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a b s t r a c t

Let A ⊂ {1, . . . , n − 1} and let (x1, . . . , xt) ∈ Zt be a sequence
of integers with a maximal length such that for all (a1, . . . , at) ∈
At ,
∑
1≤i≤t aixi 6≡ 0 (mod n). The authors show that for any

sequence of integers (x1, . . . , xn+t) ∈ Zn+t , there are b1, . . . , bn ∈
A and 1 ≤ k1 < k2 < · · · < kn ≤ n+ t such that∑

1≤i≤n

bixki ≡ 0 (mod n).

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

For an abelian group G, the Davenport constant D(G) is defined to be the smallest natural number
k such that any sequence of k elements in G has a non-empty subsequence whose sum is zero (the
identity element). Another interesting constant E(G) is defined to be the smallest natural number k
such that any sequence of k elements in G has a subsequence of length |G|whose sum is zero.
The following result, due to Gao [6], connects these two invariants.

Theorem 1.1. If G is a finite abelian group of order n, then E(G) = D(G)+ n− 1.

For a finite abelian group G and any non-empty A ⊂ Z, Adhikari and Chen [2] defined the
Davenport constant of Gwith weight A, denoted by DA(G), to be the least natural number k such that,
for any sequence (x1, . . . , xk) with xi ∈ G, there exists a non-empty subsequence (xj1 , . . . , xjl) and
a1, . . . , al ∈ A such that

∑l
i=1 aixji = 0. Clearly, if G is of order n, it is equivalent to consider A to be a

non-empty subset of {0, 1, . . . , n− 1} and cases with 0 ∈ A are trivial.
Similarly, for any such set A, for a finite abelian group G of order n, the constant EA(G) is defined

to be the least t ∈ N such that for all sequences (x1, . . . , xt) with xi ∈ G, there exist indices
j1, . . . , jn ∈ N, 1 ≤ j1 < · · · < jn ≤ t , and ϑ1, . . . , ϑn ∈ Awith

∑n
i=1 ϑixji = 0.
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For the group G = Z/nZ, we write EA(n) and DA(n) respectively for EA(G) and DA(G). For several
sets A ⊂ Z/nZ \ {0} of weights, exact values of EA(n) and DA(n) have been determined: The case
A = {1} is classical and is covered by the well-known EGZ theorem [5]; the cases A = {1,−1} and
A = {1, 2, . . . , n − 1} were done in [1]; the case A = (Z/nZ)? = {a : gcd(a, n) = 1}, was proved
in [9,10], settling a conjecture from [1]; the case where n = p is a prime, A = {1, . . . , r}, or the set of
all quadratic residues (mod p), were solved in [3]. Results in all these known cases, lead Adhikari and
Rath [3] to the expectation that for any set A ⊂ Z/nZ of weights, the equality EA(n) = DA(n)+ n− 1
holds (see also Conjecture 4.1 in [9]). In [11], Thangadurai stated the following conjecture

Conjecture 1.1 ([11] Conjecture 1). For any finite abelian group with exponent n and for any non-empty
subset A of {1, 2, . . . , n}, we have

EA(G) = DA(G)+ |G| − 1.

Thangadurai [11] also showed that Conjecture 1.1 holds for some other cases. In [2], Adhikari and Chen
proved that Conjecture 1.1 holds for A = {a1, . . . , ar}with gcd(a2 − a1, . . . , ar − a1, n) = 1.
The main purpose of the present paper is to prove that Conjecture 1.1 holds for cyclic groups.

By using the main theorem of Devos, Goddyn and Mohar [4] and a recently proved theorem of the
authors [12], we shall prove the following theorem

Theorem 1.2. For any non-empty set A ∈ Z, EA(n) = DA(n)+ n− 1.

Let G be an additive finite abelian group. The free abelian multiplicative monoid with base G will
be denoted by F (G). Recall that an element S of F (G) is a finite product S = g1 . . . gk =

∏k
i=1 gi =∏

g∈G g
vg (S) ∈ F (G), where vg(S) ≥ 0 is called the multiplicity of g in S and

∑
g∈G vg(S) < ∞.

An element S of F (G) will be called sequences over G. We call |S| = k the length of S, h(S) =
max{vg(S)|g ∈ G} ∈ [0, |S|] the maximum of the multiplicities of S, supp(S) = {g ∈ G : vg(S) > 0}
the support of S. For every g ∈ Gwe set g + S = (g + g1) · · · (g + gk).
We say that S contains some g ∈ G if vg(S) ≥ 1 and a sequence T ∈ F (G) is a subsequence of

S if vg(T ) ≤ vg(S) for every g ∈ G, denoted by T |S. Furthermore, by σ(S) we denote the sum of S,
i.e. σ(S) =

∑k
i=1 gi =

∑
g∈G vg(S)g ∈ G. For every k ∈ {1, 2, . . . , |S|}, let

∑
k(S) = {gi1+· · ·+gik |1 ≤

i1 < · · · < ik ≤ |S|},
∑
≤k(S) = ∪

k
i=1
∑
i(S), and let

∑
(S) =

∑
≤|S|(S).

Let S be a sequence in G. We call S a zero-sum sequence if σ(S) = 0.
Also, we follow the same terminologies and notation as in the survey article [7] or in the book [8].

2. Lemmas

First, we need a result on the sum of l finite subsets of G. If A = (A1, A2, . . . , Am) is a sequence of
finite subsets of G, and l ≤ m, we define∑

l

(A) = {ai1 + · · · + ail : 1 ≤ i1 < · · · < il ≤ m and aij ∈ Aij for every 1 ≤ j ≤ l}.

So
∑
l(A) is the set of all elementswhich can be represented as a sumof l terms fromdistinctmembers

of A. The following is the main result of Devos, Goddyn and Mohar [4].

Theorem DGM. Let A = (A1, A2, . . . , Am) be a sequence of finite subsets of G, let l ≤ m, and let
H = stab(

∑
l(A)). If

∑
l(A) is nonempty, then∣∣∣∣∣∑

l

(A)

∣∣∣∣∣ ≥ |H|
(
1− l+

∑
Q∈G/H

min{l, |{i ∈ {1, . . . ,m} : Ai ∩ Q 6= ∅}|}

)
.

We also need the following new result on Davenport constant [12].

Theorem YZ. Let G be a finite abelian group of order n, and D(G) the Davenport constant of G. Let
S = 0h(S)

∏
g∈G g

vg (S) ∈ F (G) be a sequence with a maximal multiplicity h(S) attained by 0 and
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|S| ≥ n + D(G) − 1. Then there exists a subsequence S1 of S with length |S1| ≥ t + 1 − D(G) and
0 ∈

∑
k(S1) for every 1 ≤ k ≤ |S1|. In particular, for every sequence S in Gwith length |S| ≥ n+D(G)−1,

we have

0 ∈
∑
km

(S), for every 1 ≤ k ≤ (|S| + 1− D(G))/m,

where m is the exponent of G.

3. Proof of Theorem 1.2

Proof. The proof of EA(n) ≥ DA(n)+ n− 1 is easy, so it is sufficient to prove the reverse inequality.
For any non-empty set A = {a1, . . . , ar} ⊂ Z and a cyclic group G = Z/nZ, let t = DA(n)+ n− 1

and S = x1 · · · xt be any sequence over Gwith length |S| = t = DA(n)+ n− 1. Put

Ai = Axi = {a1xi, . . . , arxi} for i = 1, . . . , t

and A = (A1, . . . , At). It suffices to prove that 0 ∈
∑
n(A).

We shall assume (for a contradiction) that the theorem is false and choose a counterexample
(A,G, S) so that n = |G| is minimum, where G is a cyclic group of order n, A is a finite subset of Z
and S = x1 · · · xt is a sequence in G such that

0 6∈
∑
n

(A).

Next we will show that our assumptions imply H = stab(
∑
n(A)) = {0}. Suppose (for a

contradiction) that H = stab(
∑
n(A)) 6= {0} and let ϕ : G −→ G/H denote the canonical

homomorphism and ϕ(xi) the image of xi for 1 ≤ i ≤ t . Let Aϕ = (ϕ(A1), . . . , ϕ(At)). By our
assumption for the minimal of |G|, the theorem holds for (A, ϕ(G), ϕ(S)). Since t > |ϕ(G)| +
DA(ϕ(G)) − 1, ϕ(G)|n and DA(G) ≥ DA(ϕ(G)), repeated applying the theorem to the sequence
ϕ(S) = ϕ(x1) · · ·ϕ(xt)we have

ϕ(0) = ϕ(H) ∈
∑
n

(Aϕ),

thus 0 ∈ H ⊂
∑
n(A). This contradiction implies that H = stab(

∑
n(A)) = {0}.

If there is an element a ∈ G such that |{j ∈ {1, . . . , t} : a ∈ Aj}| ≥ n, then 0 ∈
∑
n(A), a

contradiction. Therefore we may assume that for every a ∈ G, |{j ∈ {1, . . . , t} : a ∈ Aj}| ≤ n. Let r be
the number of i ∈ {1, . . . , t}with |Ai| = 1, by Theorem DGM and the assumptions, we have

n− 1 ≥
∑
n

(A) ≥ 1− n+
∑
a∈G

min{n, |{j ∈ {1, . . . , t} : a ∈ Aj}|}

= 1− n+
t∑
i=1

|Ai| ≥ 1− n+ 2(n+ DA(G)− 1− r)+ r.

It follows that

r ≥ 2DA(G). (1)

Without loss of generality, we may assume that x1, . . . , xr are all the elements in {x1, . . . , xt} such
that |Ai| = 1, and x1 is the element in {x1, . . . , xr} such that a1x1 attains the maximal multiplicity in
the sequence S1 = (a1x1) · · · (a1xr). Observe that

∑
n(A) =

∑
n(A(x1− xu), . . . , A(xt − xu)) for every

1 ≤ u ≤ r . Therefore without loss of generality we may assume that a1x1 = 0 and v0(S1) = h(S1) for
the sequence

S1 = (a1x1) · · · (a1xr) = 0h(S1)(a1xh(S1)+1) · · · (a1xr). (2)

Let H1 = 〈x1, . . . , xr〉 be the group generated by x1, . . . , xr , H = a1H1. We have the following claim.
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Claim. DA(G) ≥ DA(H1) ≥ D(H) = |H|.

The last equality of the Claim follows from the fact that H is a subgroup of the cyclic group G. The
first inequality in the Claim is obvious, so we only need to prove that DA(H1) ≥ D(H). Suppose that
W = y1 · · · yD(H)−1 is a zero-sum free sequence inH . SinceH = a1H1, we have yi = a1wi, wi ∈ H1, i =
1, . . . ,D(H)−1. Further, it is easy to see that Awi = a1wi, i = 1, . . . ,D(H)−1 by the definition ofH1,
sow1 · · ·wD(H)−1 is a zero-sum free sequence in H1 with respect to the weight A, thus DA(H1) ≥ D(H)
and the Claim follows.
By the Claim, (1), (2) and Theorem YZ, S1 has a subsequence S2 of length |S2| = s ≥ r + 1 − |H|

such that 0 ∈
∑
l(S2) for every 1 ≤ l ≤ s. Without loss of generality, we may assume that

S2 = (a1x1) · · · (a1xs).
If s ≥ n then 0 ∈

∑
n(S2) ⊂

∑
n(A), we are done.

If s < n, then |xs+1 · · · xt | = t − s = n− 1+ DA(G)− s ≥ DA(G). Repeated using the definition of
DA(G), there exists an integer v such that v ≤ n, t − s− v ≤ DA(G)− 1 and

0 ∈
∑
v

((As+1, . . . , At)).

Since
∑
l(S2) =

∑
l((A1, . . . , As)) and 0 ∈

∑
l((A1, . . . , As)) for every 1 ≤ l ≤ s, we have

0 ∈
∑
v+k

(A) for every 0 ≤ k ≤ s.

Therefore 0 ∈
∑
n(A) since v+ s ≥ t + 1− DA(G) ≥ n. This completes the proof of the theorem. �
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