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1. Introduction

For an abelian group G, the Davenport constant D(G) is defined to be the smallest natural number
k such that any sequence of k elements in G has a non-empty subsequence whose sum is zero (the
identity element). Another interesting constant E(G) is defined to be the smallest natural number k
such that any sequence of k elements in G has a subsequence of length |G| whose sum is zero.

The following result, due to Gao [6], connects these two invariants.

Theorem 1.1. If G is a finite abelian group of order n, then E(G) = D(G) +n — 1.

For a finite abelian group G and any non-empty A C Z, Adhikari and Chen [2] defined the
Davenport constant of G with weight A, denoted by D4(G), to be the least natural number k such that,
for any sequence (x1, ..., x;) with x; € G, there exists a non-empty subsequence (x;,, ..., x;) and
ay, ..., a € Asuch that Zle aixj, = 0. Clearly, if G is of order n, it is equivalent to consider A to be a
non-empty subset of {0, 1, ..., n — 1} and cases with O € A are trivial.

Similarly, for any such set A, for a finite abelian group G of order n, the constant E4(G) is defined
to be the least t € N such that for all sequences (x,...,x;) with x; € G, there exist indices
iy jn €N, 1<ji <--- <jp <t,and 9y, ..., 0y, EAWich?zlﬁini =0.
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For the group G = Z/nZ, we write E4(n) and D4 (n) respectively for E4(G) and D4 (G). For several
sets A C Z/nZ \ {0} of weights, exact values of E4(n) and D4 (n) have been determined: The case
A = {1} is classical and is covered by the well-known EGZ theorem [5]; the cases A = {1, —1} and
A=1{1,2,...,n— 1} were done in [1]; the case A = (Z/nZ)* = {a : gcd(a, n) = 1}, was proved
in [9,10], settling a conjecture from [1]; the case where n = pis a prime, A = {1, ..., r}, or the set of
all quadratic residues (mod p), were solved in [3]. Results in all these known cases, lead Adhikari and
Rath [3] to the expectation that for any set A C Z/nZ of weights, the equality Es(n) = Da(n) +n — 1
holds (see also Conjecture 4.1 in [9]). In [11], Thangadurai stated the following conjecture

Conjecture 1.1 ([11] Conjecture 1). For any finite abelian group with exponent n and for any non-empty
subset Aof {1, 2, ..., n}, we have

En(G) = Da(G) + |G| — 1.

Thangadurai [11] also showed that Conjecture 1.1 holds for some other cases. In[2], Adhikari and Chen
proved that Conjecture 1.1 holds for A = {a4, ..., a,} withgcd(a, — a4, ...,a, —ay,n) = 1.

The main purpose of the present paper is to prove that Conjecture 1.1 holds for cyclic groups.
By using the main theorem of Devos, Goddyn and Mohar [4] and a recently proved theorem of the
authors [12], we shall prove the following theorem

Theorem 1.2. For any non-empty set A € Z, E4(n) = Da(n) +n — 1.

Let G be an additive finite abelian group. The free abelian multiplicative monoid with base G will
be denoted by # (G). Recall that an element S of #(G) is a finite productS = g;...g = ]_[L g =
[Teecg® € F(G), where vg(S) > 0is called the multiplicity of g in S and Y, ; v¢(S) < oc.
An element S of #(G) will be called sequences over G. We call |S| = k the length of S, h(S) =
max{vg(S)|g € G} € [0, |S|] the maximum of the multiplicities of S, supp(S) = {g € G : v¢(S) > 0}
the support of S. Foreveryg € Gwesetg +S = (g +g1) --- (g + &)-

We say that S contains some g € Gifvg(S) > 1and asequence T € F(G) is a subsequence of
Sifvg(T) < vg(S) for every g € G, denoted by T|S. Furthermore, by o (S) we denote the sum of S,
ie.og(S) = Zf:] gi= dec vg(S)g € G.Foreveryk € {1,2, ..., S|}, let > " (S) = {gi, +- - -+&l1 <
iy <o < i < ISIE X (5) = UL, Doi(S), and let Y (S) = Y-/ (S).

Let S be a sequence in G. We call S a zero-sum sequence if o (S) = 0.
Also, we follow the same terminologies and notation as in the survey article [7] or in the book [8].

2. Lemmas

First, we need a result on the sum of [ finite subsets of G. If A = (A4, A,, ..., An) is a sequence of
finite subsets of G, and | < m, we define

Z(A):{ai1+~--+a,-l:1§i1 <~--<i,§manda,-jeA,-jf0reverylsjfl}.
1

So ) _,(A) is the set of all elements which can be represented as a sum of  terms from distinct members
of A. The following is the main result of Devos, Goddyn and Mohar [4].

Theorem DGM. Let A = (A1, A, ...,An) be a sequence of finite subsets of G, let | < m, and let
H = stab(}_,(A)). If Y_,(A) is nonempty, then

> @
l

We also need the following new result on Davenport constant [12].

> |H| (1—1+ > min{l,|{ie{1,...,m}:AiﬂQ;«éV]}|}>.

QeG/H

Theorem YZ. Let G be a finite abelian group of order n, and D(G) the Davenport constant of G. Let
S = 0" [[,ec&® € F(G) be a sequence with a maximal multiplicity h(S) attained by 0 and
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|S| > n + D(G) — 1. Then there exists a subsequence Sy of S with length |S;| > t + 1 — D(G) and
0 € ) (1) forevery 1 < k < |Sy|. In particular, for every sequence S in G with length |S| > n+D(G)—1,
we have

0e ) (S), foreveryl<k<(IS|+1—D(G)/m,
km
where m is the exponent of G.

3. Proof of Theorem 1.2

Proof. The proof of Ex(n) > Ds(n) + n — 1is easy, so it is sufficient to prove the reverse inequality.
For any non-empty setA = {ay, ..., a;} C Z and a cyclic group G = Z/nZ,lett = Da(n) +n — 1
and S = x; - - - X; be any sequence over G with length |S| =t = Da(n) +n — 1. Put

A =Ax; = {aix;, ..., ax;) fori=1,...,¢t

andA = (A, ..., Ay). It suffices to prove that 0 € >, (A).

We shall assume (for a contradiction) that the theorem is false and choose a counterexample
(A, G, S) so that n = |G| is minimum, where G is a cyclic group of order n, A is a finite subset of Z
and S = xq - - - X is a sequence in G such that

0¢ Y (A

Next we will show that our assumptions imply H = stab(}_, (A)) = {0}. Suppose (for a
contradiction) that H = stab(}_,(A)) # {0} andlet ¢ : G —> G/H denote the canonical
homomorphism and ¢(x;) the image of x; for 1 < i < t.Let A, = (¢(A1),...,9(A:)). By our
assumption for the minimal of |G|, the theorem holds for (A, ¢(G), ¢(S)). Since t > |p(G)| +
Da(p(G)) — 1, ¢(G)|n and Da(G) > Da(¢(G)), repeated applying the theorem to the sequence
®(S) = ¢(x1) - - - p(x;) we have

9(0) = p(H) € ) (A,),

thus 0 € H C ), (A). This contradiction implies that H = stab(}_, (A)) = {0}.

If there is an element a € Gsuchthat |[{j € {1,...,t} : a € Aj}] > n, then0 € ), (A), a
contradiction. Therefore we may assume that foreverya € G, |[{j € {1, ..., t} : a € Aj}| < n.Letr be
the number of i € {1, ..., t} with |A;| = 1, by Theorem DGM and the assumptions, we have

n—1=> A)=1-n+)» minfn [ e{l,....t}:aeA}]}

aeG

t
=1-n+) |Al=1-n+2n+DsG)—1—r)+r.

i=1

It follows that
r > 2DA(G). (1)
Without loss of generality, we may assume that x4, . . ., X, are all the elementsin {xq, ..., X;} such
that |A;] = 1, and x; is the element in {xq, ..., X, } such that a,x; attains the maximal multiplicity in

the sequence Sy = (a1x1) - - - (a1%;). Observe that ), (A) = > (A(X1 —xy), ..., A(x; — x,)) for every
1 < u < r. Therefore without loss of generality we may assume that a;x; = 0 and vo(S;) = h(S;) for
the sequence

Si = (@x1) -+ - (@x;) = 0"V (arxp(s;)11) - - - (@1%;). (2)

Let H; = (x1, ..., x;) be the group generated by x4, ..., x,, H = a;H;. We have the following claim.
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Claim. DA(G) > Da(H;) > D(H) = |H|.

The last equality of the Claim follows from the fact that H is a subgroup of the cyclic group G. The
first inequality in the Claim is obvious, so we only need to prove that D4(H;) > D(H). Suppose that
W =y1 - Ypm)—1isazero-sum free sequence in H.Since H = a;Hq, we havey; = ayw;, w; € Hy,i =
1, ..., D(H) — 1.Further, it is easy to see that Aw; = a;w;, i = 1, ..., D(H) — 1 by the definition of Hy,
SO w1 - - - Wp(Hy—1 1S @ zero-sum free sequence in Hy with respect to the weight A, thus Da(H;) > D(H)
and the Claim follows.

By the Claim, (1), (2) and Theorem YZ, S; has a subsequence S, of length |S;| = s > r + 1 — |H|
such that 0 € ) ,(S;) for every 1 < | < s. Without loss of generality, we may assume that
Sy = (a1xq) - - - (a1Xs).

Ifs>nthen0 e ) (S2) C Y ,(A), we are done.

Ifs < n,then [Xsy1---X| =t —s =n— 14 Ds(G) — s > Ds(G). Repeated using the definition of
D4(G), there exists an integer v such that v < n,t —s — v < D4(G) — 1and

06D ((Ar..o A

Since > ,(S2) = Y ((A1, ..., A))and 0 € Y ((Ay, ..., As)) forevery 1 < I <s, we have
0e Z(A) forevery 0 < k <s.

v+k

Therefore 0 € ) (A) since v +s > t + 1 — D4(G) > n. This completes the proof of the theorem. O
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