composition rule and it illustrates how to give a type to a message

of the form m.m′ knowing the types of the messages m and m′. Accordingly, if τ1
is a type for the multiset {|m|}, τ2 is a type for the multiset {|m′|} and τ1, τ2 are

two compatible types, then the merged type τ1†τ2 is a type for {|m.m′|}. Similarly,

the rules Dec1 and Dec2 are decomposition rules. They stipulate that a type

τ for the message multiset {|m.m′|} is also a type for the one-message multisets

{|m|} and {|m′|}.

Encr: This rule stipulates that if τ1 is a type of the message m and τ2 is the type

of the key k such that τ1 and τ2 are two compatible types, then τ1 † τ2 is a type

of the message {m}k. The decryption rule Decr shows that the type τ1 † τ2 could

be a type of the message m, if τ1 is a type for a message {m}k, τ2 is a type for

the key k and τ1 and τ2 are two compatible types.

Inst: The rules Op1, Op2, Op3, Comp, Dec1, Dec2, Encr and Decr represent

the intruder’s usual abilities. However, the rule instantiation, Inst, gives a sup-

plementary ability to the intruder based on the instrumentation of the protocol

itself. The rule Inst is the most important rule in the type system. In fact, all the

usual rules can merge only the types that are basically generated by the rule Inst.

The intuition underlying the instantiation rule can be explained by the following

example. Suppose that we have a static environment ξ that contains the following

association:

{|{X}kas |} 7→

〈i.1, A → I(B) : A〉

〈i.2, I(B) → A : X〉

〈i.3, A → I(B) : {X}kas〉

This association means that the intruder is able to generate any instantiation

of

{|{X}kas |}

i.e.:

{X}kasσ,

if it is able to generate all messages used in the type appearing on the right instan-

tiated by the same substitution σ. Now, since {|X|} is the multiset of messages

used in the sequence of communication steps of this association, then the intruder

is able to generate {X}kasσ, if it can generate Xσ, where σ is a substitution.

76

Cup: This rule shows that if τ1 is a type for a multiset M1 and τ2 is a type for a

multiset M2 such that τ1 and τ2 are two compatible types, then τ1 † τ2 is a type

for the union of the two multisets, i.e.M1 ∪M2.

Equiv: Since the merge operator gives us only one possibility to merge two scenar-

ios, the other possibilities can be specified as an equivalence between scenarios.

So, if τ1 is a type for a multiset M and τ2 is a type equivalent to τ1, i.e.τ2 is a

scenario that contains the same communication steps used in τ1 but ordered in a

different way, then τ2 is also a type for the multiset M .

4.4 Correctness Result

The correctness theorem states that if a multiset of messages M has the type τ under

some static environment ξ (protocol specification), then the type τ is a legitimate

sequence that could be used by the intruder to derive all the messages in M .

Theorem 4.12 (Correctness Theorem) Let M be a multiset of messages and

τ is a type. If ξ ⊢ M : τ , then τ is a ξ-scenario and for all m ∈ M , we have

m ∈ Def(τ)⇓.

4.5 Completeness Result

The intent hereafter is to prove the completeness of the type system.

4.5.1 Definition of Completeness

The soundness property has been introduced as follows: if ξ ⊢ M : τ , then τ

is a ξ-scenario and M ⊆ Def(τ)⇓. Informally, this definition means that τ is a ξ-

scenario and all the messages in M are defined in τ modulo the usual compositions

and decompositions introduced by the operator “⇓”. In other words, the intruder can

generate all the messages in M and the proof is given by the scenario τ . Similarly,

the completeness property could be defined as follows: If M is a multiset of messages

and τ is a ξ-scenario such that M ⊆ Def(τ)⇓, then ξ ⊢ M : τ .

Our intention hereafter is to refine the definition of completeness without affect-

ing its global meaning. First, let us introduce the following notation:

Definition 4.13 [Minimal ξ-Scenario]

Let ξ be an environment associated with a given protocol, τ a ξ-scenario and M

a multiset of messages. We say that τ is a minimal ξ-scenario for M if the following

conditions hold:

• M ⊆ Def(τ)⇓.

• For all ξ-scenarios τ ′ such that M ⊆ Def(τ ′)⇓ and τ ⊆ τ ′, we have: τ = τ ′.

Intuitively a ξ-scenario τ is not minimal for a multiset of messages M if we

can eliminate some communication steps from τ and the remaining type is also a ξ-

scenario for M . For instance, let M be a multiset of messages and τ a ξ-scenario such

that M ⊆ Def(τ)⇓. By the definition of a ξ-scenario, if τ ′ is another ξ-scenario such

that τ and τ ′ are compatible, then τ † τ ′ is also a ξ-scenario and M ⊆ Def(τ † τ ′)⇓.

77

However, the type τ † τ ′ is generally a non minimal ξ-scenario. Let us consider a

concrete example. Let P be the following protocol:

〈α.1 A→B : A〉

We can easily show that 〈α.1 A→I(B) : A〉 is a ξ-scenario for the multiset {|A|}.
We can also prove that:

〈α.1 A→I(B) : A〉

〈β.1 A→I(B) : A〉

is a ξ-scenario for the multiset {|A|}. However, the second ξ-scenario is not minimal.

The definition of completeness is given with respect to a minimal ξ-scenario as

follows:

Definition 4.14 [Definition of Completeness]

Let τ be a ξ-scenario and M a multiset of messages. The type system is complete

if:

τ is a minimal ξ-scenario associated to M =⇒ ξ ⊢ M : τ .

4.5.2 Completeness Theorem

The following theorem shows that the type system is complete with respect to the

completeness definition.

Theorem 4.15 (Completeness) Let ξ be an environment, M a multiset of mes-

sages and τ a ξ-scenario. If τ is a minimal ξ-scenario for M , then ξ ⊢ M : τ .

5 Correctness of Cryptoprotocols

It is a known fact that proving the correctness of security protocols with respect to

a given set of security properties is at least a difficult and a subtle task, if not im-

possible. For that reason, almost all security researchers try to simplify the problem

before its resolution. These simplifications consist generally in studying only one

security property on a restricted class of cryptographic protocols. However, defining

a sub-class of protocols for which their correctness with respect to some security

properties can be verified leads in almost all cases to the definition of a big number

of restrictions reducing considerably their applications in the security field.

Though the type system 3 has been shown sound and complete, verifying whether

a message m can be known by an intruder or not may lead to an infinite computation.

As a result, the secrecy of the message m may not be assured. The termination

problem is generally related to the deduction strategy (forward chaining, backward

chaining, etc.) used to prove the secrecy of a message m. Unfortunately, backward

chaining and forward chaining may lead to an infinite computation when they are

used to prove the sequent ξ ⊢ m : τ within the type system. For backward chaining

some non-oriented rules such as:

78

ξ ⊢ m.m′ : τ
ξ ⊢ m : τ

can lead to a termination problem. Similarly, the presence of some rules such as:

ξ ⊢ m : τ ξ ⊢ m′ : τ ′ τ♯τ ′

ξ ⊢ m.m′ : τ † τ ′

can also lead to an infinite computation for forward chaining.

This section introduces some techniques to resolve the termination problem

within inference systems. In particular, these techniques will be combined to the

abstract interpretation ones to resolve the termination problem within the type sys-

tem. Besides, we introduce a modified version of the typing system making easier

the resolution of the termination problem. This modification consists in restricting

the type system so that it will be bound to deal with only a sub-class of security

protocols.

5.1 Outline of the Methodology

The approach used in this paper to ensure the correctness of security protocols with

respect to the secrecy property is essentially based on the resolution of the termi-

nation problem within the type system. Indeed, if there is no termination problem

within the type system, then proving whether a protocol P (M) keeps a message M

secret or not will be always decidable thanks to completeness and correction theo-

rems of the type system. The completeness theorem ensures that a message M is

secret if it is not provable using the typing system. The correction theorem, on the

other hand, ensures that a message M is not secret if it is provable using the type

system.

The basic idea outlining the approach can be summarized as follows:

(i) Resolving the termination problem within a given inference system consists

in generating another equivalent inference system (the two inference systems

have the same induced theory) in which all the rules are ordered by a well-

founded measure 3 . Given a non-terminating inference system, the idea consists

in adding new rules that make redundant (can be removed from the inference

system without affecting the underlying theory) the inference rules that are

the origin of the termination problem. The new generated rules are extracted

from the original inference system and they are by themselves redundant in this

inference system.

(ii) The type system, in its actual form, is indeed not appropriate to be handled

by the termination techniques. Therefore, an abstract function, to simplify the

type system, is defined. This simplification consists essentially in eliminating

from the type system all the information related to the construction of attack

scenarios. Actually, the type system provides the ability to deduce whether a

message M can be hold by a smart intruder. Furthermore, an attack scenario,

3 A partial ordering ≻ over a set T is well-founded if any descending chain t1 ≻ t2 ≻ . . . of elements in T
is finite.

79

exhibiting the sequence of actions executed by an intruder to get possession of

the message M , is constructed. For instance, the rule

2

ξ ⊢ m : τ

states that an intruder can know the message m and the attack scenario is

provided by τ . Since we deal with the correction of a protocol with respect

to the secrecy property, then the information related to the construction of

an attack scenario are no more important. In fact, proving that a message m

can be hold by an intruder, without providing how an attack scenario can be

constructed, is enough to conclude that the protocol does not keep the message

m secret. In the other hand, if the analyzed protocol is secure, then there is, of

course, no attack scenario to generate. In both cases, the information related

to the construction of an attack scenario can be removed without affecting the

conclusion. As a result, the rule

2

ξ ⊢ m : τ

can merely be replaced by
2

ξ ⊢ m
.

Another important abstraction consists in replacing the type system by an-

other more general inference system (the theory of the original inference system

is contained in the theory induced by the abstract inference system). For in-

stance, if S1 is an inference system containing the rule R1, then the inference

system S2 = (S1\{R1}) ∪ {R2}, where R2 is a rule obtained from R1 by elimi-

nating some premises, is an abstraction. As a result, if a message m cannot be

proved using S2, then it is also the case when S1 is used. Besides, the inference

system S2 may resolve the termination problem of S1. For instance, let S1 and

S2 be the following inference systems:

S1 = {2a ,
x, f(f(x))

f(x)
}

S2 = (S1\{
x, f(f(x))

f(x)
}) ∪ { x

f(x)
}

= {2a ,
x

f(x)
}

Proving f(b) within S1, using backward chaining, leads to an infinite com-

putation. However, within S2, there is no termination problem and it is clear

that f(b) cannot be proved.

Obviously, the soundness of the abstraction process is momentous. In fact,

the soundness property ensures that if the abstract type system proves the

secrecy of a message M within a protocol P (M), then this is indeed correct,

i.e. the original type system gives the same result.

80

5.2 Abstract Interpretation and Proof System Termination

Understanding the concept of backward and forward chaining, one generally chooses

backward strategy to prove that a term t is a theorem of a given inference system

S. In fact, unlike forward chaining, backward strategy involves in its proofs only

the sub-goals contributing to the construction of the required proof. Nevertheless,

similarly to forward chaining, backward strategy may lead to an infinite computation

without even solving the problem.

Many efforts have been investigated, last years, in the resolution of the termina-

tion problem within inference systems. Though the termination problem is known

to be in general not decidable, this problem can be resolved for many classes of

inference systems. Proving that there is no termination problem within an inference

system, when using the backward chaining strategy, consists generally in finding

a well-founded ordering relation making the conclusion of each rule less than its

smallest associated premise. Therefore, given a non-terminating inference system

S1, finding another inference system S2 equivalent to S1 so that all the rules of

S2 are ordered by a well-founded relation implies the resolution of the termination

problem of S1.

The intent of the sequel is twofold: First, a new approach to solve the termi-

nation problem within inference systems is introduced. Second, a synergy between

abstract interpretation and termination techniques for the verification of crypto-

graphic protocols with respect to the secrecy property is presented.

5.2.1 Inference System

The purpose hereafter is to address the termination problem at the level of the proof

system.

Preliminaries

Given a set F =
⋃

n≥0Fn of function symbols called a signature and a set

X of variable symbols, the set of terms T (F ,X) over F and X is the smallest

set containing X such that f(t1, . . . , tn) is in T (F ,X) whenever f is in Fn and

{t1, . . . , tn} ⊆ T (F ,X).

An inference rule R over a set of terms T (F ,X) is defined by a set of premises

{p1, . . . , pn} ⊆ T (F ,X) and a conclusion c in T (F ,X) and written as follows:

p1, . . . , pn
c

Besides, an inference rule with an empty set of premises is called an axiom and

written as follows:
2
c

An inference system S over T (F ,X) is a set of inference rules over T (F ,X). Let

t be a term in T (F ,X). We say that t is a theorem in S and we write S ⊢ t, if the

sequent S ⊢ t can be proved using the rules given in Table 4. Intuitively, S ⊢ t if

there exist an inference rule

R =
p1, . . . , pn

c

81

in S and a substitution σ such that cσ = t and S ⊢ pi for all i ∈ {1, . . . , n}. The

pair (R,σ) is used as a label for the rule

S ⊢ p1σ, . . . , S ⊢ pnσ
S ⊢ cσ

to keep a trace of how the proof of S ⊢ t is constructed.

(R,σ) 2

S ⊢ cσ
(R :2c ∈ S)

(R,σ)
S ⊢ p1σ, . . . , S ⊢ pnσ

S ⊢ cσ
(R :

p1, . . . , pn
c ∈ S)

Table 4
The Inference System Rules

For example, let S be the following inference system:

S = {R1 :
x, y

f(x, y)
, R2 : 2a ,R3 :

2

b
}

Let σ = [x 7→ a, y 7→ b] and σ′ = ∅. The proof associated with f(a, b) is:

(R1, σ)
(R2, σ

′) 2

S ⊢ a
(R3, σ

′) 2

S ⊢ b
S ⊢ f(a, b)

Notices that many proof trees can be associated with the same sequent S ⊢ t.

In the sequel, the set of proof trees associated with the sequent S ⊢ t will be

denoted by [[S ⊢ t]]. If P is a proof tree, then we denote by |P |, the hight of this

tree. Similarly, if R is a rule, then we denote by |R|, the number of the premisses

used in this rule.

The following definition introduces an ordering relation between inference sys-

tems.

Definition 5.1 (Inference System Comparison) Let S1 and S2 be two inference

systems. The ordering relations ⊑ and ≡ are defined as follows:

(i) S1 ⊑ S2 if ∀ t : S1 ⊢ t ⇒ S2 ⊢ t.

(ii) S1 ≡ S2 if S1 ⊑ S2 and S2 ⊑ S1.

An inference rule is said to be redundant in a given inference system, if it can

be eliminated from this inference system without affecting its involved theory.

Definition 5.2 [Redundant rule] Let S be an inference system. A rule R ∈ S is

said to be redundant in S if:

S ≡ S\{R}.

82

Inference System Equivalence

The following proposition gives some examples of trivially redundant rules.

Proposition 5.3 Let S be an inference system and R a rule in S. If one of the

following condition holds:

(i) R =
p1, . . . , pn

c and c ∈ {p1, . . . , pn}.

(ii) R =
p1, . . . , pn

c and there exists a rule R′ =
p′1, . . . , p

′
n′

c′
in S and a substitu-

tion σ such that:



















R 6= R′

c′σ = c

{p′1σ, . . . , p
′
n′σ} ⊆ {p1, . . . , pn}

then rule R is redundant in S.

In what follows, we denote by S↓ the normal form 4 of the inference system S

using the rewriting rules given in Table 5.

Delete: S ∪ {p1, . . . , pnc } ; S if c ∈ {p1 . . . , pn}

Eliminate: S ∪ {p1, . . . , pnc ,
p′1, . . . , p

′
n

c′
} ; S ∪ {

p′1, . . . , p
′
n

c′
} if (*)

(*): ∃ σ| c = c′σ and {p′1σ, . . . , p
′
nσ} ⊆ {p1, . . . , pn}

Table 5
Redundant Rules Elimination

It is straightforward that S↓ exists for any finite system S, since the rewriting

rules decrease the size of S. Furthermore, by the previous proposition, it is imme-

diate that for any inference system S, we have S ≡ S↓.

In what follows, we show how we can introduce new rules in a given inference

system without modifying its induced theory. The idea of adding new inference rules

has been largely used by the rewriting system community to generate a well-ordered

rewriting rule for a finite set of equations. The most famous application of this idea

is the Knuth-Bendix completion algorithm [21]. For more details about rewriting

systems, the reader can refer to [20].

The new rules to be introduced are generated by composing the existing rules

according to the following definition of composition.

4 A term t is said to be in a normal form in a given rewriting system, if it cannot be rewritten by any rule
of this system.

83

Definition 5.4 [Rules Composition] Let R =
p1, . . . , pn

c and R1, . . . , Rn a se-

quence of n rules such that Ri =
p1i, . . . , pnii

ci ,1 ≤ i ≤ n. We define the composition

of R1, . . . , Rn with R, denoted by
R1, . . . , Rn

R , as follows:

R1, . . . , Rn

R
=










{
p11σ, . . . , p1n1

σ, . . . , p1nσ, . . . , pnnnσ
cσ } if σ exists.

∅ otherwise

where σ = mgu({p1 = c1, . . . , pn = cn}).

The mgu({p1 = c1, . . . , pn = cn}) is the most general unifier, i.e. the most general

substitution that unify all the pairs (p1, c1), . . . , (pn, cn).

Example 5.5 Let S be the following inference system:

S = {R1 :
ff(x1), x1

f(x1)
, R2 :

x2
fff(x2)

, R3 :
2

f(b)
.}

Since mgu({ff(x1) = fff(x2), x1 = f(b)}) = [x1 7→ f(b) x2 7→ b], therefore:

R2, R3
R1

= b
ff(b)

.

The composition of rules will be extended to inference systems as follows: Let R

be a rule such that |R| = n and S an inference system. The composition of S with

R, denoted by S
R , is defined as follows:

S
R =

⋃

(R1, ..., Rn)∈Sn

R1, . . . , Rn
R .

Let S1 and S2 be two inference systems. The composition of S1 with S2, denoted

by S1
S2

, is defined as follows:

S1
S2

=
⋃

R∈S2

S1
R .

The following proposition states that the addition to a given inference system of

new rules induced by internal compositions does not change its underlying theory.

Proposition 5.6 Let S1, S2 be two sets of rules. We have the following result:

(S1 ∪ S2) ≡ (S1 ∪ S2 ∪
S1
S2

).

Obviously, introducing new rules in an inference system does not solve the termi-

nation problem. We need, indeed, to eliminate from this inference system the rules

causing the termination problem. In this respect, the aim of introducing new rules

is to make redundant the ones causing the termination problem.

The basic result of this section is given by the following theorem which aims

to eliminate some non-trivial redundant rules from an inference system. As shown

84

later, the result of this theorem can be used to give a transformation schema allowing

the resolution of the termination problem within some inference systems.

Theorem 5.7 Let S = S1 ∪ S2 be an inference system such that all the axioms of

S are in S2. If (S1 ∪ S2 ∪
S2
S1

)↓ = S1 ∪ S2, then S ≡ S2.

Handling Termination

In the sequel we introduce an efficient transformation schema which can lead to

avoiding the termination problem within an inference system. The transformation

schema is based on the previously established results related to an inference system.

Let S be an inference system and ≺ a partial order over the terms in T (F ,X).

We define the inference system S≺ as follows:

S≺ = {2c ∈ S}

∪

{p1, . . . , pnc ∈ S | ∀ i, 1 ≤ i ≤ n : pi ≺ c}.

Also, we introduce the function φ≺(S) as follows:

φ≺(S) = (S ∪ S≺
S\S≺

)↓.

The following corollary gives some important properties of the function φ.

Corollary 5.8 Let S be an inference system and ≺ a partial ordering over the

terms in T (F ,X). We have:







(i) φ≺(S) ≡ S.

(ii) if φ≺(S) = S then S ≡ S≺.

Let ≺ be a well-founded ordering. Thanks to the previous corollary, we can give

a transformation schema that can solve the termination problem within an inference

system. This transformation schema states that if S has a normal form using the

rewriting rules given in Table 6, then this normal form is an inference system with

no termination problem.

Simplify: S ; S≺ if S = φ≺(S)

Compose: S ; φ≺(S)

Table 6
The Termination Schema

85

5.2.2 Abstract Type System

The intent hereafter is to abstract the type system so that it can be easily analyzed

using the termination techniques. This abstraction consists in eliminating all the

information used to construct a scenario whenever an attack is found. More formally,

the function that allows to abstract a type system is denoted by Υ and defined as

follows:

Υ(∅) = ∅

Υ({2c } ∪ S′) = { 2

Υp(c)
} ∪Υ(S′)

Υ({p1, . . . , pnc } ∪ S′) = {
Υp(p1), . . . ,Υp(pn)

Υp(c)
} ∪Υ(S′)

where Υp is a function abstracting a premise or a conclusion of a type system rule

as follows:

Υp(τ1♯τ2) = 2

Υp(τ1 ≈ τ2) = 2

Υp(M1 ⊆ M2) = M1 ⊆ M2

Υp(ξ ⊢ M : τ) = Υe(ξ) ⊢ M

The abstraction of a premise into “2” means its elimination from the abstracted rule.

Finally, the function Υe is used to abstract an environment ξ into ξ♭ as follows:

Υe(∅) = ∅

Υe({[M 7→ τ]} ∪ ξ) = {[M 7→ Use(τ)]} ∪Υe(ξ)

The abstract type system is given in Table 7. The following theorem states that this

abstraction is correct.

Theorem 5.9 (Abstraction Soundness) Let ξ and ξ♭ be two environments such

that ξ♭ = Υe(ξ). Also, let M be a multiset of messages and τ a ξ-scenario:

If ξ ⊢ M : τ then ξ♭ ⊢♭ M

Though the abstract type system is simpler than the concrete one, it is not yet

suitable to be handled by the termination. For that reason, a new version of the

abstract type system is introduced as follows: Let Tξ♭ be the abstract type system

associated with ξ♭. We denote by Sξ♭ , the smallest inference system satisfying the

conditions given in Table 8.

Notice that the rules of the simplified abstract type system can be modified when

necessary to fit the requirement of the analyzed protocol. For instance, the symmet-

86

(Triv)♭ 2

ξ♭ ⊢♭ {||}

(Op1)♭
ξ♭ ⊢♭ {|m|} ξ♭ ⊢♭ {|m′|}

ξ♭ ⊢♭ {|m op m′|}

(Op2)♭
ξ♭ ⊢♭ {|m|} ξ♭ ⊢♭ {|m op m′|}

ξ♭ ⊢♭ {|m′|}

(Op3)♭
ξ♭ ⊢♭ {|m′|} ξ♭ ⊢♭ {|m op m′|}

ξ♭ ⊢♭ {|m|}

(Comp)♭
ξ♭ ⊢♭ {|m|} ξ♭ ⊢♭ {|m′|}

ξ♭ ⊢♭ {|m.m′|}

(Dec1)♭
ξ♭ ⊢♭ {|m.m′|}

ξ♭ ⊢♭ {|m|}

(Dec2)♭
ξ♭ ⊢♭ {|m.m′|}

ξ♭ ⊢♭ {|m′|}

(Encr)♭
ξ♭ ⊢♭ {|m|} ξ♭ ⊢♭ {|k|}

ξ♭ ⊢♭ {|{m}k|}

(Decr)♭
ξ♭ ⊢♭ {|{m}k|} ξ♭ ⊢♭ {|k|}

ξ♭ ⊢♭ {|m|}

(Inst)♭
ξ♭ † [M 7→ M ′] ⊢♭ M ′σ M1 ⊆ M ′σ

ξ♭ † [M 7→ M ′] ⊢♭ M1

(Cup)♭
ξ♭ ⊢♭ M1 ξ♭ ⊢♭ M2

ξ♭ ⊢♭ M1 ∪M2

Table 7
The Abstract Type System

ric key encryption and decryption rules given in the type system can be replaced by

public key encryption and decryption rules if the analyzed protocol uses public keys.

Besides, the rules dealing with operators can be eliminated if the protocol does not

use arithmetic operations (m1 op m2, where op ∈ {+,−, ∗, /}).

The following proposition proves that the system Sξ♭ is equivalent to Tξ♭ .

Proposition 5.10 Let ξ be an environment associated with a given protocol and ξ♭

87

m1 m2
{m1}m2

∈ Sξ♭
{m1}m2

m2
m1

∈ Sξ♭



















M 7→ {|m′
1, . . . ,m

′
n′ |} ∈ ξ♭

and

m ∈ M

⇒
m′

1 . . . m′
n′

m ∈ Sξ♭

m1 m2
m1,m2

∈ Sξ♭
m1,m2
m1

∈ Sξ♭
m1,m2
m2

∈ Sξ♭

m1 m2
m1 op m2

∈ Sξ♭
m1 op m2 m1

m2
∈ Sξ♭

m1 op m2 m2
m1

∈ Sξ♭

Table 8
The Simplified Abstract Type System

its abstracted version. We have:

ξ♭ ⊢♭ {|m|} if and only if Sξ♭ ⊢ m.

5.2.3 Case Study

The aims hereafter is to use the abstract interpretation and the termination results to

prove the correction of some security protocols with respect to the secrecy property.

Protocol

The analyzed protocol is inspired by the symmetric key Needham-Schroeder

protocol (the first three steps of a corrected version of the Needham-Schroeder sym-

metric key protocol):

〈α.1 A→S : A,B,Nα
a 〉

〈α.2 S→A : {Nα
a , B, kαab, {k

α
ab, N

α
a , A}kbs}kas〉

〈α.3 A→B : {kαab, N
α
a , A}kbs〉

This protocol aims to establish a new key between two principals A and B. This

key will be used by A and B for their future communication and should be kept

secret.

The generalized roles associated with this protocol are as follows:

88

A1 = 〈α.1 A → I(S) : A,B,Nα
a 〉

A2 = 〈α.1 A → I(S) : A,B,Nα
a 〉

〈α.2 I(S)→A : {Nα
a , B,X, Y }kas〉

〈α.3 A→I(B) : Y 〉

S = 〈α.1 I(A) → S : A,B,X〉

〈α.2 S→I(A) : {X,B, kαab, {k
α
ab,X,A}kbs}kas〉

The environment associated with this protocol is given in Table 9.

ξ = {

KI 7→ ǫ

{|A.B.Nα
a |} 7→ A1

{|Y |} 7→ A2

{|{X,B, kαab, {k
α
ab,X,A}kbs}kas |} 7→ S

}

Table 9
The Needham-Schroeder Protocol Environment

Protocol Abstract Type System

Since the protocol uses symmetric keys and since it does not use arithmetic

operations, the simplified representation of the abstract type system will be as shown

in Table 10. This type system is generated according to the rules presented in Table

8 and supposes that the intruder’s initial knowledge contains A and kis. This means

that the intruder i knows all the other principal identities (A is a variable that can

be replaced by any principal identifier) and it shares a key kis with the server S.

The rules R1 and R2 reflect the intruder initial knowledge. They are indeed

extracted from the following mapping:

89

R1 :
2

A R2 :
2

kis
R3 :

2

A,B,Nα
a

R7 :
x, y
x R8 :

x, y
y

R4 :
x y
x, y R5 :

x y
{x}y

R9 :
{x}y y

x

R6 :
A,B, x

{x,B, kαab, {k
α
ab, x,A}kbs}kas

R10 :
{Nα

a , B, x, y}kas
y

Table 10
The Needham-Schroeder Abstract Type System

KI 7→ ǫ.

The rule R3 is extracted from the following mapping:

{|A.B.Nα
a |} 7→ A1.

The rule R6 is extracted from the following mapping:

{|{X,B, kαab, {k
α
ab,X,A}kbs}kas |} 7→ S.

The rule R10 is extracted from the following mapping:

{|Y |} 7→ A2.

Finally, the rules R4, R5, R7, R8 and R9 reflect the usual intruder abilities.

Notice that all the rules on the left hand side of Table 10 belong to S≺ (S is the

inference system given in Table 10 and ≺ is defined such that t1 ≺ t2 if |t1| < |t2|).
However, all the rules in the right hand side belong to S\S≺.

Handling Termination

To solve the termination problem within the inference system given in Table

10, we use the transformation schema given in Table 6 and the ordering relation ≺
(t1 ≺ t2 if |t1| < |t2|) as a well-founded measure. Notice also that for the sake of

simplicity, we keep the standard notation used within cryptographic protocols in the

inference rules when using the transformation schema. For instance, the messages A

and B denote principal identity variables. In other words, these messages have to be

treated as variables but their substitutions are bound to principal identities. More

precisely, a message A can be replaced by the term Agt(x) which means that A is a

variable denoting a principal identity. Also, we use Nα
a to denote the term N(α,A)

i.e. N(α,Agt(x)), kab to denote the term k(A,B) and kαab to denote k(α,A,B).

Finally, i and s are two constants, where i denotes the intruder identity and s is

90

the server identity. To simplify the result of the transformation schema, we suppose

that the message m,m′,m′′ = (m,m′),m′′.

i Si
≺ Si\Si

≺ Inference

0

R1 :
2

A R2 :
2

kis
R3 :

2

A,B,Nα
a

R4 :
x y
x, y R5 :

x y
{x}y

R6 :
A,B, x

{x,B, kαab, {k
α
ab, x,A}kbs}kas

R7 :
x, y
x R8 :

x, y
y

R9 :
{x}y y

x

R10 :
{Nα

a , B, x, y}kas
y

1

The rule of S0
≺ and

R3
R8

: 2

B,Nα
a

R6
R10

:
A,B,Nα

a
{kαab, N

α
a , A}kbs

R6 R2
R9

:
i, B, x

x,B, kαib{k
α
ib, x, i}kbs

The rule of S0\S0
≺ and

R5
R10

:
Nα

a , B, x, y kas
y

Compose

2

S1
≺

R3
R8
R8

: 2

Nα
a

R6 R2
R9
R8

:
i, B, x

B, kαib, {k
α
ib, x, i}kbs

(S1\S1
≺)

R6 R2
R9
R7

: i, B, x
x

Compose

Table 11
Handling Termination: Part I

The application of the transformation schema is shown in Tables 11 and 12,

Table 13 and Table 14. Notice that the rules
i B, x
kαib

and
i, B, x
kαib

of Table 13 are

made redundant by the rule 2

kαib
.

91

3

S2
≺

R6 R2
R9
R8
R8

:
i, B, x

kαib, {k
α
ib, x, i}kbs

(S2\S2
≺)

R4
R6 R2
R9
R7

:
i B, x

x Compose

Table 12
Handling Termination: Part I - cont’d

Protocol Correction

The result of the transformation schema shows that the abstract type system

associated with the Needham-Schroeder protocol is equivalent to the terminating

inference system given in Table 15.

Notice that all the rules in this inference system are ordered by ≺, i.e. the

premises of each rule are smaller than the conclusion of the same rule with respect

to the ordering relation ≺.

Since the termination problem is resolved, proving whether a message m can

be inferred using the terminating inference system given in Table 15 is decidable.

For instance, let a1 and a2 be two principal identities. It is clear, that the message

kαa1a2 can not be inferred from the terminating inference system. Therefore, thanks

to the soundness of the abstraction and the transformation schema, we deduce that

the three communication steps inspired by the Needham-Schroeder symmetric key

protocol keeps the new generated key secret. As a result, we conclude that the

secrecy property is satisfied.

6 Conclusion

In this paper, we have combined different formal and elegant techniques to ensure

the correctness of security protocols with respect to the secrecy property. Type

system, abstract interpretation and proof system termination are the basic ones

used to reach this goal. In fact, the approach is based on a sound and complete type

system in which types are communication steps and typing constraints characterize

all the messages available to the intruder. This reduces verification of authentication

and secrecy properties to a typing problem in our type system. Furthermore, a

transformation schema that can resolve the termination problem within inference

systems. Also, we have introduced a sound abstraction for the type system. This

abstraction aims to simplify the typing rules so that they can be easily handled by

the transformation schema. Once the termination problem of the type system is

resolved, the correctness of a security protocol with respect to the secrecy property

can be easily analyzed. The efficiency of this approach has been illustrated on a

concrete example.

92

i Si
≺ Si\Si

≺ Inference

4

S3
≺

R6 R2
R9
R8
R8
R8

:
i, B, x

{kαib, x, i}kbs

(S3\S3
≺)

R6 R2
R9
R8
R8
R7

:
i, B, x
kαib

Compose

5

S4
≺

R6 R2
R9
R8
R8
R8

R2

R9
:
i, B, x
kαii, x, i

(S4\S4
≺)

R4
R6 R2
R9
R8
R8
R7

:
i B, x
kαib Compose

6

S5
≺

R1
R3
R8

R4
R6 R2
R9
R8
R8
R7

: 2

kαib

(S5\S5
≺)\{

i B, x
kαib

,
i, B, x
kαib

}

R6 R2
R9
R8
R8
R8

R2

R9
R9

:
i, B, x
x, i

Compose

7
S6
≺

(S6\S6
≺)

R4
R6 R2
R9
R8
R8
R8

R2

R9
R9

:
i B, x
x, i

Compose

Table 13
Handling Termination: Part II

93

i Si
≺ Si\Si

≺ Inference

8

S7
≺

R1
R3
R8

R4
R6 R2
R9
R8
R8
R8

R2

R9
R9

:
Nα

a , i

R1 R4
R4

R6 R2
R9
R8
R8
R8

R2

R9
R9

: B x
x, i

R1

R6 R2
R9
R8

R4
R6 R2
R9
R8
R8
R8

R2

R9
R9

:
i, B, x

kαib, {k
α
ib, x, i}kbs , i

(S7\S7
≺)

Compose

9

S8
≺

R1

R6 R2
R9
R8

R4
R6 R2
R9
R8
R8
R8

R2

R9
R9
R8

:
i, B, x

{kαib, x, i}kbs , i

(S8\S8
≺)

Compose

10
S9
≺ (S9\S9

≺)
Compose

11
S10
≺ ∅

Simplify

Table 14
Handling Termination: Part III

94

2

A
2

kis
2

kαib
2

Nα
a

2

A,B,Nα
a

2

Nα
a , i

2

B,Nα
a

x y
x, y

x y
{x}y

B x
x, i

i, B, x
kαii, x, i

i, B, x
{kαib, x, i}kbs

A,B,Nα
a

{kαab, N
α
a , A}kbs

i, B, x
kαib, {k

α
ib, x, i}kbs , i

i, B, x
B, kαib, {k

α
ib, x, i}kbs

i, B, x
kαib, {k

α
ib, x, i}kbs

A,B, x
{x,B, kαab, {k

α
ab, x,A}kbs}kas

i, B, x
x,B, kαib{k

α
ib, x, i}kbs

Table 15
Terminating Abstract System

References

[1] M. Abadi and A. D. Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus. Technical
report, DEC/SRC, December 1996.

[2] M. Abadi and A. D. Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus. In Proceedings
of the Fourth ACM Conference on Computer and Communications Security. ACM Press, April 1997.

[3] M. Abadi and M. R. Tuttle. A semantics for a logic of authentication. In Proceedings of the 10th
Annual ACM Symposium On Principles of Distributed Computing, pages 201–216, August 1991.

[4] P. Bieber. A Logic of Communication in a Hostile Environment. In Proceedings of the Computer
Security Foundations Workshop III, pages 14–22. IEEE Computer Society Press, 1990.

[5] P. Bieber and N. B. Cuppens. Formal development of authentication protocols. In In Proceedings of the
BCS-FACS 6th Refinemment Workshop on software Engineering and its Applications, January 1994.

[6] P. Bieber, N. B. Cuppens, T. Lehman, and E. V. Wickeren. Abstract machines for communication
security. In In Proceedings of the IEEE Computer Security Foundation Workshop VI, Franconia,New-
Hampshire, June 1993.

[7] D. Bolignano. An Approach to the Formal Verification of Cryptographic Protocols. In Proceedings of
the Third ACM Conference on Computer and Communications Security, CCS’96, New Delhi, India,
pages 106–118. ACM Press, 1996.

[8] C. Boyd. Security Archituctures Using Formal Methods. Journal on Selected Areas in
Communications, 11(5):694–701, June 1990.

[9] C. Boyd. A Framework for Authentication. In Proceedings of the European Symposium on Research in
Computer Security, ESORICS 92, volume 648 of Lecture Notes in Computer Science, pages 273–292.
Springer Verlag, November 1992.

[10] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. In Proceedings of the Royal Society
of London A Vol.426, pages 233–271, 198.

[11] M. Burrows, M. Abadi, and R. Needham. Rejoinder to Nessett. ACM Operating Systems Review,
24(2):39–40, April 1990.

[12] L. Buttyan. Formal methods in the design of cryptographic protocols (state of the art). Technical
Report No. SSC/1999/38, Swiss Federal Institute of Technology (EPFL), Lausanne, November 1999.

[13] U. Carlsen. Formal Specification and Analysis of Cryptographic Protocols. PhD thesis, Thèse
d’Informatique soutenue à l’Université PARIS XI, October 1994.

[14] J. Clark and J. Jacob. A Survey of Authentication Protocol Literature. Unpublished Article Available
at http://dcpu1.cs.york.ac.uk/j̃eremy, August 1996.

95

[15] D. L. Dill. The murphi verification system. In Rajeev Alur and Thomas A. Henzinger, editors,
Proceedings of the Eighth International Conference on Computer Aided Verification CAV, volume
1102 of Lecture Notes in Computer Science, pages 390–393, New Brunswick, NJ, USA, July/August
1996. Springer Verlag.

[16] M. Debbabi, M. Mejri, N. Tawbi, and I. Yahmadi. A New Algorithm for Automatic Verification of
Authentication Cryptographic Protocols. In Proceedings of the DIMACS Workshop on Design and
Formal Verification of Security Protocols, DIMACS Center, Core Building, Rutgers University, New
Jersy, USA, Sep 1997.

[17] M. Debbabi, M. Mejri, N. Tawbi, and I. Yahmadi. Formal Automatic Verification of Authentication
Cryptographic Protocols. In Proceedings of the First IEEE International Conference on Formal
Engineering Methods, Hiroshima, International Convention Center, Japan. IEEE Press, November
1997.

[18] M. Debbabi, M. Mejri, N. Tawbi, and I. Yahmadi. From Protocol Specifications to Flaws and Attack
Scenarios: An Automatic and Formal Algorithm. In Proceedings of the Second International Workshop
on Enterprise Security, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts,
USA. IEEE Press, June 1997.

[19] M. Debbabi, M. Mejri N. Durgin, and J. Mitchell. Security by Typing. In the International Journal
on Software Tools For Technology Transfer (STTT); DOI 10.1007/s10009-002-0100-7., pages 1–24.
Springer Verlag, December 2002.

[20] N. Dershowitz. Termination of Rewriting. J. of Symbolic Computation, 3(1&2):279–301, 1987.

[21] A. J. J. Dick. Eqution reasoning and the knuth-bandix algorithm-an informal introduction. Technical
report, Imperial College, Reserch Report DOC 84/21, March 1984.

[22] D. Dolev and a. Yao. On the Security of Public Key Protocols. In IEEE Transactions on Information
Theory, pages 198–208, March 1983.

[23] K. Gaarder and E. Snekkenes. Applying a formal analysis technique to the ccitt x.509 strong two-way
authentification protocol. Journal of cryptology, 3(2), pages 81–98, 1991.

[24] P. Gardiner, D. Jackson, J. Hulance, and B. Roscoe. Security Modelling in CSP and FDR: Deliverable
Bundle 2. Technical report, Formal Systems (Europe) Ltd, April 1996.

[25] P. Gardiner, D. Jackson, and B. Roscoe. Security Modelling in CSP and FDR: Deliverable Bundle 3.
Technical report, Formal Systems (Europe) Ltd, July 1996.

[26] J. I. Glasgow, G. H. MacEwen, and P. Panangaden. A Logic for Reasoning About Security. ACM
Transactions on Computer Systems, 10(3):226–264, August 1992.

[27] V. D. Gligor and R. Kailar. On Belief Evolution in Authentication Protocols. In Proceedings of the
IEEE Computer Security Foundations Workshop IV, Franconia, pages 103–116, June 1991.

[28] L. Gong, R. Needham, and R. Yahalom. Reasoning About Belief in Cryptographic Protocols. In
Deborah Cooper and Teresa Lunt, editors, Proceedings 1990 IEEE Symposium on Research in Security
and Privacy, pages 234–248. IEEE Computer Society, May 1990.

[29] C. A. R. Hoare. Communating Sequential Process. Prentice Hall, 1985.

[30] C. Iliano, N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Relating Strands and Multiset Rewriting
for Security Protocol Analysis. In Proceedings of the Thirteenth IEEE Computer Security Foundations
Workshop- CSFW’00 (P. Syverson, editor), pages 35–51. IEEE Computer Society Press, Cambridge,
UK, July 2000.

[31] R. Kemmerer, C. Meadows, and J. Millen. Three Systems for Cryptographic Protocol Analysis. Journal
of Cryptology, 7(2):79–130, 1994.

[32] R. A. Kemmerer. Using Formal Verification Techniques to Analyse Encryption Protocols. In
Proceedings of the 1987 IEEE Symposium on Research in Security and Privacy, pages 134–139. IEEE
Computer Society Press, 1987.

[33] R. A. Kemmerer. Analysing Encryption Protocols Using Formal Verification Techniques. IEEE Journal
on Selected Areas in Communications, 7(4):448–457, 1989.

[34] A. Liebl. Authentication in Distributed Systems: A Bibliography. Operating Systems Review,
27(4):122–136, October 1993.

[35] G. Lowe. An Attack on the Needham-Schroeder Public Key Authentication Protocol. Information
Processing Letters, 56(3):131–136, November 1995.

96

[36] G. Lowe. Breaking and fixing the needham schroeder public-key protocol using fdr. In Proceedings of
TACAS, volume 1055, pages 147–166. Springer Verlag, 1996.

[37] G. Lowe. Some new attacks upon security protocols. In Proceedings of the Computer Security
Foundations Workshop VIII. IEEE Computer Society Pres, 1996.

[38] G. Lowe. Splice-as: A case study in using csp to detect errors in security protocols. Technical report,
Programming Research Group, Oxford, 1996.

[39] W. Mao and C. Boyd. Towards the Formal Analysis of Security Protocols. In Proceedings of the
Computer Security Foundations Workshop VI, pages 147–158. IEEE Computer Society Press, 1993.

[40] C. Meadows. Formal Verification of Cryptographic Protocols: A Survey. In Proceedings of Asiacrypt
96, 1996.

[41] R. Milner. The polyadic π-calculus: A tutorial. Technical report, Laboratory for Foundations of
Computer Science, Department of Computer Science, University of Edinburgh, 1991.

[42] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Technical report, Laboratory for
Foundations of Computer Science, Department of Computer Science, University of Edinburgh, 1989.

[43] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (Parts I and II). Information and
Computation, 100:1–77, 1992.

[44] J. C. Mitchell, M. Mitchell, and U. Stern. Automated Analysis of Cryptographic Protocols Using
Murphi. In Proceedings 1997 IEEE Symposium on Security and Privacy, pages 141–153. IEEE
Computer Society, May 1997.

[45] J. C. Mitchell, V. Shmatikov, and U. Stern. Finite-State Analysis of SSL 3.0. In Proceedings of the
DIMACS Workshop on Design and Formal Verification of Security Protocols, September 3-5, 1997,
DIMACS Center, CoRE Building, Rutgers University, New Jersey, USA, pages 1–20, September 1997.

[46] L. E. Moser. A Logic of Knowledge and Belief about Computer Security. In J Thomas Haigh, editor,
Proceedings of the Computer Security Foundations Workshop III, pages 57–63. IEEE, Computer Society
Press of the IEEE, 1989.

[47] P. V. Rangan. An Axomiatic Basis of Trust in Distributed System. In In Proceedings of the 1988
Symposium on Security and Privacy, pages 204–211. IEEE Computer Society Press, April 1988.

[48] B. Roscoe and P. Gardiner. Security Modelling in CSP and FDR: Final Report. Technical report,
Formal Systems Europe, October 1995.

[49] A. D. Rubin and P. Honeyman. Formal Methods for the Analysis of Authentication Protocols. Technical
Report Technical report 93–7, Technical Report, Center for Information Technology Integration, 1993.
University of Michigan. Internal Draft.

[50] C. s. The NRL Protocol Analyser: An Overview. Journal of Logic Programming, 1994.

[51] S. Schneider. Security Properties and CSP. In Proceedings of the 1996 IEEE Symposium on Security
and Privacy, pages 174–187. IEEE Computer Society Press, may 1996.

[52] V. Shmatikov and J. C. Mitchell. Analysis of a Fair Exchange Protocol. Seventh Annual Symposium
on Network and Distributed System Security, San Diego, pages 119–128, 2000.

[53] E. Snekkenes. Authentication in Open Systems. In 10th IFIP WG 6.1 Symposium on Protocol
Specification, Testing and Verification, pages 313–324, June 1990.

[54] E. Snekkenes. Formal Specification and Analysis of Cryptographic Protocols. PhD thesis, Faculty of
Mathematics and Natural Sciences, University of Oslo, Norwegian Defence Research Establishment,
P.O. Box 25, N-2007, Kjeller, Norway, January 1995.

[55] P. Syverson. The Use of Logic in the Analysis of Cryptographic Protocols. In Teresa F. Lunt and John
McLean, editors, Proceedings of the 1991 IEEE Symposium on Security and Privacy, pages 156–170.
IEEE Computer Society, May 1991.

[56] P. Syverson. Knowledge, Belief, and Semantics in the Analysis of Cryptographic Protocols. Journal of
Computer Security, 1(3):317–334, 92.

[57] P. Syverson, C. Meadows, and C. Iliano. Dolev-Yao is no better than Machiavelli. In Proceedings of
the First Workshop on Issues in the Theory of Security - WITS’00, (P. Degano, editors), pages 87–92.
Geneva, Switzerland, July 2000.

[58] P. Syverson and P. C. V. Oorshot. On Unifing some Cryptographic Protocol Logics. In In IEEE 1994
Computer Society Symposium on Security and Privacy, pages 14–28. IEEE Computer Society, May
1994.

[59] The commission of the European Communities CEC DG-XIII. Security Investigation Final Report.
Technical Report S2011/7000/D010 7000 1000, CEC, September 1993.

97

[60] V. Varadharajan. Formal Specification of a Secure Distributed System. In Proceedings of the 12th
National Computer Security Conference, pages 146–171, October 1989.

[61] V. Varadharajan. Verification of Network Security Protocols. Computers and Security, 8, December
1989.

[62] V. Varadharajan. Use of Formal Technique in the Specification of Authentication Protocols. Computer
Standards and Interfaces, 9:203–215, 1990.

98

	Towards The Correctness Of Security Protocols���
	1 Motivations And Background��
	2 Related Work��
	3 Basics��
	4 Type System���
	Protocols, Roles and Environments
	Scenario
	Typing Rules
	Correctness Result
	Completeness Result

	5 Correctness Of Cryptoprotocols��
	Outline of the Methodology
	Abstract Interpretation and Proof System Termination

	6 Conclusion��
	References��

