Davenport constant with weights

Pingzhi Yuan ${ }^{\text {a }}$, Xiangneng Zeng ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Mathematics, South China Normal University, Guangzhou 510631, PR China
${ }^{\text {b }}$ Department of Mathematics, Sun Yat-Sen University, Guangzhou 510275, PR China

ARTICLE INFO

Article history:

Received 26 January 2009
Accepted 26 September 2009
Available online 14 October 2009

Abstract

Let $A \subset\{1, \ldots, n-1\}$ and let $\left(x_{1}, \ldots, x_{t}\right) \in \mathbb{Z}^{t}$ be a sequence of integers with a maximal length such that for all $\left(a_{1}, \ldots, a_{t}\right) \in$ $A^{t}, \sum_{1 \leq i \leq t} a_{i} x_{i} \not \equiv 0(\bmod n)$. The authors show that for any sequence of integers $\left(x_{1}, \ldots, x_{n+t}\right) \in \mathbb{Z}^{n+t}$, there are $b_{1}, \ldots, b_{n} \in$ A and $1 \leq k_{1}<k_{2}<\cdots<k_{n} \leq n+t$ such that

$$
\sum_{1 \leq i \leq n} b_{i} x_{k_{i}} \equiv 0 \quad(\bmod n)
$$

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

For an abelian group G, the Davenport constant $D(G)$ is defined to be the smallest natural number k such that any sequence of k elements in G has a non-empty subsequence whose sum is zero (the identity element). Another interesting constant $E(G)$ is defined to be the smallest natural number k such that any sequence of k elements in G has a subsequence of length $|G|$ whose sum is zero.

The following result, due to Gao [6], connects these two invariants.
Theorem 1.1. If G is a finite abelian group of order n, then $E(G)=D(G)+n-1$.
For a finite abelian group G and any non-empty $A \subset \mathbb{Z}$, Adhikari and Chen [2] defined the Davenport constant of G with weight A, denoted by $D_{A}(G)$, to be the least natural number k such that, for any sequence (x_{1}, \ldots, x_{k}) with $x_{i} \in G$, there exists a non-empty subsequence ($x_{j_{1}}, \ldots, x_{j l}$) and $a_{1}, \ldots, a_{l} \in A$ such that $\sum_{i=1}^{l} a_{i} x_{j_{i}}=0$. Clearly, if G is of order n, it is equivalent to consider A to be a non-empty subset of $\{0,1, \ldots, n-1\}$ and cases with $0 \in A$ are trivial.

Similarly, for any such set A, for a finite abelian group G of order n, the constant $E_{A}(G)$ is defined to be the least $t \in \mathbb{N}$ such that for all sequences $\left(x_{1}, \ldots, x_{t}\right)$ with $x_{i} \in G$, there exist indices $j_{1}, \ldots, j_{n} \in \mathbb{N}, 1 \leq j_{1}<\cdots<j_{n} \leq t$, and $\vartheta_{1}, \ldots, \vartheta_{n} \in A$ with $\sum_{i=1}^{n} \vartheta_{i} x_{j_{i}}=0$.

[^0]For the group $G=\mathbb{Z} / n \mathbb{Z}$, we write $E_{A}(n)$ and $D_{A}(n)$ respectively for $E_{A}(G)$ and $D_{A}(G)$. For several sets $A \subset \mathbb{Z} / n \mathbb{Z} \backslash\{0\}$ of weights, exact values of $E_{A}(n)$ and $D_{A}(n)$ have been determined: The case $A=\{1\}$ is classical and is covered by the well-known EGZ theorem [5]; the cases $A=\{1,-1\}$ and $A=\{1,2, \ldots, n-1\}$ were done in [1]; the case $A=(\mathbb{Z} / n \mathbb{Z})^{\star}=\{a: \operatorname{gcd}(a, n)=1\}$, was proved in [9,10], settling a conjecture from [1]; the case where $n=p$ is a prime, $A=\{1, \ldots, r\}$, or the set of all quadratic residues $(\bmod p)$, were solved in [3]. Results in all these known cases, lead Adhikari and Rath [3] to the expectation that for any set $A \subset \mathbb{Z} / n \mathbb{Z}$ of weights, the equality $E_{A}(n)=D_{A}(n)+n-1$ holds (see also Conjecture 4.1 in [9]). In [11], Thangadurai stated the following conjecture

Conjecture 1.1 ([11] Conjecture 1). For any finite abelian group with exponent n and for any non-empty subset A of $\{1,2, \ldots, n\}$, we have

$$
E_{A}(G)=D_{A}(G)+|G|-1 .
$$

Thangadurai [11] also showed that Conjecture 1.1 holds for some other cases. In [2], Adhikari and Chen proved that Conjecture 1.1 holds for $A=\left\{a_{1}, \ldots, a_{r}\right\}$ with $\operatorname{gcd}\left(a_{2}-a_{1}, \ldots, a_{r}-a_{1}, n\right)=1$.

The main purpose of the present paper is to prove that Conjecture 1.1 holds for cyclic groups. By using the main theorem of Devos, Goddyn and Mohar [4] and a recently proved theorem of the authors [12], we shall prove the following theorem

Theorem 1.2. For any non-empty set $A \in \mathbb{Z}, E_{A}(n)=D_{A}(n)+n-1$.
Let G be an additive finite abelian group. The free abelian multiplicative monoid with base G will be denoted by $\mathcal{F}(G)$. Recall that an element S of $\mathcal{F}(G)$ is a finite product $S=g_{1} \ldots g_{k}=\prod_{i=1}^{k} g_{i}=$ $\prod_{g \in G} g^{v_{g}(S)} \in \mathcal{F}(G)$, where $v_{g}(S) \geq 0$ is called the multiplicity of g in S and $\sum_{g \in G} v_{g}(S)<\infty$. An element S of $\mathcal{F}(G)$ will be called sequences over G. We call $|S|=k$ the length of $S, \mathrm{~h}(S)=$ $\max \left\{\mathrm{v}_{g}(S) \mid g \in G\right\} \in[0,|S|]$ the maximum of the multiplicities of $S, \operatorname{supp}(S)=\left\{g \in G: \mathrm{v}_{\mathrm{g}}(S)>0\right\}$ the support of S. For every $g \in G$ we set $g+S=\left(g+g_{1}\right) \cdots\left(g+g_{k}\right)$.

We say that S contains some $g \in G$ if $v_{g}(S) \geq 1$ and a sequence $T \in \mathcal{F}(G)$ is a subsequence of S if $\mathrm{v}_{g}(T) \leq \mathrm{v}_{g}(S)$ for every $g \in G$, denoted by $T \mid S$. Furthermore, by $\sigma(S)$ we denote the sum of S, i.e. $\sigma(S)=\sum_{i=1}^{k} g_{i}=\sum_{g \in G} \mathbf{v}_{g}(S) g \in G$. For every $k \in\{1,2, \ldots,|S|\}$, let $\sum_{k}(S)=\left\{g_{i_{1}}+\cdots+g_{i_{k}} \mid 1 \leq\right.$ $\left.i_{1}<\cdots<i_{k} \leq|S|\right\}, \sum_{\leq k}(S)=\cup_{i=1}^{k} \sum_{i}(S)$, and let $\sum(S)=\sum_{\leq|S|}(S)$.

Let S be a sequence in G. We call S a zero-sum sequence if $\sigma(S)=0$.
Also, we follow the same terminologies and notation as in the survey article [7] or in the book [8].

2. Lemmas

First, we need a result on the sum of l finite subsets of G. If $\mathbf{A}=\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ is a sequence of finite subsets of G, and $l \leq m$, we define

$$
\sum_{l}(\mathbf{A})=\left\{a_{i_{1}}+\cdots+a_{i_{l}}: 1 \leq i_{1}<\cdots<i_{l} \leq m \text { and } a_{i_{j}} \in A_{i_{j}} \text { for every } 1 \leq j \leq l\right\} .
$$

So $\sum_{l}(\mathbf{A})$ is the set of all elements which can be represented as a sum of l terms from distinct members of \mathbf{A}. The following is the main result of Devos, Goddyn and Mohar [4].

Theorem DGM. Let $\mathbf{A}=\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ be a sequence of finite subsets of G, let $l \leq m$, and let $H=\operatorname{stab}\left(\sum_{l}(\mathbf{A})\right)$. If $\sum_{l}(\mathbf{A})$ is nonempty, then

$$
\left|\sum_{l}(\mathbf{A})\right| \geq|H|\left(1-l+\sum_{Q \in G / H} \min \left\{l,\left|\left\{i \in\{1, \ldots, m\}: A_{i} \cap Q \neq \emptyset\right\}\right|\right\}\right) .
$$

We also need the following new result on Davenport constant [12].
Theorem YZ. Let G be a finite abelian group of order n, and $D(G)$ the Davenport constant of G. Let $S=0^{\mathrm{h}(S)} \prod_{g \in G} g^{\vee_{g}(S)} \in \mathcal{F}(G)$ be a sequence with a maximal multiplicity $\mathrm{h}(S)$ attained by 0 and
$|S| \geq n+D(G)-1$. Then there exists a subsequence S_{1} of S with length $\left|S_{1}\right| \geq t+1-D(G)$ and $0 \in \bar{\sum}_{k}\left(S_{1}\right)$ for every $1 \leq k \leq\left|S_{1}\right|$. In particular, for every sequence S in G with length $|S| \geq n+D(G)-1$, we have

$$
0 \in \sum_{k m}(S), \quad \text { for every } 1 \leq k \leq(|S|+1-D(G)) / m,
$$

where m is the exponent of G.

3. Proof of Theorem 1.2

Proof. The proof of $E_{A}(n) \geq D_{A}(n)+n-1$ is easy, so it is sufficient to prove the reverse inequality.
For any non-empty set $A=\left\{a_{1}, \ldots, a_{r}\right\} \subset \mathbb{Z}$ and a cyclic group $G=\mathbb{Z} / n \mathbb{Z}$, let $t=D_{A}(n)+n-1$ and $S=x_{1} \cdots x_{t}$ be any sequence over G with length $|S|=t=D_{A}(n)+n-1$. Put

$$
A_{i}=A x_{i}=\left\{a_{1} x_{i}, \ldots, a_{r} x_{i}\right\} \quad \text { for } i=1, \ldots, t
$$

and $\mathbf{A}=\left(A_{1}, \ldots, A_{t}\right)$. It suffices to prove that $0 \in \sum_{n}(\mathbf{A})$.
We shall assume (for a contradiction) that the theorem is false and choose a counterexample (A, G, S) so that $n=|G|$ is minimum, where G is a cyclic group of order n, A is a finite subset of \mathbb{Z} and $S=x_{1} \cdots x_{t}$ is a sequence in G such that

$$
0 \notin \sum_{n}(\mathbf{A}) .
$$

Next we will show that our assumptions imply $H=\operatorname{stab}\left(\sum_{n}(\mathbf{A})\right)=\{0\}$. Suppose (for a contradiction) that $H=\operatorname{stab}\left(\sum_{n}(\mathbf{A})\right) \neq\{0\}$ and let $\varphi: G \longrightarrow G / H$ denote the canonical homomorphism and $\varphi\left(x_{i}\right)$ the image of x_{i} for $1 \leq i \leq t$. Let $\mathbf{A}_{\varphi}=\left(\varphi\left(A_{1}\right), \ldots, \varphi\left(A_{t}\right)\right)$. By our assumption for the minimal of $|G|$, the theorem holds for $(A, \varphi(G), \varphi(S))$. Since $t>|\varphi(G)|+$ $D_{A}(\varphi(G))-1, \varphi(G) \mid n$ and $D_{A}(G) \geq D_{A}(\varphi(G))$, repeated applying the theorem to the sequence $\varphi(S)=\varphi\left(x_{1}\right) \cdots \varphi\left(x_{t}\right)$ we have

$$
\varphi(0)=\varphi(H) \in \sum_{n}\left(\mathbf{A}_{\varphi}\right),
$$

thus $0 \in H \subset \sum_{n}(\mathbf{A})$. This contradiction implies that $H=\operatorname{stab}\left(\sum_{n}(\mathbf{A})\right)=\{0\}$.
If there is an element $a \in G$ such that $\left|\left\{j \in\{1, \ldots, t\}: a \in A_{j}\right\}\right| \geq n$, then $0 \in \sum_{n}(\mathbf{A})$, a contradiction. Therefore we may assume that for every $a \in G,\left|\left\{j \in\{1, \ldots, t\}: a \in A_{j}\right\}\right| \leq n$. Let r be the number of $i \in\{1, \ldots, t\}$ with $\left|A_{i}\right|=1$, by Theorem DGM and the assumptions, we have

$$
\begin{aligned}
n-1 & \geq \sum_{n}(\mathbf{A}) \geq 1-n+\sum_{a \in G} \min \left\{n,\left|\left\{j \in\{1, \ldots, t\}: a \in A_{j}\right\}\right|\right\} \\
& =1-n+\sum_{i=1}^{t}\left|A_{i}\right| \geq 1-n+2\left(n+D_{A}(G)-1-r\right)+r
\end{aligned}
$$

It follows that

$$
\begin{equation*}
r \geq 2 D_{A}(G) \tag{1}
\end{equation*}
$$

Without loss of generality, we may assume that x_{1}, \ldots, x_{r} are all the elements in $\left\{x_{1}, \ldots, x_{t}\right\}$ such that $\left|A_{i}\right|=1$, and x_{1} is the element in $\left\{x_{1}, \ldots, x_{r}\right\}$ such that $a_{1} x_{1}$ attains the maximal multiplicity in the sequence $S_{1}=\left(a_{1} x_{1}\right) \cdots\left(a_{1} x_{r}\right)$. Observe that $\sum_{n}(\mathbf{A})=\sum_{n}\left(A\left(x_{1}-x_{u}\right), \ldots, A\left(x_{t}-x_{u}\right)\right)$ for every $1 \leq u \leq r$. Therefore without loss of generality we may assume that $a_{1} x_{1}=0$ and $v_{0}\left(S_{1}\right)=h\left(S_{1}\right)$ for the sequence

$$
\begin{equation*}
S_{1}=\left(a_{1} x_{1}\right) \cdots\left(a_{1} x_{\mathrm{r}}\right)=0^{\mathrm{h}\left(S_{1}\right)}\left(a_{1} x_{\mathrm{h}\left(S_{1}\right)+1}\right) \cdots\left(a_{1} x_{\mathrm{r}}\right) . \tag{2}
\end{equation*}
$$

Let $H_{1}=\left\langle x_{1}, \ldots, x_{r}\right\rangle$ be the group generated by $x_{1}, \ldots, x_{r}, H=a_{1} H_{1}$. We have the following claim.

Claim. $D_{A}(G) \geq D_{A}\left(H_{1}\right) \geq D(H)=|H|$.
The last equality of the Claim follows from the fact that H is a subgroup of the cyclic group G. The first inequality in the Claim is obvious, so we only need to prove that $D_{A}\left(H_{1}\right) \geq D(H)$. Suppose that $W=y_{1} \cdots y_{D(H)-1}$ is a zero-sum free sequence in H. Since $H=a_{1} H_{1}$, we have $y_{i}=a_{1} w_{i}, w_{i} \in H_{1}, i=$ $1, \ldots, D(H)-1$. Further, it is easy to see that $A w_{i}=a_{1} w_{i}, i=1, \ldots, D(H)-1$ by the definition of H_{1}, so $w_{1} \cdots w_{D(H)-1}$ is a zero-sum free sequence in H_{1} with respect to the weight A, thus $D_{A}\left(H_{1}\right) \geq D(H)$ and the Claim follows.

By the Claim, (1), (2) and Theorem YZ, S_{1} has a subsequence S_{2} of length $\left|S_{2}\right|=s \geq r+1-|H|$ such that $0 \in \sum_{l}\left(S_{2}\right)$ for every $1 \leq l \leq s$. Without loss of generality, we may assume that $S_{2}=\left(a_{1} x_{1}\right) \cdots\left(a_{1} x_{s}\right)$.

If $s \geq n$ then $0 \in \sum_{n}\left(S_{2}\right) \subset \sum_{n}(\mathbf{A})$, we are done.
If $s<n$, then $\left|x_{s+1} \cdots x_{t}\right|=t-s=n-1+D_{A}(G)-s \geq D_{A}(G)$. Repeated using the definition of $D_{A}(G)$, there exists an integer v such that $v \leq n, t-s-v \leq D_{A}(G)-1$ and

$$
0 \in \sum_{v}\left(\left(A_{s+1}, \ldots, A_{t}\right)\right)
$$

Since $\sum_{l}\left(S_{2}\right)=\sum_{l}\left(\left(A_{1}, \ldots, A_{s}\right)\right)$ and $0 \in \sum_{l}\left(\left(A_{1}, \ldots, A_{s}\right)\right)$ for every $1 \leq l \leq s$, we have

$$
0 \in \sum_{v+k}(\mathbf{A}) \quad \text { for every } 0 \leq k \leq s .
$$

Therefore $0 \in \sum_{n}(\mathbf{A})$ since $v+s \geq t+1-D_{A}(G) \geq n$. This completes the proof of the theorem.

Acknowledgements

Supported by NSF of China (No. 10971072) and by the Guangdong Provincial Natural Science Foundation (No. 8151027501000114). The authors are grateful to the referees for a number of comments and suggestions, which have greatly improved the manuscript.

References

[1] S.D. Adhikari, Y.G. Chen, J.B. Friedlander, S.V. Konyagin, F. Pappalardi, Contributions to zero-sum problems, Discrete Math. 306 (2006) 1-10.
[2] S.D. Adhikari, Y.G. Chen, Davenport constant with weights and some related questions, II, J. Combin. Theory Theory Ser. A 115 (2008) 178-184.
[3] S.D. Adhikari, P. Rath, Davenport constant with weights and some related questions, Integers, Paper A6 (2006) A30.
[4] M. DeVos, L. Goddyn, B. Mohar, A generalization of Kneser's addition theorem, Adv. Math. 220 (2009) 1531-1548.
[5] P. Erdös, A. Ginzburg, A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel 10F (1961) 41-43.
[6] W.D. Gao, A combinatorial problem on finite abelian groups, J. Number Theory 58 (1996) 100-103.
[7] W.D. Gao, A. Geroldinger, Zero-sum problems in finite abelian groups: A survey, Expo. Math. 24 (2006) 337-369.
[8] A. Geroldinger, F. Halter-Koch, Non-Unique Factorizations, Chapman and Hall/CRC, 2006.
[9] S. Griffiths, The Erdös-Ginzberg-Ziv theorem with units, Discrete Math. 308 (2008) 5473-5484.
[10] F. Luca, A generalization of a classical zero-sum problem, Discrete Math. 307 (2007) 1672-1678.
[11] R. Thangadurai, A variant of Davenport's constant, Proc. Indian Acad. Sci. Math. Sci. 117 (2007) 147-158.
[12] P.Z. Yuan, X.N. Zeng, A new result on Davenport constant, J. Number Theory 129 (2009) 3026-3028.

[^0]: E-mail addresses: mcsypz@mail.sysu.edu.cn (P. Yuan), junevab@163.com (X. Zeng).

