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On Traces ofd-stresses in theSkeletons of Laver Dimensions of
Piecewise-lineard-manifolds

R. M. ERDAHL, K. A. RyBNIKOVT AND S. S. Rr'SHKOV

We show how al-stress on a piecewise-linear realization obaiented (non-simplicial, in general)
d-manifold inRY naturally induces stresses of lower dimensions on this manifold, and discuss impli-
cations of this construction to the analysis of self-stresses in spatial frameworks. The mappings we
construct are not linear, but polynomial. In the 1860-70s J. C. Maxwell described an interesting rela-
tionship between self-stresses in planar frameworks and vertical projections of polyhedral 2-surfaces.
We offer a spatial analog of Maxwell's correspondence based on our polynomial mappings. By apply-
ing our main result we derive a class of three-dimensional spider webs similar to the two-dimensional
spider webs described by Maxwell. We also conjecture an important property of our mappings that is
based on the lower bound theorega (d+1) = dimStress > 0) for d-pseudomanifolds generically
realized inR9+1 [10].

(© 2001 Academic Press

1. INTRODUCTION

Let G(E, V) be a framework (possibly infinite), wheEeis the edge set of the framework,
andV the vertex set, ifR9. An (equilibrium)stressis an assignment of real numbesg =
wji to the edges, a tension if the sign is positive, or a compression if negative, so that the
equilibrium condition
Z wij(vj —Vvi) =0
{i 1(j)eE}

holds at each vertew; € V. The stresses ofE, V) form a linear subspace @®E! the left
null-space of theigidity matrix RM(E, V). Let M be the|E| x |V| incidence matrix with
entriesMj; = 1ifand only ifv; € dg, but zero otherwise. Then, the ridigity matrix is formed
by replacing each entry a¥l by ad-component row vector, the zero vector wheyy = O,
and an edge vector parallel to thié edge, pointing away from vertex, whenM;; = 1.
The dimension of the space of stresses is equiEto- rank(R M), and, the dimension of
the subspace of external loads that can be resolved by the framework is equal ®Ngnk(
If all external loads can be resolved, the framework is said tstaically rigid. Under these
circumstances ranRM) = d|V| — (szrl), since the dimension of the space of all possible
external loads isl|V| — (d“le). It also follows that the dimension of the space of stresses is
|E[ —d|V] + (“37) in the statically rigid case.

The notion of stress on a framework can be naturally generalizket@ss on a cell com-
plex. This generalization is useful in the combinatorics and geometry of piecewise-linear
manifolds, rigidity theory, and the theory of Dirichlet—Voronoi diagrams. Such generaliza-
tions have been proposed by Lee [13], Tey al. [24], Crapo and Whiteley [8], and
Rybnikov [19, 20].

Consider piecewise-linear realizatiok in RN of ad-dimensional cell complek. Denote
by n(F, C) the inner unit normal to a ce at its facetF.
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FIGURE 1. Equilibrium of forces at 1-cell.

DEFINITION 1.1. A real-valuedunctionw(-) on the(k — 1)-cellsof K is ak-stress if at
each (internaljk — 2)-cell F of K

> w(C)volk-1(C)n(F.C) =0,
{C| FcC}

where the sum is taken over &kt — 1)-cells in the star of. The quantities» (C) are the
coefficients of thek-stresses, a tension if the sign is positive, a compression if the sign is
negative C need not be convex, but it is important that its boundary is a homology sphere.

It is easy to see th&t-stresses form a linear space, and thé&gnsions ané-compressions
form congruent cones in this linear space. We denote the space loktaltsses oK by
Stresg(K), the cone of alk-tensions byT ension(K). If the coefficientsn (C) are not all
zero, thek-stressw is called non-trivial. Figurd. illustrates the geometry of the equilibrium
condition for a 3-stress at an edgeeofell complex irR3.

In the case of stress on a framewadk(e) is the force per unit length, and the static force
applied at the end points of edgés w(e)| e|. For a(k — 1)-cellC ak-stresso (C) is the force
per unit relative(k — 1)-volume (area) o€, and the static force applied atla— 2)-face of
C is w(C) volk_1C. For frameworks the equilibrium condition is written for the star of each
vertex of the framework, while fok-stresses on cell complexes the equilibrium condition
is formulated for the star of eaalk — 2)-cells, and the summation is over &l — 1)-cells.
Moreover, the equilibrium of forces in the case of 3-stress has a natural physical interpretation:
one can think of plates making contact at a common edge: some plates are under tension, and
some under compression, just like the edges in a framework.

The main result of this paper is Theorén? of Section6 where we construct a polynomial
mapping of degred —k+1 from the space al-stresseto the space df-stresses (& k < d)
for a piecewise-linear realization of an orientedhanifold inR9+1. In general, our mappings
arenot bijective since for a generic realization of a simplicial spher&fhthe dimension of
the space of 2-stresses may exceed the dimension of the space of 3-stresses. Below we outline
how our research dk-stresses relates to the Maxwell-Cremona theory and its generalizations.
This theory served as one of the motivations to study the relationship between stresses of
different dimensions.



Stresses in PL-manifolds 803

FIGURE 2. 2-sphere realized iR2.

Let G be a framework ithe plane. Suppose there is a polyhedroin three-space such that
the vertical projectiomn the plane of takes the vertices d® onto the vertices o6 and the
edges ofP onto the edges d& in a one-to-one manner. Then, as shown by Maxwell (1864,
1869) and Cremona (1872), there is a stre@B) on G completely defined by the values of the
dihedral angles oP. Moreover, given a framewor® in the plane, ifw is a stress o6 andG
can be regarded as the graph of a spherical complex, one can find a polyRPéaiofdefined
up to the choice of a supporting plane) in three-space suchhsatthe vertical projection
of the 1-skeleton ofP. These 19th century results have been extended and put on a rigorous
mathematical basis by Crapo and Whiteley [6, 26, 27]. They proved that for piecewise-linear
spheres realized i? (like in Figure2) thereis a natural linear isomorphism between the
space of stresses on the 1-skeleton enedspace of liftings (lifting is the operation that is
inverse to projection on the plane) considered up to the addition of an affine function.

Maxwell used a new geometrical tool, theciprocal, in his study of how stresses and pro-
jections relate to each other. Roughly speaking, a reciprocal is a planar realization of the dual
combinatorial graph of the spherical complex, such that its edges are perpendicular to the cor-
responding edges of the complex, as pictured in FigurEhe relationship between a graph
and its reciprocal is well illustrated by thelationship between the 1-skeletons of the Delau-
nay and Dirichlet-Voronoi decompositions for a set of sites in the plane. For spher& and
the linear space of reciprocals is isomorphic to the space of stresses.

As was shown by Crapo, Whiteley and Rybnikov, for certain classdswénifolds, includ-
ing homology spheres, there is a similar connection between the geometry of piecewise-linear
d-manifolds realized ifR9+1 and stresses supported on the- 1)-cells of their realizations
defined by the vertical (or radial) projection od&ubspace dR9*. In this case the equilib-
rium of forces is required not at each vertex, but at g@ch 2)-cell [6, 19, 26]. Such stresses
are calledd-stresses becauseis the lowest dimension & manifold for which the space of
d-stress is non-trivial in the sense that it essentially depends on the combinatorics and geom-
etry of the manifold. (The space dfstresses of a closed — 1)-manifold realized ifR9-1
is eitherR or 0 depending on whether this manifold is orientable or not.)

By an informal conjecture of Baracs and Whiteley there is an analogous correspondence
between projections of 4-polyhedra frddt ontoR3 and stresses in spatial frameworks [31].
Their idea was, perhaps, motivateg Minkowski's theorem on the vanishing of the sum of
normals to a convex polytope at its facets (Theo&efnof Section5). The projections ofl-
manifolds with trivialH; overZ, from R4+1 ontoRY correspond tal-stresse¢see Sectio2
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FIGURE 3. Reciprocal for a 2-sphere &?.

and [19, 29]); thuspne can reformulate their conjecture as the existence of a natural corre-
spondence betweehstresses on@manifold realized irR? and stresses dts 1-skeleton (in

the general theory of stresses such stresses are called 2-stresses). Th2esnoblishes a
natural one-way connection betwegstresses anklstresses (k d) for oriented piecewise-
linear manifolds realized iRY. Therefore, in some sense this theorem supports the Baracs—
Whiteley hypothesis.

Our mappings are well defined not only for simplicial manifolds, but also for general cell-
partitions of manifolds. As for the simplicial case, we conjecture that these mappings are
injectivefor any generic realization of an orientable closédplicial d-manifold inRY. How-
ever, we are primarily interested in applications of the general theory of stresses and liftings
to three-dimensional manifolds and spatial spider webs. From this point of view our construc-
tion can be regarded as a natural extension of Maxwell's correspondence between stresses and
liftings to spatial frameworks. In the last paragraph of this section we sketch the main ideas
and concepts employed in our construction.

Let A be a homologyd-manifold decomposed into cells, each of which is a simplicial star
(see [17, 22] for a discussion of such dissections). The construction of our mapping proceeds
systematically in steps. The first step establisheetaral one-to-one correspondence between
d-stresses an@ciprocals(see Sectiod). The notion of reciprocal we employ generalizes that
of Maxwell (see above). In particulea segment whose ends are the vertices of the reciprocal
corresponding to two adjacedticells of A is perpendicular to their common facet. This one-
to-one correspondence holds only when certain homological restrictions are placed on the
manifold, for example, whekhl1(A, Z>) = 0 [19]. Notice that the star of a cell satisfies this
condition. Given a-stressw, we can construdhe corresponding reciprocB(w, v) for the
star of each vertex. If two cellsC; andC, share a facé-, the sub-reciprocals dR(w, C1)
and R(w, Cp) corresponding td= are congruent. Nevertheless, whidfn(A, Zs) # 0, it is
generally not possible to construct a global reciprocal (see [19]). Now, one can taketfer
dual cell-decomposition*, an idea of which goes batt Poincaé ( for details see [17, 22]).

We construct a piecewise-linear realizatioradfarycentric triangulatiom D of the dual cell-
decompositiom*. Note that the barycentric triangulation of the original cell-decomposition
A is isomorphic to the barycentric triangulation &f [22]. We will denote byCx the cell

of A* dual to a cellC of A. After sucha dissection a celC* of A* can be regarded as
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a simplicial starT D(C*). Naturally, we wanto consider only special affine realizations of

T D(C*), namely those where the barycentric triangulation of dachll belongs to its affine
k-span. Note thaR(w, C), the subreciprocal o6t(C) corresponding to stress, defines an
affine realization of the barycentric triangulation@©f up to the location of the barycenters
for the k-cells (k > 0) of C*: T D(C*) lies in the affine span oR(w, C), and the vertices

of R(w, C) belong to the vertex set of D(C*). In this case one can introduce a natural
summation of volumes of the oriented simplexe<Cdf such that the sum does not depend
on the location of the baricenters of the cells (except for the vertic&*pf WhenC* is
embedded int®9 the result is the oriented volume 6f. That is why we call this function on
‘flat’ realizations of oriented cells of the dual decomposition siged generalized volume
Evidently, this function can be equally thought of as a function on reciprocals. Using the
orientability of A and Minkowski's theorend.1, we show in Sectiof that the generalized
k-volumes ofk-cells of A* can be interpreted as tleeefficients of{d — k + 1)-stresses on.

As it can be seen from this informal description, the main ingredients of our construction are
volumes, reciprocals, duality in homology manifolds, and the notion of orientability. In fact,
we suspect that our construction can be generalized for any dimerm,s[&q—lj <n <d,
thereby providing canonic polynomial mappings frtime space ofi-stresses to the spaces of
k-stressesy —n <k <n.

1.1. Notation. All complexes that we consider are polyhedra (simplicial complexes) from
the topological point of view. However, all theorems in this paper are stated for fixed decom-
positions of simplicial complexes into polyhedralls (also called blocks or simplicial stars

in combinatorial topology [17, 22]) which are not necessarily simplexes. We assume that all
complexes have at moatcountable number of cells. Cells of co-dimension 1 are referred to as
facets. We denote the star of a d8lby St(C), and thek-dimensional skeleton of a complex

K by SK(K).

We shall consider more general constructions than embeddings or immersions of cell com-
plexes into Euclidean space, suchpéscewise-lineatPL—throughout the textealizations.

Such general construction can be helpful, for example, for studying frameworks with bar in-
tersections, polyhedral scenes, splines over triangulations (in the planar case this point of view
was adopted in [6, 24, 26]; in the three-dimensional case such PL-realizations were considered
by Crapo and Whiteley in [€8]), and in the case of general dimension by Tay, White, and
Whiteley [24]. For gample, a Schlegal-diagram is a PL-realization of @ + 1)-polytope

P in RY obtained by the radial projection &f onto one of its facets. In all geometric dis-
cussions cell complexes will be considered as PL-realizations, rather than abstract combina-
torial objects.

Recall that one can identify an abstract combinatorial cell comjgfewith its embedding
into R24+1 (sinceKd is a polyhedron). More formally, a PL-realization of a combinatorial
simplicial complexC? ¢ R24+1 with a fixed decomposition into polyhedral cells is a contin-
uous PL-mapping of K% in RN (N > d) such thathe closure of each k-cell, ¥ 0, ....d
is embedded by r intBN as a ‘flat’ (lying in an affine k-subspace) k-polyhedron.

If A is a PL-realization of a polyhedron with a specific cell-decomposition, we shall fre-
guently abuse notation and make no distinction between the polyhedron, its cell-decompo-
sition, and the PL-realization. If we refer to the metric, projective, or affine properties of a
cell complex, these should be understood as the properties of its fixed PL-realization. How-
ever, when we consider the combinatorial or homological properties of a cell complex, we are
referring to its abstract combinatorial structure. We will often use the notion of link below.
Notice that in the case of a non-simplicial cell-decomposition, the link of a cell is defined
through the barycentric triangulation.
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A homologyd-sphere isa polyhedronP with the homology groups & standardi-sphere
such that for any-cell C of P the link of C has the homology groups of a standé&ld- n)-
sphere. A homologg-disk is a polyhedrorP with the homology groups of a standatetisk
such that for anyi-cell C of P the link of C has the homology groups of a standédd- n)-
sphere (ifC is interior) or disk (if C is the boundary). Aomology d-manifol@with boundary)
is a cell complex such that the link of eakitell, is either a homologyd — k — 1)-sphere (or
a homology(d — k — 1)-disk). A manifold is closed if each facet is adjacent to exactlydwo
cells. All statements in the paper are formulated for both closed manifolds and for manifolds
with boundary, unless stated otherwise. Since we consider manifolds from the combinatorial
point of view, a manifold is always understood to ba@nologymanifold. Throughout the
paper we include ‘good’ decompositionsiit (like, for example, weighted Dirichlet—\Voronoi
diagrams) into the class of homology manifolds.

2. STRESSES

Stresses on frameworks have a natural generalizatidastoesses on cell complexes of
higher dimensions (see Definitidhl). As in the case of frameworks, the linear space of
k-stresses can be characterized as the left spdkce of a geometric matrik M which is
constructed as follows. Léfly be the incidence matrix for the and(k—1)-cells ofK, where
the rows are indexed by tlkecells and the columns bk — 1)-cells. ThusMk(, j) = 1 ifand
onlyif Ck~1 acik, but is equal to 0 otherwise. The matiRdVi is obtained by replacing unit
entries ofMy by the corresponding positively oriented unit normal vectors, and zero entries by
the zero vector; these replacement vectors are taken to be row vectors. The left null-space of
R M is the space ofk + 1)-stresses (the vectors of this space have the number of components
equal to the number d&-cells).

The notion ofk-stress on simplicial complexes was introduced by Lee [13]. For a simplicial
complex &-stress can be interpreted ass@ment of a certain quotient of the face-ring of the
complexK. Let K be a simplicial complex ifRd, with vertex sew, ..., v,. Then, in Lee’s
terminology the space afffine kstresses oK is the linear subspace of polynomials of degree
k of R/V, whereR is the Stanley—Reisner ring &f, and V is the ideal generated by linear
forms>"; wkixi (k =1,...,d), and} ", x; (see [13, 24]). For a simplicial complé« in
RY our k-stress orK is the same as Lee’sfafe k-stress orK.. In fact, Lee considered two
types of stress: linear and affine. Lee formulated most of his theorems in terms of so-called
linear stresses. For generic realizationskoin RY the space of ouk-stresses is isomorphic
to the space of Lee’near k-stresses foK realized generically ifR4+2. The equilibrium
condition defining a linear stress says that the sum of norm@sC) weighted byw (C)
lies in the linear span df. Higher-dimensional stresses were also considered by Tay, White,
and Whiteley [24] and Rybnikov [19, 20]. Our terminology is in good agreement with the
terminology in these papers.

If fx denotes the number of simples of dimensiork in K, thengx andhy are defined as
follows:

k—1 .
_ k-1 d— ,
J==

k
(K. 0 =;)(—1>J+k<d_|1(> fis
J:

Let A be a simplicial homology sphere. For a generic realization af R9+1 the dimension
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of the space ok-stresses igk(A, d + 1), if k < 942 ], and 0, ifk > | 93] (see [13]); for a
generic realization oA in RY thedimension of the space kfstressess hy (A, d+1)[13, 24].
There is no similar algebraic theory of stres$asnon-simplicial manifolds. The main
barrier is the absence of an analog of the notion of a face ring for non-simplicial complexes.
The notion of stress can be defiend for PL-realizations of cell complexes where each cell
is realized in Euclidean space as a simplicial star with possible self-intersections. All results
of our paper hold for such realizations of cell complexes. L&tbe a cell complex where
a barycentric triangulation is fixed for each cell. F6¢, consider a PL-realizatioi 9 in
RN such that the triangulation of each c€llof K9 is realized in an affine subspace of di-
mension dimC). Pick a (combinatorial) orientation for eack — 1)-cell of K9, Denote by
n(S¥2, k-1 the unit normal to the oriented cell*~1 at its simplicial facetS*~2 whose
orientation is induced by the orientation 6~1. To define the notion ok-stress on such
realization ofK9 we have to formulate the equilibrium conditions for each simplex of the
barycentric triangulation of eadk — 2)-cell. However, it is easy to see that if the equilibrium
condition holds for one simplex @2, it holds for all other simplexes @2 (when we
pick anothertk — 2)-simplex from the triangulation aE*~2 all normals either change their
direction to the opposite, or stay the same).

DEFINITION 2.1. Areal-valuedunctionw(-) on (non-embedded, in general) orientke-
1)-cells of K9 is ak-stress, if for eacltk — 2)-simplexS¢—2 of each (internallk — 2)-cell

ck—2of K9

Y @€ HnE? ol (shH =0,

Ck—l
whereCk—1 ranges over all orientetk — 1)-cells such tha8<2 c 3 Ck-1, andS*1 stands
for the simplex ofCk—1 such thats—2 < 9«1,

To be precise we would like to make the following technical remarks.

REMARK 2.2. When we discuss stresses on polyhedral stars we neglect the absence of the
equilibrium at the cells that belortg theboundary of the star.

REMARK 2.3. The notion of stress is well defined for fans and cell-decompositioR§ of
with non-compact cells. In this caskee wlumes of(k — 1)-cells should be left out of the
formula, and a stress coefficient no longer has the meaning of force per unit relative volume
(area).

3. ORIENTABILITY AND GENERALIZED VOLUME

In this sectioriRY denotes Euclidean affine space with a fixed coordinate system. Consider
an oriented, simpliciald — 1)-manifoldA realized inRY. We introduce a generalized volume
function, Voly, which assumes positive, negative or zero values on such manifolds. In the
case where the manifold bounds al-dimensional body, and the orientation£fis chosen
appropriately, VQJ(A) is the standard Euclidean volume of the body. Eet (vy, ..., vq)
be an orientedd — 1)-simplex inRY. We denote byvi(F) —p, ..., vq(F) — p] the matrix
whose columns aré-vectors pointing from poinp € RY to the vertices oF .

DEFINITION 3.1. LetA be a closeariented simplicial manifold of co-dimension 1Rf'.
Then
1
Volg(A) = 5 ) detiva(F) —p, ..., Va(F) — p]
"FcA
where the summatioranges over all oriente@ — 1)-faces ofA.
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AN

FIGURE 4. Two realizations of a star.

The value of Vaj(A) is independent of the the choice of pomtThat is why it is normally
written forp = 0. This formula can be rewritten as

1
Vola(A) = 5 > d(p, aff(F))Vola-1(F, p) @
FeA

whered(p, aff(F)) stands for the distance betwegeand theaffine hull of F. The generalized
(d — 1)-volume Vol_1(F, p) is computed with respect to the orientation of &ff(induced
by the vectow; (F) — p (i is arbitrary), i.e., with respect to an orthonormal coordinate frame
[e1...e4—1] in aff(F) such thafv;(F) — p, e1...ey4_1] is positively oriented inRd.

LetS9-1 be an oriented simplicial sphere, andiebe a cell-decomposition &@—1 which
is the result of an amalgamation of some of the simplexé&¥'ot into blocks (see Sectioh
and [17, 22]). Consider a realization of the simplicial com#&x! in RY such that each block
lies in the affinespan of its vertex set. For example, a block can be realized as a convex poly-
tope partitioned into simplexes or as a simplicial star with self-intersections (see Bigure
Then Vol (S9-1) does not depend ahe positions of the baricenters of the blocks of all di-
mensions greater than 0; this can be shown by inductiah the case ofl = 1 is obvious.
The induction step follows from an application of Formala

In Section6 we will use the following obseation.

REMARK 3.2. LetB be ad-dimensional cell complex suc¢hat theclosures of all its faces,
including B, are cones over homology spheres. In other w@ds a homology ball. An ex-
ample of such a complex would be a convex polytope. Suppose a barycentric triangulation
of B is realized inRY so that the affine dimension of the vertex set of each ceB efjuals
the dimension of this cell (the cell structure of a convex polytope would serve as a simple
example). Then the generalizdesolume of the boundary 0B does not depend on the posi-
tions of the baricenters of its faces, provided the baricenter of each fa&&ted in the affine
span of the vertex set of this face. We call the realizations of these baricenffsvirtual
baricenters.

For discussion of the algebraic properties of the generalized volunaéSYol') as function
of the edge lengths see [5].
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4., COMBINATORIAL DUAL GRAPH AND RECIPROCALS

Let F(V, E) be a framework realized iR2, and assume that grap¥, E) can be regarded
as the 1-skeleton of a spherical complexSuppose that this framework is in a state of static
equilibrium. Consider a vertex df (V, E). The sum of vectors of stresses applied to this
vertex is equal to zero; therefore, when rotated eldckwise they form a polygon (self-
intersecting in general). It was first noticed by Maxwell (and proved by Whiteley [26]) that
the positions of rotated edges Bf(V, E) can be adjustedo that they form a reciprocal
graph (often called simplseciprocal). Each edge of this reciprocal corresponds to an edge of
F(V, E) and each vertex to a cell @&f. One can introduce a similar notion for PL-realizations
of d-manifolds inRY (for more information see [2, 8,19, 28]). In this section we will ex-
plore connections between thestresses and the generalizationvdixwell’s reciprocal for
d-manifolds.

Thecombinatorial dual grapig (MY) of a manifold MY is defined as follows. The vertices
of G ared-cells of MY, and the edges @ are internald — 1)-cells of M4. Two vertices
share an edge if and only if the correspondiagells are adjacent.

A reciprocalof a PL-realizatiorM of a manifoldA in RY is a rectilinear realizatio in RY
of the combinatorial dual grapfi(A) such that the edges & are perpendicular to the cor-
responding facets. If none of the edges of a reciprocal collapses into a point, the reciprocal is
called non-degenerate. Reciprocals were originally considered by Maxwell [15] in connection
with stresses in plane frameworks. Hed almost at the same time, L. Cremona [9] noticed
that reciprocals corresponded to equilibrium stresses oreletsks of polyhedral spheres
drawn in the plane. Reciprocals were later studied in [2,6, 7,21, 26]. Crapo and Whiteley
gave an explicit treatment d¢he theory of reciprocals, stresses and liftings for 2-manifolds
in [6-8].

To illustrate the concept of reciprocal les consider the case where the realizatibiis an
embedding. Lev(C1) andv(C,) be vertices of a reciproc&® corresponding to adjacedt
cellsCy andC,. Call the edggv(C2)v(Cy)] properly orientedf v(C,) — v(Cy) is cooriented
with an outer normal t&€; at the facet shared wit,. Otherwise cal[v(C2)v(C1)] improp-
erly oriented. A hexagonal reciprocal for the embedded star of a vertex in a 2-manifold is
shown in Figures. One can see that edgef cd are improperly oriented, and edgels, cb,
de, and f a are properly oriented). If all edges Bfare properly oriente® is called a convex
reciprocal (since the cycles & corresponding to the stars of the — 2)-cells are convex in
this case).We refer to reciprocals of stars of the manifold as local reciprocals.

Evidently, reciprocals with one fixed vertex form a linear space. Denote this complex by
RecM). If M is an embedding, then convex reciprocals form a d@Rec(M) in the linear
space Red{l). The following theorem by Rybnikov [19] explains connections between recip-
rocals and stresses in the case of gerdiménsion. We will utilize this theorem in the proof
of our main theorem from Sectidh

THEOREM4.1. Let M be aPL-realization of a homology d-manifoldl in RY with triv-
ial first homology groupverZ/27Z. Then there is an isomorphism betweékresg(M) and
RecM). Non-zero coefficients of stresses correspond to non-vanishing edges of a recipro-
cal. If M is an embedding oA into RY, then one can interpret properly oriented edges
as corresponding to tensed facets, and improperly oriented edges as corresponding to com-
pressed facets.

Let B be ad-dimensional cell complex which is the cone over a homology sphere (not
necessarily simplicial). Obviousl¥3 \ 9B can be regarded as a st Let R be a reciprocal
for Stand denote byR(C) a sub-reciprocal oR corresponding to a facé € St. The vertex
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FIGURE 5. Non-convex reciprocal.

set of R is a realization of therertex set of a complex dual t8t Denote it by St*. For

each cellC (k = 1 < dim(C) < d) of St* choose an arbitrary pointbc(C, R) on the
plane affR(C)), and call it thevirtual baricenterof R(C). The vertices oR and the points
vbec(C, R), k = 1 < dim(C) < d define a PL-realization o8t*. We know from Remark

3.2 that if a barycentric triangulation dbt* is realized inRY so that the affinalimension

of the vertex set of each cell @t* equals the dimension of this cell (the cell structure of a
convex polytope would serve as a simple example), then the generalized volume of oriented
simplicial sphered St* does not depend on the positions of the virtual baricenters of its faces,
provided the virtual baricenter of each faceSif lies in the affine span of the vertex set of
this face. We can sum up this observation in the following proposition which will be of great
use in the following section.

PROPOSITION4.2. Let R be aeciprocal for an oriented d-dimensional star St realized in
RY. Then the generalized volurively (R) is well defined.

5. MINKOWSKI'S THEOREM AND STRESSES

In this section we give an application of the well-known Minkowski theorem (see, for ex-
ample, [32]) to stresses on polyhedral partition&8f

THEOREMS5.1 (Minkowski). Let P be a convex polytope iR9, and denote byn(F)} the
inner unitnormals to facets of P. Then

> volg_1(F) n(F) = 0.

FcaP

Notice, that Minkowski's theorem has a well-known physical interpretation: a convex poly-
tope immersed floating in a fluid is in a static equilibrium if and only if the sum of inward
forces applied at its facets is zero. This fact was already known to Rankine in 1864.

If we choose a (combinatorial) orientation fBrand denote by VgL 1(F, n(F)) the gen-
eralized volume of an oriented facEtwith respect to the orientation of aff) induced by
n(F), then the above formula can be rewritten as

Y~ Volg_1 (F.n(F)) n(F) =0.

FcaP
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Notice that in the last formula the directions of normal&) need not agree, since ol (F)
is computedvith respect to the orientation induced bgf). Flipping the normal changes the
sign of Voly_1(F).

Let St(v) be the star of a vertexin a polyhedral partition oR9.

DEFINITION 5.1. Adual conve polytope of St) is ad-dimensional polytope in RY
satisfying the followingconditions:

(1) There is a one-to-one correspondefdeetween then-dimensional faces dD and the
(d — m)-dimensionafaces ofSt(v) (0 < m < d).

(2) If DS c D! are faces ofD corresponding to faceB9—S and F9-t of St(v), then
Fd-t ¢ F9-S |n other words, the mapping induces an isomorphism between the
face lattices oD and St(v).

(3) For 0 < m < d eachm-dimensional face oD is perpendicular to the corresponding
(d — m)-dimensional face o6t(v).

(4) SK(D) is a convex reciprocal graph for the s&i(v) (see Sectiod).

The conexity of the duapolytope immediately follows from Conditions 1—4. It is worth men-
tioning that the dual polytope does not always exist (see [19] for various necessary and suf-
ficient conditions). Suppose that there id-tensionw on St(v)(all coefficients ofd-stresses

are strictly positive). In this case by results @8] and [21] there is a convex polytofig(w)

dual to St(v). Thed-tensionw defines suclpolytope uniquely up to translation: the lengths

of the edges oD (w) are equal to the corresponding coefficientmoBy the Minkowski the-

orem cited above the sum of facet normals of a convex polytope scaled by the facet volumes
is zero. Therefore, one can interpret the volumemdhices, 1< m < d — 1, of D(w) as
coefficients of(d — m+ 1)-stresses ofd — m)-dimensional cells o6t(v). Thus, ad-tension

on the staiSt(v) induces arfd — m)-tension orSt(v), 1 < m < d—1. Itis easy to see that the
constructed mappings are polynomial. Nowddie ad-tension on a cell-decompositiaxof

RY. We just described how induces tensions of lower dimensions on the stars of all vertices
of A. In fact, for anyk < d the stresa induces &-tension onA. If F is a(k — 1)-face ofA,

then the restriction ab to the staiSt(v) of a vertexv of F defines the coefficient dtension

for F. If uis another vertex of, then the restriction of to St(u) gives exactly the same
values of the induceki-tension onF, since the faces of the dual polytopesSifv) and St(u)
corresponding td¢- are equal (up to translation).

PROPOSITION5.2. Let A be a cell-decomposition ¢4 polyhedral region inRY. For k =
1,...,d — 1there is a polynomial mapping of degree-ck + 1 from the cone of d-tensions
on A to the cone of k-tensions ak. An all non-zero d-tension is always mapped to an all
non-zero k-tension.

By construction, al-tension is mapped to a 2-tension on the 1-skeletofv:of

COROLLARY 5.3. Let G be thel-skeleton of a cell-decompositianof RY by convesxpoly-
hedra. If there is a convex surface which projects afttdhen G supports a positive equilib-
rium stress at all edges and, therefore, is an infinite spider web.

It turns out that the mappings from Propositis2 can be extended from the cone of ten-
sions to all of the space af-stresses, anthe above construction can be carried out for arbi-
trary PL-realizations of orientablg-manifolds (not necessary embeddings). In order to for-
mally establish this, we will need the concept of generalized volume introduced in Sa&ction
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The Minkowski theorem can be formulated for simplicial spheres arbitrarily realized in
RYand, as we will see in SectioB, even for a larger class of polyhedral (not necessarily
simplicial) spheres realized iRY with self-intersections.

We need thdollowing lemma.

LEMMA 5.4. Let A be an oriented simplicial manifolcerlized inRY. For each oriented
(d — 1)-simplex F pick a unit normal vector(aff(F)), and letVolg_1(F, n(aff(F))) be the
generalized volume of F computedafi(F) equipped with an orientation induced hyF).
Then

>~ Volg_1(F. n(aff(F)) n(aff(F) = 0.
FcA

PROOFE The orientation ofA induces an orientation on a condth A as baseThus if F;
andF, are two adjacentd — 1)-faces ofA, the orientations of the cone over their common
facet are opposite. Therefore the above formula can be rewritten as

ooy Volg_1(s91, n(aff(s?~1)) n(aff(s?—1)) = 0.

FCAsd-1cy0-F

wheres?-1 stands for a facet of the cofle F, andn(aff(sd—1)) is an arbitrary unit normal
to hyperplane aff&1). Applying Minkowski’'s theorem to eacti-simplex0 - F we get the
required formula. O

The interplay between stresses and volumes for simple and simplicial convex polytopes was
also discussed by McMullen [18] and Lee [13].

6. TRACES OF d-STRESSES INLOWER DIMENSIONS

REMARK 6.1. LetA be an orientable homology — 1)-manifold in Euclidean spacef
dimensiond. An orientation ofA induces the orientation of normals to at the cells of
maximal dimension by the following rule. L&b1(S), ..., vg(S)) be an oriented simplex of
A. If frame[vi(S), ..., vq(9)] is positively oriented, then the corresponding normaktat S
has positive scalar product with all these vectors. Conversly, a consistent choice of the field of
normals toA at their simplexes of maximal dimension determines an orientatian @.g.,
outer normals for a convex polytope; see Figbye

In the case of an orientabtemanifold it is possible to fix the orientation of cells so that
they form ad-cycle. By the above remark such orientation of cells induces the orientation of
frames of normals corresponding to flags of cells. Thua, i§ an orientable-manifold inRY
and the orientations af-cells are picked up in such a way that it turhdnto ad-cycle, any
two flags of equal length havirdycells as maximal elements and distinct at only one position
have corresponding frames of opposite orientation. A face-to-face partitiBfl pfovides a
transparent example. Each of the two possible orientations of the partition correspond to flags
of either inner or outer normals.

THEOREM®6.2. Let A be an orientable homotyy d-manifold realized ifiRY. Then for k=
1,...,d — 1 there is a polynomial mappingk of degree d— k + 1 from Stresg(A) to
Stresg(A).

PrRoOFE For a cell-decomposition of a homology manifold there is so-called dual cell-
decomposition (also called dual block decompositig@)nsider thebarycentric triangula-
tion T(A) of the original cell-decomposition. Each cell of the original decomposition is a
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FIGURE 6. Orientation.

simplicial star in the barycentric triangulatiofhe (d — k)-simplexes ofT (A) sharing the
baricenter of &-cell C form thedual cell (also called a block) faE. This dual cell is a ho-
mology (d — k)-disk. The boundary of the dual cell is a homology sphere (for more details on
the geometrical duality in homology manifolds see [17, 22]).

Let v be a vertex ofA, andlet D, be thed-dimensional cell (block) corresponding¢dn
the dual decomposition af. Obviously, the boundary dd, is the linkLk(v) of v in A. Each
cell of A or A* is itself an orientable homology manifold, namely a homology disk. Thus, an
orientation of triangulatio (A) induces in a natural way orientation on cell complexes
andA*.

Let Rbe a (Euclidean) reciprocal f&t(v) C A (see Sectiod). By Theoren#.1, the linear
space ofi-stresses 0Bt(v) is naturally isomorphic tthe space of reciprocals with one fixed
vertex. It turns out that one can introduce the notion of generalizedlkme’ (k=0, ..., d)
for the sub-reciprocals dR, corresponding to the stars of cells®f(v) (we refer to them as
‘faces’ of R). It is natural to call this function thevolume, because when a reciprocal can be
regarded as the vertex set of a conkepolytope, the absolute value of this function is equal
to thek-volume of the polytope. We keep the same notation fokdwvelume of a reciprocal
that we used for generalized volumes, i.e. ol

Let C9K be a(d — k)-cell from the (open) star af. Obviously, St(C9%) ¢ St(v). The
subreciprocaR(C9—¥) of R corresponding to this star spans an affiqglane perpendicular
to C4—k, R(CY47%) can be regarded as a realization of the vertex set of a cel*adual to
CY9-K, Thus, it makes sense to talk about the (combinatorial) orientati®(@f¥). Recall
that ak-cell of the dual decomposition corresponds t@a- k)-cell of A. Choose a flag of
full length in C9-K. This flag corresponds to some simplxf T (A) whose vertices are the
‘baricenters’ of the flag cells. Denote B thek-cell of A* dual toC9~K. The iterative coning
of CX with vertices ofS is a cell from an amalgamation of the triangulatidiiA*). This
amalgamation consists of (non-simplicial, in general) blocks of the figy - (vg—k - cky)
constructed by thed — k)-fold iterated coning ok-cells of A*: hereCK is ak-cell of A*,

{vo, ..., vg—k} is the set of barycenters corresponding to a flag of full length of the cell of
A dual toCK, andw; - (...) stays for the cone with apex over base...). Note that the
orientation of T(A) = T(A*) induces an orientation oty - - - (v4—k - C¥). Therefore, the
choice of a flag irC4—* determines an orientation f@X.
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A flag of faces ofC4—K corresponds to an ordergd — k)-tuple of normalgto the faces
of C4-%, Denote it by[N]. This (d — k)-tuple induces an orientation of affine subspace
spanned byR(CY-¥) by the following rule. A frameN’ in aff(R(C9K)) is said to be coori-
ented with the frameN ] if [N, N’] is cooriented with the coordinate framelf. Therefore
Volg_k(R(CY97%) is well defined provided a flag of cells 69— (see Sectior8) has been
fixed. We have tshow that Voj_i(R(C9~%)) does not depend on the choice of flagifi k.

Itis enough to show that for two flags @K that differ in one position the VL (R(C9—K))

is the same, since any two flags@{~* can be connected by a sequence of alterations. Ob-
viously, two flags that differ in one position induce opposite combinatorial orientations on
R(CYK). But on the other hand it means that tite— k)-tuples of vectors corresponding

to these flags have opposite orientations. Thus the generalizelime of R(CH4¥) is well
defined and does not depend on the choice of a flag of fac@%ik.

Let w be ad-stress onA. Since the star of &d — k)-cell of A is a homologyd-disk, a
d-stress restricted to the star of a vertex generakedimensional reciprocal for this star (see
Sectiond). The distance between two vertices of the reciprocal corresponding to two adjacent
d-cells equals the absolute value of streagheir common facet. L&R(C) be the reciprocal
of the star of 8d — k)-cell C corresponding to the stress Let us interpret Vd(R(C)) as the
value of(d — k + 1)-stress oI€ (recall that(d — k)-cells beard — k + 1)-stresses). We have
to check the equilibrium condition at evef@ — k — 1)-cell of A. Let F be a(d — k — 1)-cell
of A. Construct the reciproc&(F) for St(F) corresponding to thd-stresso. Notice that if
F c C, then the sub-reciprocal &(F) corresponding to the star 6fis equal toR(C) (up to
translation). Len(F, C) denote the fixed unit normal © at F whose orientation is induced
by the orientation ofA as it was explained in the beginning of this section. In the case where
A is embedded int&Y we can think of(F, C) as an inward unit normal:

> Volk(REC).n(F.CHn(F.C)y= > > Vol(S n(F,C)n(F.C)

{CIFcC} {R(C)| FcC} ScC

whereSis an orientedd — k)-simplex from a barycentric triangulation &(C) arbitrarily
realized in affR(C)). By Minkowsi’s theorem the last quantity is always zero. O

REMARK 6.3. Recall our assumption that each cell has an underlying structure of a simpli-
cial star. The abawtheorenstill holds if the cells are not embedded, but realized as simplicial
stars with self-intersections in such a way that the triangulation of each cell lies in the affine
plane spanned by this cell.

One way to show this is as follows.

PROOF One can extend@stresso on A to a stress on the PL-realizatiohits barycentric
triangulationD (A): setw(S~1) = 0 for any(d — 1)-simplexS?—1 which does not belong to
the triangulation of &d—1)-cell of A, and seto (S%-1) = w(CY9~1) if Sis a(d—1)-simplex of
a(d—1)-cellcd-1, All simplicial cells of the barycentric triangulation are, indeed, embedded.
Reorient (if necessary) altl—1)-simplexes in the barycentric triangulation so that the positive
direction of normal is always inwards. The spaceledtresses of the reoriented complex is
isomorphic to the original space dfstresses. This reorientation is required, because we want
to use the definition of stress for complexes with embedded cells. By Thebfethere is
a corresponding reciproc&(s) for D(A). Now, we can define the polynomial mappings
pk for D(A). By construction of the reciprocal, (geometric) cyclesRif») corresponding
to simplexes that belong to the same cell are congruent. Consideral)-cell C of A.

The constructedt-stressgk (w) takes on the same values on any tko- 1)-simplexes ofC



Stresses in PL-manifolds 815

that can be connected by a cell-facet pattkef 1)-simplexes o€, such that anywo adjacent
simplexes do not overlapk(w) takes on opposite values otherwise. Therefai@) can be
regarded as k-stress on the original cell-partition of. a

Another way to prove the theorem for the case of self-intersecting cells is to directly adopt
the proof of Theoren®.2. The only use of the notion of the inner/outer normal in the proof
of Theorem6.2 was when we geometrically defined theentation of the cells of the dual
partition A*. In the general case we justigato pick some combinatorial orientation far.

The rest of the proof is virtually unchanged.

As explained in the proof of Theoref2, a Euclidean reciprocd can be naturally re-
garded as the 1-skeletafia PL-realization of the dual partition @&. To define the realiza-
tion completely we just have to specify the positions of the baricenters of the cells of the dual
partition. Now, we can ask the same questions about liftings, reciprocals, and stresses about
the PL-realization of the dual partition. Notice, that in studies of liftings, stresses, and recip-
rocals the positions of the baricenters are not important. The above generalization is natural,
since the class of PL-realization where each cell is realized as a simplicial star is closed under
duality, whereas a dual complex for a PL-realization with embedded cells can have cells with
self-intersections.

One should notice that the orientability afis essential for our construction. Only in the
case of orientable manifold the constructed mappings can be correctly defined.

Since the generalize@ — k + 1)-volume ofR can be expressed (non-uniquely) as a homo-
geneous polynomial of degrele— k + 1 in the (oriented) lengths of the edgesRfand the
absolute values of the edgesR®Equal to the absolute values of correspondirgiresses (see
Section3), the constructed mappinggsfrom Stresg(A) to Stresg(A), k=1, ...,d—1are
polynomial of degree — k+ 1. The coefficients of these polynomials depend on the geometry
of A. According to Connelly, Sabitov, and Waltz [5] the 3-volume of an orientable simplicial
2-surface inR3 is an algebraic integerver the ring generated by the squared lengths of the
surface edges. It means thatifis ad-stress on @& — 2)-primitive orientedA, the value of
(d —2)-strespg_2(s) on each(d — 3)-cell of A is an algebraic integer over the ring generated
by the squared values afon the(d — 1)-cells of the star of this cell. It would be interesting to
know if there are any implications of this fact for the algebraic geometry of our mappings

There are other canonical mappings between the spaces of stresses of different dimensions.
For instance, according to Stanley [23] and Lee [13], for homotbgpheres ifR9 the space
of k-stresses has the same dimensiothaspace ofd —k+1)-stresses, K < Ld—erlJ. Thisis
due to the existence ofatural isomorphisms between the spacdsstfesses an@ —k+1)-
stresses. These isomorphisms play an important role in Stanley’s and McMullen’s proofs of
theg-theorem [18, 23]. They are linear (see [13, 23]), whereas our mappings are not; ours are
polynomial. In general, our mappings aret bijective since for a generic realization of a sim-
plicial sphere ifR® the dimension of the space of 2-stresses may exceed the dimension of the
space of 3-stresses. For example, using the results of Lee [13] one can show that for a generic
realization inR3 of the boundary of the four-dimensioneioss-polytope dirfStress) = 6,
but dim(Stress) = 4. In fact, in some sense, our mappings are almost never bijective.

7. STRESSES ONFRAMEWORKS

Maxwell [15, 16] discovered the ‘convex stress’ induced by projection of a convex polytope
on the plane (see Figurg). Crapo and/\hiteley gave a rigorous treatment of Maxwell’s
theorem [6, 26, 27].
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FIGURE 7. Maxwell’s convex stress.

THEOREM 7.1 (Maxwell). The vertical pojection of a strictly convex polyhedron, with no
faces vertical, produces a plane framark with a stress that is negative on the boundary
edges and positive on all edges interior to this boundary polygon.

Now we can formulate a partial analog of Maxwell’'s theorem on convex stresses and pro-
jections of spatial polyhedra. It immediately follows from our main theorem.

THEOREM7.2. Let P* be a strictlyconvex polytope iiR* without vertical faces, and let
G be theprojection of Sk(P#) ontoR® c R*. Then G supports a stresswhich is positive
on all edges of G that are in the interior of the projection. If all the edges bttt project
on the boundary of the projection are incident to exactly ti8eells of P*, then in addition
w is negative on all edges of G that are on the boundary of the projection.

PrROOF The vertical projection of our polytope® induces the realization of its comple
in R3; denotethis realization byP3. Using our main theorem, we construct the mappipg
Stress(P3) — Stress(P?3) for the realizatiorP3. P* can be thought of as the union of two
polyhedral ‘lids’: the upper one and the lower one. These lids share common boundary. The
upper lid is convex down, the lower lid is convex up. Obviously, since the upper and the lower
lids are convex, the reciprocals for the ‘interior’ (with respect to the body of the realization
P3) edges ofP2 are convex (1-skeletons of convex polytopes); it is easy to see that they must
have the generalized 2-volumes of the same sign. The reciprocals of the ‘boundary’ edges
need not be convex; however, if a ‘boundary’ edge has a simplicial reciprocal, its volume
ought to have the sign opposite to signs of the volumes of the reciprocals of the ‘interior’
edges. Therefore, if all the edges Bf that project on the boundary of the projection are
incident to exactly three 3-cells &*, then the reciprocals of the ‘boundary’ edgesSfare
all triangles and their generalized 2-volumes have the same sign. Thus, in this special case the
‘interior’ edges bear negative stress. O

Theorem?.2 can be formulated in the case of general dimension. The proof repeats one-
to-one the arguments of Theoref®2; noticethat (d — 1)-simplexes in the reciprocal of the
projectionplay the role of triangles.
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THEOREM7.3. Let P9 be a strictlyconvex polytope ifR? without facets parallel to g
axis. LetG be the projection of SkPY) onto{xg = 0} c RY. Then G supports a self-stress
o which is positive on all edges of G that are in the interior of the projection. If all the edges
of P9 that project on the boundary of the projection are incident to exactly d facets!pf P
then, in additionw is negative on all edges of G that are on the boundary of the projection.

After the paper has been accepted for publication Robert Connelly told the authors that the
above Theorem 7.2 has important applications to Lovasz’s theorem on connections between
the Colin de Verdiere graph matrices and Steinitz's theorem on graphs of convex 3-polytopes.
(see [11, 14] for interesting new prospectives).

Recall, that Maxwell’s correspondence states alsoahgtequilibrium stress can be inter-
preted as one induced by the projection of a spatial polytope. At the CMS winter meeting of
1998 Connelly asked if the following conjecture is true for our correspondence.

CONJECTURE7.4. Let M3 be a homolgy sphere realized iiR® and letw, be a stress
(2-stress)on thel-skeleton of M. There is a3-stresswz on M3 such thap(ws) = w».

As was mentioned in the Introduction, the generic realization of the boundary of the four-
dimensional cross-polytop®, provides a counterexample. According to Lee [13] dim
(Stresg(04)) = 4, butdim(Stress(0O4)) = 6 (stresses on a framework are 2-stresses).
Since the mappings are algebraic the image of the space of 3-stresses cannot cover the space
of 2-stresses. It would be interesting to give a geometric or algebraic (in the simplicial case)
interpretation for those 2-stresses that can be interpreted as the images of 3-stresses under the
above mapping.

A cell-decomposition of a closedtmanifold is calledk-primitive if the star of eaclk-cell
hasd — k + 1 d-cells (some authors call O-primitive decompositisimaple; our terminology
goes back to Voronoi and Delaunay). The meaning of this definition is that in a decomposition
of RY by convex polyhedrag — k + 1 is the minimal possible number dfcells making
contact in ak-cell. When ak-primitive cell-decomposition of\19 is assumed to be fixed,
we will refer to thisk-primitive decomposition of\1% ask-primitive manifoldMY. If a PL-
realization of a spher&? in RY can be lifted to a convex polytope &t1, then 0-primitive
vertices ofS9 correspond to simple vertices of this convex polytope. The notidrpfmitive
decomposition naturally arises in studies of space-fillers, lattice polytopes and sterechedra.
For example, the affine equivalence between space-fillers and Dirichlet domains of lattices
was proved by Voronoi only for O-primitive (simple) tilings. The existence of a lattice Dirichlet
domain which is affinely isomorphic to a space-filléris equivalent to the existence of a
d-stress with some special symmetries on the lattice tiligg) by IT (Voronoi) [19, 21, 25].

A spider wehbis a framework (with ertices at infinity usually allowed) supporting a stress
strictly positive on all edges. Spider websRA naturally appear from projections of convex
surfaces. Planar and spatial spider webs serve as a tool for investigating various problems
about dense packing of equal ballsfiA andR3 [1, 6, 7]. There are interesting applications of
the theory of stresses in framewotkgphysics, chemistry and engineering (see[1, 3, 6, 7, 30]).
Since anyd —3)-primitive decomposition oR¢ is the projection of a convex surface [19, 21],
we have the following corollary

COROLLARY 7.5. The1-skeleton of (d — 3)-primitive decomposition dk9 by corvex
polyhedra is always a spider web.

For closed manifolds a similar statement is as follows.
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COROLLARY 7.6. Let M be arealization inRY of a (d — 3)-primitive manifoldA with
trivial H1(A, Z2). Suppose the bodi | of this realization is convex and M is a double cover
of int |M|. Then thel-skeleton of M admits a convex stress.

PROOF By Rybnikov’s theorem [19, 201 can be lifted to a corex polytope inR9+1. By
Theorem?7.3the vertical projection ofhis polytope orRY induces a stress on the 1-skeleton
of M, positive on the ‘interior’ edges, and negative on the ‘boundary’ edgé4.of O

CONJECTUREY.7. Let A be an oriented simpliciahomology d-manifold. Then for any
realization of A in a generalposition inRY mappingspk, k = 1, ...,d have Jacobians of
rank min(dim Stresg(A), dim Stresg(A)) at almost all pointsy € Stresg(A).

One can ask about generic properties of the mappingsly if the combinatorial structure
of A is preserved under any small perturbations of the coordinates of its vertices. In addition
to the simplicial case, it is also true wheh= 2 and whenA is O-primitive (simple). It
is plausible that in the last two cases, for general realizations die mappinggx have
Jacobians of maximal possible ranks.

A stronger form of the above conjecture is as follows.

CONJECTURETY.8. Let A be a closed orientedimplicial homology d-manifold. Then for
any realization ofA in a geneal position inRY mappingsk, k = 1, ..., d are injective.

A necessary condition for our Conjecturé.7 about the Jacobians opy's is
dim(Stresy) < dim(Stresg) for k < d. Below we give a count that demonstrates that this
condition holds fok = 2 (i.e. when al-stress is mapped to a stress on the 1-skeleton). The di-
mension of the space dfstresses on a simplicidtpseudomanifold ifRY is at leastfo—d —1
(follows from [4]) and is equal tdp — d — 1 if A is a manifold withH1(A, Z2) = 0[19]. By
the result of Fogelsanger [1f6e 1-skeleton of a generic realization al-pseudomanifold in
RI+1 s statically rigid. It means tha8kl(A) can resolve any external loadRf'+1 (see the
Introduction). Thus dimStress(A,d +1) = f1 — (d + 1)fo+ (“3%) = g2(A,d +1) > 0
(the lower bound theorem for general simplicial pseudomanifolds).

For Conjecturé’.7to be true, it is necessary that

dim Stress(A, d) > dim Stresg(A,d) = fgo—d — 1.

Let us verify this: dim Stress(A,d) — (fo —d — 1) = f; — (d + Lo + () =
dim Stress(A,d + 1) = g2(A,d + 1) > 0, as shown above. For connections between
the rigidity theory and the lower bound theorem see the paper of Kalai [12].

ACKNOWLEDGEMENT

The authors would like to thank Robert Connelly, Walter Whiteley, and an anonymous ref-
eree for helpful comments on the paper. The second author gives especial thanks to Walter
Whiteley who has thoroughly read the manuscript and suggested ways to improve the pa-
per. The work of R. M. Erdahl was supported in part by grants from NSERC. The work
of K. A. Rybnikov was supported in part by Fields Graduate Scholarships. The work of S. S.
Ryshkov was supported in part by grants from Russian Foundation for Fundamental Research.



11.
12.
13.

14.
15.

16.
17.
18.
19.
20.
21.
22.
23.
24,
25.

26.
27.

28.

Stresses in PL-manifolds 819
REFERENCES

. P. Ash, E. Bolker, HCrapo and W. Whitely, Convex polyhedra, dirichlet tessellations, and spi-
der webs, inShaping Space: A Polyhedralpproach, M. Senechal and G. Fleck (eds), Birka-
hauser, Boston, 1988, pp. 231-250.

. F. Aurenhammer, A criterion for the affine equivalence of cell complexésdiand convex poly-
hedra ian+1, Discrete Comput. Geoni2,(1987), 49—64.

. J. Baracs, Spatial perception and creativity, Bhaping Space: A Polyhedral Apprdeac
M. Senechal and G. Fleck (eds), Birkahauser, Boston, 1988, pp. 231-250.

. L. Billera, Algebra of continuous piecewise polynomidslv. Math.,76 (1989), 170-183.

. R. Connely, I. Sabiteand A. Walz, The bellows conjectur€pntrib. Algebra Geom38 (1997),

1-10.

. H. Crapo andW. Whiteley, Plane stresses and projected polyhedra 1: the basic p&terct,
Topology,19 (1993), 55-78.

. H. Crapo and WWhiteley, Spaces of stresses, projections and parallel drawings for spherical
polyhedraContrib. Algebra Geom35 (1994), 259-281.

. H. Crapo and W. Whiteley3-Stresses in 3-Space and Projectionslé?olytopes: Reciprocals,
Liftings and Parallel Configurations, York University, North York, Ontario, 1994, preprint.

. L. CremonaGraphical Static{English Translation, Oxford Unérsity Press (1890)), 1872.

. A. Fogelsanger, The generic rigidity of minimal cycles, Ph.D. Thesis, Department of Mathematics,

Cornell University, Ithaca, Nework, 1988.

http://www.math.cornell.edu/~connelly/seminar.html.

G. Kalai, Rigidity and the lowebound theorem linvent. Math. 88 (1987), 125-151.

C. W. Leeand P. L.-Spheres, Convex polytopes, and stiesgrete Comput. Geomil5 (1996),

389-421.

L. Lovasz,Steinitz representations of polyhedra and the Colin de Verdiere number, preprint, 2000.

J. C. Maxwell, On reciprocal diagrams and diagrams of for&dsl. Mag., Ser. 427 (1864),

250-261.

J.C. Maxwell, On reciprocal diagrams, frames and diagrams of foficass. R. Soc. Edinburgh

26(1869-72), 1-40.

J. R. MunkresElements of Algebraic Topologiddison-Wesley, 1984.

P. McMullen, Weights on polytopeBjiscrete Comput. Geoml5 (1996), 368—-388.

K. A. Rybnikov, Stresses and liftings of cell-complex&iscrete Comput. Geom21 (1999),

481-517.

K. A. Rybnikov, Polyhedral partitions and stresses, Ph.D. Thesis, Queen's University, Kingston,

Canada, 1999. Anonymous ftp://mast.queensu.ca/rybnikov/thesis.ps.

S. S. Ryshkv and K. A. Rybnikov Jr, Generatrissa: the problems of Maxwell and Vorda.

Math.,54(1996), 614-617 (Translated frookl. Akad. Nauk49,(1996), 743-746.)

H. Seifert and W. ThrelfallA Textbook of TopologyAcademic Press, New York, 1980.

R. P. Stanley, The number of faces of a simplicial convex polytdge, Math. 35 (1980), 57—-83.

T.-S. Tay, N.White and W. Whiteley, Skeletal rigidity of simplicial complexds,2, Europ. J.

Combinatorics16 (1995), 381-403503-523.

G. F. Voronoi, Nouvelles applications des pagders continus la theorie des formes quadra-

tiques, Dewx@memémoire,J. Reine Angew. Math1,34(1908), 198-287;136(1909), 67-178.

W. Whiteley, Motions and stress of projected polyhe&tauict. Topology7 (1982), 13-38.

W. Whiteley, Infinitesimally rigid polyhedra 1: statics of frameworKsans. Am. Math. Soc285

(1984), 431-465.

W. Whiteley, 3-diagrams and schlegel diagrams of simple 4-polytopes, preprint, Department of

Mathematics and Statistics, York Universityorth York, Ontario, 1994.



820

29.

30.

31.
32.

R. M. Erdahlet al.

W. Whiteley, Matroids from discrete geometryMS Contemp. Math1,97(1996), 171-312.11
(1994), 135-160.

W. Whiteley, Rigidity of molecular structures: generic and geometric analysi®roceedings of
Workshop ‘Rigidity Theory and Applicationiséld at Michigan State University in June of 1998,
P. M. Duxbury and M. F. Thorpe (ed$jundamental Materials Science Series, Center for Funda-
mental Materials Research at Michigan State University, 1999.

W. Whiteley, private communication.

G. Ziegler,Lectures on Polytopes, Springeefag, New York, 1995.

Received 20 August 1999 in revised form 20 August 2000, published electronically 21 May 2001

R. M. ERDAHL
Department of Mathematics and Statistics,
Queen’s Univesity,
E-mail: erdalhr@post.queensu.ca
K. A. RYBNIKOV

Department of Mathematics and Statistics,
Queen’s Univesity and the Fieldsnstitute for Research in Mathematical Sciences,
E-mail: rybnikov@mast.queensu.ca

AND

S. S. Rr'sHKovV

Steklov Mathematical Institute and Moscow Stateversity,
E-mail: sergei.s@ryshkov.mian.su



	Introduction
	Fig. 1
	Fig. 2
	Fig. 3

	Stresses
	Orientability and Generalized Volume
	Fig. 4

	Combinatorial Dual Graph and Reciprocals
	Fig. 5

	Minkowski's Theorem and Stresses
	Traces of $d$-stresses in Lower Dimensions
	Fig. 6

	Stresses on Frameworks
	Fig. 7

	References

