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On Traces ofd-stresses in theSkeletons of Lower Dimensions of
Piecewise-lineard-manifolds

R. M. ERDAHL, K. A. RYBNIKOV † AND S. S. RYSHKOV

We show how ad-stress on a piecewise-linear realization of anoriented (non-simplicial, in general)
d-manifold inRd naturally induces stresses of lower dimensions on this manifold, and discuss impli-
cations of this construction to the analysis of self-stresses in spatial frameworks. The mappings we
construct are not linear, but polynomial. In the 1860–70s J. C. Maxwell described an interesting rela-
tionship between self-stresses in planar frameworks and vertical projections of polyhedral 2-surfaces.
We offer a spatial analog of Maxwell’s correspondence based on our polynomial mappings. By apply-
ing our main result we derive a class of three-dimensional spider webs similar to the two-dimensional
spider webs described by Maxwell. We also conjecture an important property of our mappings that is
based on the lower bound theorem (g2(d+1)= dimStress2 ≥ 0) for d-pseudomanifolds generically
realized inRd+1 [10].

c© 2001 Academic Press

1. INTRODUCTION

Let G(E,V) be a framework (possibly infinite), whereE is the edge set of the framework,
andV the vertex set, inRd. An (equilibrium)stressis an assignment of real numbersωi j =

ω j i to the edges, a tension if the sign is positive, or a compression if negative, so that the
equilibrium condition ∑

{ j | (i j )∈E}

ωi j (v j − vi ) = 0

holds at each vertexvi ∈ V . The stresses on(E,V) form a linear subspace ofR|E|, the left
null-space of therigidity matrix RM(E,V). Let M be the|E| × |V | incidence matrix with
entriesMi j = 1 if and only ifv j ∈ ∂ei , but zero otherwise. Then, the ridigity matrix is formed
by replacing each entry ofM by ad-component row vector, the zero vector whenMi j = 0,
and an edge vector parallel to thei th edge, pointing away from vertexv j , when Mi j = 1.
The dimension of the space of stresses is equal to|E| − rank(RM), and, the dimension of
the subspace of external loads that can be resolved by the framework is equal to rank(RM).
If all external loads can be resolved, the framework is said to bestatically rigid. Under these
circumstances rank(RM) = d|V | −

(d+1
2

)
, since the dimension of the space of all possible

external loads isd|V | −
(d+1

2

)
. It also follows that the dimension of the space of stresses is

|E| − d|V | +
(d+1

2

)
in the statically rigid case.

The notion of stress on a framework can be naturally generalized tok-stress on a cell com-
plex. This generalization is useful in the combinatorics and geometry of piecewise-linear
manifolds, rigidity theory, and the theory of Dirichlet–Voronoi diagrams. Such generaliza-
tions have been proposed by Lee [13], Tayet al. [24], Crapo and Whiteley [8], and
Rybnikov [19, 20].

Consider apiecewise-linear realizationK inRN of ad-dimensional cell complexK. Denote
by n(F,C) the inner unit normal to a cellC at its facetF .
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FIGURE 1. Equilibrium of forces at 1-cell.

DEFINITION 1.1. A real-valuedfunctionω(·) on the(k − 1)-cellsof K is ak-stress if at
each (internal)(k− 2)-cell F of K∑

{C| F⊂C}

ω(C)volk−1(C)n(F,C) = 0,

where the sum is taken over all(k − 1)-cells in the star ofF . The quantitiesω(C) are the
coefficients of thek-stresses, a tension if the sign is positive, a compression if the sign is
negative.C need not be convex, but it is important that its boundary is a homology sphere.

It is easy to see thatk-stresses form a linear space, and thatk-tensions andk-compressions
form congruent cones in this linear space. We denote the space of allk-stresses onK by
Stressk(K ), the cone of allk-tensions byT ensionk(K ). If the coefficientsω(C) are not all
zero, thek-stressω is called non-trivial. Figure1 illustrates the geometry of the equilibrium
condition for a 3-stress at an edge ofa cell complex inR3.

In the case of stress on a framework,ω(e) is the force per unit length, and the static force
applied at the end points of edgee isω(e)||e||. For a(k−1)-cellC ak-stressω(C) is the force
per unit relative(k − 1)-volume (area) ofC, and the static force applied at a(k − 2)-face of
C is ω(C) volk−1C. For frameworks the equilibrium condition is written for the star of each
vertex of the framework, while fork-stresses on cell complexes the equilibrium condition
is formulated for the star of each(k − 2)-cells, and the summation is over all(k − 1)-cells.
Moreover, the equilibrium of forces in the case of 3-stress has a natural physical interpretation:
one can think of plates making contact at a common edge: some plates are under tension, and
some under compression, just like the edges in a framework.

The main result of this paper is Theorem6.2of Section6 where we construct a polynomial
mapping of degreed−k+1 from the space ofd-stressesto the space ofk-stresses (0≤ k ≤ d)
for a piecewise-linear realization of an orientedd-manifold inRd+1. In general, our mappings
arenot bijective, since for a generic realization of a simplicial sphere inR3 the dimension of
the space of 2-stresses may exceed the dimension of the space of 3-stresses. Below we outline
how our research onk-stresses relates to the Maxwell–Cremona theory and its generalizations.
This theory served as one of the motivations to study the relationship between stresses of
different dimensions.
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FIGURE 2. 2-sphere realized inR2.

Let G be a framework inthe plane. Suppose there is a polyhedronP in three-space such that
the vertical projectionon the plane ofF takes the vertices ofP onto the vertices ofG and the
edges ofP onto the edges ofG in a one-to-one manner. Then, as shown by Maxwell (1864,
1869) and Cremona (1872), there is a stressω(P) onG completely defined by the values of the
dihedral angles ofP. Moreover, given a frameworkG in the plane, ifω is a stress onG andG
can be regarded as the graph of a spherical complex, one can find a polyhedronP(ω) (defined
up to the choice of a supporting plane) in three-space such thatG is the vertical projection
of the 1-skeleton ofP. These 19th century results have been extended and put on a rigorous
mathematical basis by Crapo and Whiteley [6, 26, 27]. They proved that for piecewise-linear
spheres realized inR2 (like in Figure2) thereis a natural linear isomorphism between the
space of stresses on the 1-skeleton andthe space of liftings (lifting is the operation that is
inverse to projection on the plane) considered up to the addition of an affine function.

Maxwell used a new geometrical tool, thereciprocal, in his study of how stresses and pro-
jections relate to each other. Roughly speaking, a reciprocal is a planar realization of the dual
combinatorial graph of the spherical complex, such that its edges are perpendicular to the cor-
responding edges of the complex, as pictured in Figure3. The relationship between a graph
and its reciprocal is well illustrated by therelationship between the 1-skeletons of the Delau-
nay and Dirichlet–Voronoi decompositions for a set of sites in the plane. For spheres andR

2

the linear space of reciprocals is isomorphic to the space of stresses.
As was shown by Crapo, Whiteley and Rybnikov, for certain classes ofd-manifolds, includ-

ing homology spheres, there is a similar connection between the geometry of piecewise-linear
d-manifolds realized inRd+1 and stresses supported on the(d − 1)-cells of their realizations
defined by the vertical (or radial) projection on ad-subspace ofRd+1. In this case the equilib-
rium of forces is required not at each vertex, but at each(d− 2)-cell [6, 19, 26]. Such stresses
are calledd-stresses becaused is the lowest dimension ofa manifold for which the space of
d-stress is non-trivial in the sense that it essentially depends on the combinatorics and geom-
etry of the manifold. (The space ofd-stresses of a closed(d − 1)-manifold realized inRd−1

is eitherR or 0 depending on whether this manifold is orientable or not.)
By an informal conjecture of Baracs and Whiteley there is an analogous correspondence

between projections of 4-polyhedra fromR4 ontoR3 and stresses in spatial frameworks [31].
Their idea was, perhaps, motivatedby Minkowski’s theorem on the vanishing of the sum of
normals to a convex polytope at its facets (Theorem5.1 of Section5). The projections ofd-
manifolds with trivialH1 overZ2 fromRd+1 ontoRd correspond tod-stresses(see Section2



804 R. M. Erdahlet al.

FIGURE 3. Reciprocal for a 2-sphere inR2.

and [19, 29]); thus,one can reformulate their conjecture as the existence of a natural corre-
spondence betweend-stresses on ad-manifold realized inRd and stresses onits 1-skeleton (in
the general theory of stresses such stresses are called 2-stresses). Theorem6.2 estublishes a
natural one-way connection betweend-stresses andk-stresses (k≤ d) for oriented piecewise-
linear manifolds realized inRd. Therefore, in some sense this theorem supports the Baracs–
Whiteley hypothesis.

Our mappings are well defined not only for simplicial manifolds, but also for general cell-
partitions of manifolds. As for the simplicial case, we conjecture that these mappings are
injectivefor any generic realization of an orientable closedsimplicial d-manifold inRd. How-
ever, we are primarily interested in applications of the general theory of stresses and liftings
to three-dimensional manifolds and spatial spider webs. From this point of view our construc-
tion can be regarded as a natural extension of Maxwell’s correspondence between stresses and
liftings to spatial frameworks. In the last paragraph of this section we sketch the main ideas
and concepts employed in our construction.

Let1 be a homologyd-manifold decomposed into cells, each of which is a simplicial star
(see [17, 22] for a discussion of such dissections). The construction of our mapping proceeds
systematically in steps. The first step establishes anatural one-to-one correspondence between
d-stresses andreciprocals(see Section4). The notion of reciprocal we employ generalizes that
of Maxwell (see above). In particular, a segment whose ends are the vertices of the reciprocal
corresponding to two adjacentd-cells of1 is perpendicular to their common facet. This one-
to-one correspondence holds only when certain homological restrictions are placed on the
manifold, for example, whenH1(1,Z2) = 0 [19]. Notice that the star of a cell satisfies this
condition. Given ad-stressω, we can constructthe corresponding reciprocalR(ω, v) for the
star of each vertexv. If two cellsC1 andC2 share a faceF , the sub-reciprocals ofR(ω,C1)

and R(ω,C2) corresponding toF are congruent. Nevertheless, whenH1(1,Z2) 6= 0, it is
generally not possible to construct a global reciprocal (see [19]). Now, one can take for1 the
dual cell-decomposition1∗, an idea of which goes backto Poincaŕe ( for details see [17, 22]).
We construct a piecewise-linear realization ofa barycentric triangulationT D of the dual cell-
decomposition1∗. Note that the barycentric triangulation of the original cell-decomposition
1 is isomorphic to the barycentric triangulation of1∗ [22]. We will denote byC∗ the cell
of 1∗ dual to a cellC of 1. After sucha dissection a cellC∗ of 1∗ can be regarded as
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a simplicial starT D(C∗). Naturally, we wantto consider only special affine realizations of
T D(C∗), namely those where the barycentric triangulation of eachk-cell belongs to its affine
k-span. Note thatR(ω,C), the subreciprocal ofSt(C) corresponding to stressω, defines an
affine realization of the barycentric triangulation ofC∗ up to the location of the barycenters
for the k-cells (k > 0) of C∗: T D(C∗) lies in the affine span ofR(ω,C), and the vertices
of R(ω,C) belong to the vertex set ofT D(C∗). In this case one can introduce a natural
summation of volumes of the oriented simplexes ofC∗, such that the sum does not depend
on the location of the baricenters of the cells (except for the vertices ofC∗). WhenC∗ is
embedded intoRd the result is the oriented volume ofC∗. That is why we call this function on
‘flat’ realizations of oriented cells of the dual decomposition thesigned generalized volume.
Evidently, this function can be equally thought of as a function on reciprocals. Using the
orientability of1 and Minkowski’s theorem5.1, we show in Section6 that the generalized
k-volumes ofk-cells of1∗ can be interpreted as thecoefficients of(d− k+1)-stresses on1.
As it can be seen from this informal description, the main ingredients of our construction are
volumes, reciprocals, duality in homology manifolds, and the notion of orientability. In fact,
we suspect that our construction can be generalized for any dimensionn, bd+1

2 c ≤ n ≤ d,
thereby providing canonic polynomial mappings fromthe space ofn-stresses to the spaces of
k-stresses,d − n ≤ k ≤ n.

1.1. Notation. All complexes that we consider are polyhedra (simplicial complexes) from
the topological point of view. However, all theorems in this paper are stated for fixed decom-
positions of simplicial complexes into polyhedralcells (also called blocks or simplicial stars
in combinatorial topology [17, 22]) which are not necessarily simplexes. We assume that all
complexes have at mosta countable number of cells. Cells of co-dimension 1 are referred to as
facets. We denote the star of a cellC by St(C), and thek-dimensional skeleton of a complex
K by Skk(K).

We shall consider more general constructions than embeddings or immersions of cell com-
plexes into Euclidean space, such aspiecewise-linear(PL—throughout the text)realizations.
Such general construction can be helpful, for example, for studying frameworks with bar in-
tersections, polyhedral scenes, splines over triangulations (in the planar case this point of view
was adopted in [6, 24, 26]; in the three-dimensional case such PL-realizations were considered
by Crapo and Whiteley in [6,28]), and in the case of general dimension by Tay, White, and
Whiteley [24]. For example, a Schlegeld-diagram is a PL-realization of a(d + 1)-polytope
P in Rd obtained by the radial projection ofP onto one of its facets. In all geometric dis-
cussions cell complexes will be considered as PL-realizations, rather than abstract combina-
torial objects.

Recall that one can identify an abstract combinatorial cell complexKd with its embedding
into R2d+1 (sinceKd is a polyhedron). More formally, a PL-realization of a combinatorial
simplicial complexKd

⊂ R
2d+1 with a fixed decomposition into polyhedral cells is a contin-

uous PL-mappingr of Kd in RN (N ≥ d) such thatthe closure of each k-cell, k= 0, . . . ,d
is embedded by r intoRN as a ‘flat’ (lying in an affine k-subspace) k-polyhedron.

If 1 is a PL-realization of a polyhedron with a specific cell-decomposition, we shall fre-
quently abuse notation and make no distinction between the polyhedron, its cell-decompo-
sition, and the PL-realization. If we refer to the metric, projective, or affine properties of a
cell complex, these should be understood as the properties of its fixed PL-realization. How-
ever, when we consider the combinatorial or homological properties of a cell complex, we are
referring to its abstract combinatorial structure. We will often use the notion of link below.
Notice that in the case of a non-simplicial cell-decomposition, the link of a cell is defined
through the barycentric triangulation.
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A homologyd-sphere isa polyhedronP with the homology groups ofa standardd-sphere
such that for anyn-cell C of P the link ofC has the homology groups of a standard(d − n)-
sphere. A homologyd-disk is a polyhedronP with the homology groups of a standardd-disk
such that for anyn-cell C of P the link ofC has the homology groups of a standard(d − n)-
sphere (ifC is interior) or disk (if C is the boundary). Ahomology d-manifold(with boundary)
is a cell complex such that the link of eachk-cell, is either a homology(d− k− 1)-sphere (or
a homology(d− k− 1)-disk). A manifold is closed if each facet is adjacent to exactly twod-
cells. All statements in the paper are formulated for both closed manifolds and for manifolds
with boundary, unless stated otherwise. Since we consider manifolds from the combinatorial
point of view, a manifold is always understood to be ahomologymanifold. Throughout the
paper we include ‘good’ decompositions ofRn (like, for example, weighted Dirichlet–Voronoi
diagrams) into the class of homology manifolds.

2. STRESSES

Stresses on frameworks have a natural generalization tok-stresses on cell complexes of
higher dimensions (see Definition1.1). As in the case of frameworks, the linear space of
k-stresses can be characterized as the left nullspace of a geometric matrixRMk which is
constructed as follows. LetMk be the incidence matrix for thek- and(k−1)-cells ofK , where
the rows are indexed by thek-cells and the columns by(k−1)-cells. ThusMk(i, j ) = 1 if and
only if Ck−1

j ⊂ ∂Ck
i , but is equal to 0 otherwise. The matrixRMk is obtained by replacing unit

entries ofMk by the corresponding positively oriented unit normal vectors, and zero entries by
the zero vector; these replacement vectors are taken to be row vectors. The left null-space of
RMk is the space of(k+1)-stresses (the vectors of this space have the number of components
equal to the number ofk-cells).

The notion ofk-stress on simplicial complexes was introduced by Lee [13]. For a simplicial
complex ak-stress can be interpreted as anelement of a certain quotient of the face-ring of the
complexK . Let K be a simplicial complex inRd, with vertex setv1, . . . , vn. Then, in Lee’s
terminology the space ofaffine k-stresses onK is the linear subspace of polynomials of degree
k of R/V , whereR is the Stanley–Reisner ring ofK , and V is the ideal generated by linear
forms

∑n
i=1 vki xi (k = 1, . . . ,d), and

∑n
i=1 xi (see [13, 24]). For a simplicial complexK in

R
d our k-stress onK is the same as Lee’s affine k-stress onK . In fact, Lee considered two

types of stress: linear and affine. Lee formulated most of his theorems in terms of so-called
linear stresses. For generic realizations ofK in Rd the space of ourk-stresses is isomorphic
to the space of Lee’slinear k-stresses forK realized generically inRd+1. The equilibrium
condition defining a linear stress says that the sum of normalsn(F,C) weighted byω(C)
lies in the linear span ofF . Higher-dimensional stresses were also considered by Tay, White,
and Whiteley [24] and Rybnikov [19, 20]. Our terminology is in good agreement with the
terminology in these papers.

If fk denotes the number of simplexes of dimensionk in K , thengk andhk are defined as
follows:

gk(K ,d) =
k−1∑
j=−1

(−1)k+ j−1
(

d − j
d − k+ 1

)
f j

hk(K ,d) =
k∑

j=0

(−1) j+k
(

d − j
d − k

)
f j−1.

Let1 be a simplicial homology sphere. For a generic realization of1 in Rd+1 the dimension
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of the space ofk-stresses isgk(1,d + 1), if k ≤ bd+1
2 c, and 0, ifk > bd+1

2 c (see [13]); for a
generic realization of1 inRd thedimension of the space ofk-stressesis hk(1,d+1) [13, 24].

There is no similar algebraic theory of stressesfor non-simplicial manifolds. The main
barrier is the absence of an analog of the notion of a face ring for non-simplicial complexes.

The notion of stress can be defiend for PL-realizations of cell complexes where each cell
is realized in Euclidean space as a simplicial star with possible self-intersections. All results
of our paper hold for such realizations of cell complexes. LetKd be a cell complex where
a barycentric triangulation is fixed for each cell. ForKd, consider a PL-realizationK d in
R

N such that the triangulation of each cellC of Kd is realized in an affine subspace of di-
mension dim(C). Pick a (combinatorial) orientation for each(k − 1)-cell ofKd. Denote by
n(Sk−2,Ck−1) the unit normal to the oriented cellCk−1 at its simplicial facetSk−2 whose
orientation is induced by the orientation ofCk−1. To define the notion ofk-stress on such
realization ofK d we have to formulate the equilibrium conditions for each simplex of the
barycentric triangulation of each(k−2)-cell. However, it is easy to see that if the equilibrium
condition holds for one simplex ofCk−2, it holds for all other simplexes ofCk−2 (when we
pick another(k − 2)-simplex from the triangulation ofCk−2 all normals either change their
direction to the opposite, or stay the same).

DEFINITION 2.1. A real-valuedfunctionω(·) on (non-embedded, in general) oriented(k−
1)-cells ofK d is ak-stress, if for each(k − 2)-simplexSk−2 of each (internal)(k − 2)-cell
Ck−2 of K d ∑

Ck−1

ω(Ck−1)n(Sk−2,Ck−1)volk−1(S
k−1) = 0,

whereCk−1 ranges over all oriented(k− 1)-cells such thatSk−2
⊂ ∂ Ck−1, andSk−1 stands

for the simplex ofCk−1 such thatSk−2
⊂ ∂Sk−1.

To be precise we would like to make the following technical remarks.

REMARK 2.2. When we discuss stresses on polyhedral stars we neglect the absence of the
equilibrium at the cells that belongto theboundary of the star.

REMARK 2.3. The notion of stress is well defined for fans and cell-decompositions ofR
d

with non-compact cells. In this casethe volumes of(k − 1)-cells should be left out of the
formula, and a stress coefficient no longer has the meaning of force per unit relative volume
(area).

3. ORIENTABILITY AND GENERALIZED VOLUME

In this sectionRd denotes Euclidean affine space with a fixed coordinate system. Consider
an oriented, simplicial(d−1)-manifold1 realized inRd. We introduce a generalized volume
function, Vold, which assumes positive, negative or zero values on such manifolds. In the
case where the manifold1 bounds ad-dimensional body, and the orientation of1 is chosen
appropriately, Vold(1) is the standard Euclidean volume of the body. LetF = (v1, . . . , vd)

be an oriented(d − 1)-simplex inRd. We denote by[v1(F)− p, . . . , vd(F)− p] the matrix
whose columns ared-vectors pointing from pointp ∈ Rd to the vertices ofF .

DEFINITION 3.1. Let1 be a closedoriented simplicial manifold of co-dimension 1 inRd.
Then

Vold(1) =
1

d!

∑
F⊂1

det[v1(F)− p, . . . , vd(F)− p]

where the summationranges over all oriented(d − 1)-faces of1.
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FIGURE 4. Two realizations of a star.

The value of Vold(1) is independent of the the choice of pointp. That is why it is normally
written forp = 0. This formula can be rewritten as

Vold(1) =
1

d

∑
F∈1

d(p,aff(F))Vold−1(F,p) (1)

whered(p,aff(F)) stands for the distance betweenp and theaffine hull ofF . The generalized
(d − 1)-volume Vold−1(F,p) is computed with respect to the orientation of aff(F) induced
by the vectorvi (F)− p (i is arbitrary), i.e., with respect to an orthonormal coordinate frame
[e1 . . . ed−1] in aff(F) such that[vi (F)− p,e1 . . . ed−1] is positively oriented inRd.

Let Sd−1 be an oriented simplicial sphere, and letD be a cell-decomposition ofSd−1 which
is the result of an amalgamation of some of the simplexes ofS

d−1 into blocks (see Section1
and [17, 22]). Consider a realization of the simplicial complexS

d−1 inRd such that each block
lies in the affinespan of its vertex set. For example, a block can be realized as a convex poly-
tope partitioned into simplexes or as a simplicial star with self-intersections (see Figure4).
Then Vold(Sd−1) does not depend onthe positions of the baricenters of the blocks of all di-
mensions greater than 0; this can be shown by induction ind. The case ofd = 1 is obvious.
The induction step follows from an application of Formula1.

In Section6 we will use the following observation.

REMARK 3.2. LetB be ad-dimensional cell complex suchthat theclosures of all its faces,
including B, are cones over homology spheres. In other wordsB is a homology ball. An ex-
ample of such a complex would be a convex polytope. Suppose a barycentric triangulation
of B is realized inRd so that the affine dimension of the vertex set of each cell ofB equals
the dimension of this cell (the cell structure of a convex polytope would serve as a simple
example). Then the generalizedd-volume of the boundary ofB does not depend on the posi-
tions of the baricenters of its faces, provided the baricenter of each face ofB lies in the affine
span of the vertex set of this face. We call the realizations of these baricenters inR

d virtual
baricenters.

For discussion of the algebraic properties of the generalized volume Vold(S
d−1) as function

of the edge lengths see [5].
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4. COMBINATORIAL DUAL GRAPH AND RECIPROCALS

Let F(V, E) be a framework realized inR2, and assume that graph(V, E) can be regarded
as the 1-skeleton of a spherical complex1. Suppose that this framework is in a state of static
equilibrium. Consider a vertex ofF(V, E). The sum of vectors of stresses applied to this
vertex is equal to zero; therefore, when rotated 90◦ clockwise they form a polygon (self-
intersecting in general). It was first noticed by Maxwell (and proved by Whiteley [26]) that
the positions of rotated edges ofF(V, E) can be adjustedso that they form a reciprocal
graph (often called simplyreciprocal). Each edge of this reciprocal corresponds to an edge of
F(V, E) and each vertex to a cell of1. One can introduce a similar notion for PL-realizations
of d-manifolds inRd (for more information see [2, 8, 19, 28]). In this section we will ex-
plore connections between thed-stresses and the generalization ofMaxwell’s reciprocal for
d-manifolds.

Thecombinatorial dual graphG(Md) of a manifoldMd is defined as follows. The vertices
of G ared-cells ofMd, and the edges ofG are internal(d − 1)-cells ofMd. Two vertices
share an edge if and only if the correspondingd-cells are adjacent.

A reciprocalof a PL-realizationM of a manifold1 inRd is a rectilinear realizationR inRd

of the combinatorial dual graphG(1) such that the edges ofR are perpendicular to the cor-
responding facets. If none of the edges of a reciprocal collapses into a point, the reciprocal is
called non-degenerate. Reciprocals were originally considered by Maxwell [15] in connection
with stresses in plane frameworks. He,and almost at the same time, L. Cremona [9] noticed
that reciprocals corresponded to equilibrium stresses on 1-skeletons of polyhedral spheres
drawn in the plane. Reciprocals were later studied in [2, 6, 7, 21, 26]. Crapo and Whiteley
gave an explicit treatment ofthe theory of reciprocals, stresses and liftings for 2-manifolds
in [6–8].

To illustrate the concept of reciprocal letus consider the case where the realizationM is an
embedding. Letv(C1) andv(C2) be vertices of a reciprocalR corresponding to adjacentd-
cellsC1 andC2. Call the edge[v(C2)v(C1)] properly orientedif v(C2)− v(C1) is cooriented
with an outer normal toC1 at the facet shared withC2. Otherwise call[v(C2)v(C1)] improp-
erly oriented. A hexagonal reciprocal for the embedded star of a vertex in a 2-manifold is
shown in Figure5. One can see that edgesef , cd are improperly oriented, and edgesab, cb,
de, and f a are properly oriented). If all edges ofR are properly orientedR is called a convex
reciprocal (since the cycles ofR corresponding to the stars of the(d − 2)-cells are convex in
this case).We refer to reciprocals of stars of the manifold as local reciprocals.

Evidently, reciprocals with one fixed vertex form a linear space. Denote this complex by
Rec(M). If M is an embedding, then convex reciprocals form a coneCRec(M) in the linear
space Rec(M). The following theorem by Rybnikov [19] explains connections between recip-
rocals and stresses in the case of generaldimension. We will utilize this theorem in the proof
of our main theorem from Section6.

THEOREM 4.1. Let M be aPL-realization of a homology d-manifold1 in Rd with triv-
ial first homology groupoverZ/2Z. Then there is an isomorphism betweenStressd(M) and
Rec(M). Non-zero coefficients of stresses correspond to non-vanishing edges of a recipro-
cal. If M is an embedding of1 into Rd, then one can interpret properly oriented edges
as corresponding to tensed facets, and improperly oriented edges as corresponding to com-
pressed facets.

Let B be ad-dimensional cell complex which is the cone over a homology sphere (not
necessarily simplicial). Obviously,B \ ∂B can be regarded as a starSt. Let R be a reciprocal
for St and denote byR(C) a sub-reciprocal ofR corresponding to a faceC ∈ St. The vertex
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FIGURE 5. Non-convex reciprocal.

set of R is a realization of thevertex set of a complex dual toSt. Denote it bySt∗. For
each cellC (k = 1 ≤ dim(C) ≤ d) of St∗ choose an arbitrary pointvbc(C, R) on the
plane aff(R(C)), and call it thevirtual baricenterof R(C). The vertices ofR and the points
vbc(C, R), k = 1 ≤ dim(C) ≤ d define a PL-realization ofSt∗. We know from Remark
3.2 that if a barycentric triangulation ofSt∗ is realized inRd so that the affinedimension
of the vertex set of each cell ofSt∗ equals the dimension of this cell (the cell structure of a
convex polytope would serve as a simple example), then the generalized volume of oriented
simplicial sphere∂ St∗ does not depend on the positions of the virtual baricenters of its faces,
provided the virtual baricenter of each face ofSt∗ lies in the affine span of the vertex set of
this face. We can sum up this observation in the following proposition which will be of great
use in the following section.

PROPOSITION4.2. Let R be areciprocal for an oriented d-dimensional star St realized in
R

d. Then the generalized volumeVold(R) is well defined.

5. MINKOWSKI ’ S THEOREM AND STRESSES

In this section we give an application of the well-known Minkowski theorem (see, for ex-
ample, [32]) to stresses on polyhedral partitions ofR

d.

THEOREM 5.1 (Minkowski). Let P be a convex polytope inRd, and denote by{n(F)} the
inner unitnormals to facets of P. Then∑

F⊂∂P

vold−1(F) n(F) = 0.

Notice, that Minkowski’s theorem has a well-known physical interpretation: a convex poly-
tope immersed floating in a fluid is in a static equilibrium if and only if the sum of inward
forces applied at its facets is zero. This fact was already known to Rankine in 1864.

If we choose a (combinatorial) orientation forP and denote by Vold−1(F,n(F)) the gen-
eralized volume of an oriented facetF with respect to the orientation of aff(F) induced by
n(F), then the above formula can be rewritten as∑

F⊂∂P

Vold−1 (F,n(F)) n(F) = 0.
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Notice that in the last formula the directions of normalsn(F) need not agree, since Vold−1(F)
is computedwith respect to the orientation induced byn(F). Flipping the normal changes the
sign of Vold−1(F).

Let St(v) be the star of a vertexv in a polyhedral partition ofRd.

DEFINITION 5.1. A dual convex polytope of St(v) is a d-dimensional polytopeD in Rd

satisfying the followingconditions:

(1) There is a one-to-one correspondenceI between them-dimensional faces ofD and the
(d −m)-dimensionalfaces ofSt(v) (0≤ m≤ d).

(2) If Ds
⊆ Dt are faces ofD corresponding to facesFd−s and Fd−t of St(v), then

Fd−t
⊆ Fd−s. In other words, the mappingI induces an isomorphism between the

face lattices ofD andSt(v).
(3) For 0≤ m ≤ d eachm-dimensional face ofD is perpendicular to the corresponding

(d −m)-dimensional face ofSt(v).
(4) Sk1(D) is a convex reciprocal graph for the starSt(v) (see Section4).

The convexity of the dualpolytope immediately follows from Conditions 1–4. It is worth men-
tioning that the dual polytope does not always exist (see [19] for various necessary and suf-
ficient conditions). Suppose that there is ad-tensionω on St(v)(all coefficients ofd-stresses
are strictly positive). In this case by results of [19] and [21] there is a convex polytopeD(ω)
dual toSt (v). Thed-tensionω defines suchpolytope uniquely up to translation: the lengths
of the edges ofD(ω) are equal to the corresponding coefficients ofω. By the Minkowski the-
orem cited above the sum of facet normals of a convex polytope scaled by the facet volumes
is zero. Therefore, one can interpret the volumes ofm-faces, 1≤ m ≤ d − 1, of D(ω) as
coefficients of(d−m+ 1)-stresses on(d−m)-dimensional cells ofSt(v). Thus, ad-tension
on the starSt(v) induces an(d−m)-tension onSt(v), 1≤ m≤ d−1. It is easy to see that the
constructed mappings are polynomial. Now, letω be ad-tension on a cell-decomposition1 of
R

d. We just described howω induces tensions of lower dimensions on the stars of all vertices
of1. In fact, for anyk < d the stressω induces ak-tension on1. If F is a(k− 1)-face of1,
then the restriction ofω to the starSt(v) of a vertexv of F defines the coefficient ofk-tension
for F . If u is another vertex ofF , then the restriction ofω to St(u) gives exactly the same
values of the inducedk-tension onF , since the faces of the dual polytopes ofSt(v) andSt(u)
corresponding toF are equal (up to translation).

PROPOSITION5.2. Let1 be a cell-decomposition of(a polyhedral region in)Rd. For k =
1, . . . ,d − 1 there is a polynomial mapping of degree d− k + 1 from the cone of d-tensions
on1 to the cone of k-tensions on1. An all non-zero d-tension is always mapped to an all
non-zero k-tension.

By construction, ad-tension is mapped to a 2-tension on the 1-skeleton of1:

COROLLARY 5.3. Let G be the1-skeleton of a cell-decomposition1 ofRd by convexpoly-
hedra. If there is a convex surface which projects onto1, then G supports a positive equilib-
rium stress at all edges and, therefore, is an infinite spider web.

It turns out that the mappings from Proposition5.2 can be extended from the cone of ten-
sions to all of the space ofd-stresses, andthe above construction can be carried out for arbi-
trary PL-realizations of orientabled-manifolds (not necessary embeddings). In order to for-
mally establish this, we will need the concept of generalized volume introduced in Section3.
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The Minkowski theorem can be formulated for simplicial spheres arbitrarily realized in
R

dand, as we will see in Section6, even for a larger class of polyhedral (not necessarily
simplicial) spheres realized inRd with self-intersections.

We need thefollowing lemma.

LEMMA 5.4. Let1 be an oriented simplicial manifold realized inRd. For each oriented
(d − 1)-simplex F pick a unit normal vectorn(aff(F)), and letVold−1(F,n(aff(F))) be the
generalized volume of F computed inaff(F) equipped with an orientation induced byn(F).
Then ∑

F⊂1

Vold−1(F,n(aff(F)) n(aff(F) = 0.

PROOF. The orientation of1 induces an orientation on a conewith 1 as base.Thus if F1
andF2 are two adjacent(d − 1)-faces of1, the orientations of the cone over their common
facet are opposite. Therefore the above formula can be rewritten as∑

F⊂1

∑
sd−1⊂∂ 0·F

Vold−1(s
d−1,n(aff(sd−1)) n(aff(sd−1)) = 0.

wheresd−1 stands for a facet of the cone0 · F , andn(aff(sd−1)) is an arbitrary unit normal
to hyperplane aff(sd−1). Applying Minkowski’s theorem to eachd-simplex0 · F we get the
required formula. 2

The interplay between stresses and volumes for simple and simplicial convex polytopes was
also discussed by McMullen [18] and Lee [13].

6. TRACES OF d-STRESSES INLOWER DIMENSIONS

REMARK 6.1. Let1 be an orientable homology(d − 1)-manifold in Euclidean spaceof
dimensiond. An orientation of1 induces the orientation of normals to1 at the cells of
maximal dimension by the following rule. Let(v1(S), . . . , vd(S)) be an oriented simplex of
1. If frame[v1(S), . . . , vd(S)] is positively oriented, then the corresponding normal to1 at S
has positive scalar product with all these vectors. Conversly, a consistent choice of the field of
normals to1 at their simplexes of maximal dimension determines an orientation of1 (e.g.,
outer normals for a convex polytope; see Figure6).

In the case of an orientabled-manifold it is possible to fix the orientation of cells so that
they form ad-cycle. By the above remark such orientation of cells induces the orientation of
frames of normals corresponding to flags of cells. Thus, if1 is an orientabled-manifold inRd

and the orientations ofd-cells are picked up in such a way that it turns1 into ad-cycle, any
two flags of equal length havingd-cells as maximal elements and distinct at only one position
have corresponding frames of opposite orientation. A face-to-face partition ofR

d provides a
transparent example. Each of the two possible orientations of the partition correspond to flags
of either inner or outer normals.

THEOREM 6.2. Let1 be an orientable homology d-manifold realized inRd. Then for k=
1, . . . ,d − 1 there is a polynomial mappingpk of degree d− k + 1 from Stressd(1) to
Stressk(1).

PROOF. For a cell-decomposition of a homology manifold there is so-called dual cell-
decomposition (also called dual block decomposition).Consider thebarycentric triangula-
tion T(1) of the original cell-decomposition. Each cell of the original decomposition is a
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FIGURE 6. Orientation.

simplicial star in the barycentric triangulation.The (d − k)-simplexes ofT(1) sharing the
baricenter of ak-cell C form thedual cell (also called a block) forC. This dual cell is a ho-
mology(d− k)-disk. The boundary of the dual cell is a homology sphere (for more details on
the geometrical duality in homology manifolds see [17, 22]).

Let v be a vertex of1, andlet Dv be thed-dimensional cell (block) corresponding tov in
the dual decomposition of1. Obviously, the boundary ofDv is the linkLk(v) of v in1. Each
cell of1 or1∗ is itself an orientable homology manifold, namely a homology disk. Thus, an
orientation of triangulationT(1) induces in a natural way orientation on cell complexes1

and1∗.
Let R be a (Euclidean) reciprocal forSt(v) ⊂ 1 (see Section4). By Theorem4.1, the linear

space ofd-stresses onSt(v) is naturally isomorphic tothe space of reciprocals with one fixed
vertex. It turns out that one can introduce the notion of generalized ‘k-volume’ (k= 0, . . . ,d)
for the sub-reciprocals ofR, corresponding to the stars of cells ofSt(v) (we refer to them as
‘faces’ ofR). It is natural to call this function thek-volume, because when a reciprocal can be
regarded as the vertex set of a convexk-polytope, the absolute value of this function is equal
to thek-volume of the polytope. We keep the same notation for thek-volume of a reciprocal
that we used for generalized volumes, i.e., Volk.

Let Cd−k be a(d − k)-cell from the (open) star ofv. Obviously,St(Cd−k) ⊂ St(v). The
subreciprocalR(Cd−k) of R corresponding to this star spans an affinek-plane perpendicular
to Cd−k. R(Cd−k) can be regarded as a realization of the vertex set of a cell of1∗ dual to
Cd−k. Thus, it makes sense to talk about the (combinatorial) orientation ofR(Cd−k). Recall
that ak-cell of the dual decomposition corresponds to a(d − k)-cell of1. Choose a flag of
full length in Cd−k. This flag corresponds to some simplexSof T(1) whose vertices are the
‘baricenters’ of the flag cells. Denote byCk thek-cell of1∗ dual toCd−k. The iterative coning
of Ck with vertices ofS is a cell from an amalgamation of the triangulationT(1∗). This
amalgamation consists of (non-simplicial, in general) blocks of the formv0(· · · (vd−k · Ck))

constructed by the(d − k)-fold iterated coning ofk-cells of1∗: hereCk is a k-cell of 1∗,
{v0, . . . , vd−k} is the set of barycenters corresponding to a flag of full length of the cell of
1 dual toCk, andvi · (. . .) stays for the cone with apexvi over base(. . .). Note that the
orientation ofT(1) = T(1∗) induces an orientation onv0 · · · (vd−k · Ck). Therefore, the
choice of a flag inCd−k determines an orientation forCk.
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A flag of faces ofCd−k corresponds to an ordered(d − k)-tuple of normalsto the faces
of Cd−k. Denote it by[N]. This (d − k)-tuple induces an orientation of affine subspace
spanned byR(Cd−k) by the following rule. A frameN′ in aff(R(Cd−k)) is said to be coori-
ented with the frame[N] if [N, N′] is cooriented with the coordinate frame ofRd. Therefore
Vold−k(R(Cd−k) is well defined provided a flag of cells inCd−k (see Section3) has been
fixed. We have toshow that Vold−k(R(Cd−k)) does not depend on the choice of flag inCd−k.
It is enough to show that for two flags inCd−k that differ in one position the Vold−k(R(Cd−k))

is the same, since any two flags inCd−k can be connected by a sequence of alterations. Ob-
viously, two flags that differ in one position induce opposite combinatorial orientations on
R(Cd−k). But on the other hand it means that the(d − k)-tuples of vectors corresponding
to these flags have opposite orientations. Thus the generalizedk-volume of R(Cd−k) is well
defined and does not depend on the choice of a flag of faces inCd−k.

Let ω be ad-stress on1. Since the star of a(d − k)-cell of 1 is a homologyd-disk, a
d-stress restricted to the star of a vertex generates ak-dimensional reciprocal for this star (see
Section4). The distance between two vertices of the reciprocal corresponding to two adjacent
d-cells equals the absolute value of stresson their common facet. LetR(C) be the reciprocal
of the star of a(d−k)-cell C corresponding to the stressω. Let us interpret Volk(R(C)) as the
value of(d− k+ 1)-stress onC (recall that(d− k)-cells bear(d− k+ 1)-stresses). We have
to check the equilibrium condition at every(d− k− 1)-cell of1. Let F be a(d− k− 1)-cell
of 1. Construct the reciprocalR(F) for St(F) corresponding to thed-stressω. Notice that if
F ⊂ C, then the sub-reciprocal orR(F) corresponding to the star ofC is equal toR(C) (up to
translation). Letn(F,C) denote the fixed unit normal toC at F whose orientation is induced
by the orientation of1 as it was explained in the beginning of this section. In the case where
1 is embedded intoRd we can think ofn(F,C) as an inward unit normal:∑

{C| F⊂C}

Volk (R(C),n(F,C))n(F,C) =
∑

{R(C)| F⊂C}

∑
S⊂C

Volk(S,n(F,C))n(F,C)

whereS is an oriented(d − k)-simplex from a barycentric triangulation ofR(C) arbitrarily
realized in aff(R(C)). By Minkowsi’s theorem the last quantity is always zero. 2

REMARK 6.3. Recall our assumption that each cell has an underlying structure of a simpli-
cial star. The above theoremstill holds if the cells are not embedded, but realized as simplicial
stars with self-intersections in such a way that the triangulation of each cell lies in the affine
plane spanned by this cell.

One way to show this is as follows.

PROOF. One can extend ad-stressω on1 to a stress on the PL-realizationof its barycentric
triangulationD(1): setω(Sd−1) = 0 for any(d−1)-simplexSd−1 which does not belong to
the triangulation of a(d−1)-cell of1, and setω(Sd−1) = ω(Cd−1) if S is a(d−1)-simplex of
a(d−1)-cellCd−1. All simplicial cells of the barycentric triangulation are, indeed, embedded.
Reorient (if necessary) all(d−1)-simplexes in the barycentric triangulation so that the positive
direction of normal is always inwards. The space ofd-stresses of the reoriented complex is
isomorphic to the original space ofd-stresses. This reorientation is required, because we want
to use the definition of stress for complexes with embedded cells. By Theorem4.1 there is
a corresponding reciprocalR(s) for D(1). Now, we can define the polynomial mappings
pk for D(1). By construction of the reciprocal, (geometric) cycles ofR(ω) corresponding
to simplexes that belong to the same cell are congruent. Consider a(k − 1)-cell C of 1.
The constructedk-stresspk(ω) takes on the same values on any two(k − 1)-simplexes ofC
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that can be connected by a cell-facet path of(k−1)-simplexes ofC, such that anytwo adjacent
simplexes do not overlap;pk(ω) takes on opposite values otherwise. Thereforepk(ω) can be
regarded as ak-stress on the original cell-partition of1. 2

Another way to prove the theorem for the case of self-intersecting cells is to directly adopt
the proof of Theorem6.2. The only use of the notion of the inner/outer normal in the proof
of Theorem6.2 was when we geometrically defined theorientation of the cells of the dual
partition1∗. In the general case we just have to pick some combinatorial orientation for1∗.
The rest of the proof is virtually unchanged.

As explained in the proof of Theorem6.2, a Euclidean reciprocalR can be naturally re-
garded as the 1-skeletonof a PL-realization of the dual partition of1. To define the realiza-
tion completely we just have to specify the positions of the baricenters of the cells of the dual
partition. Now, we can ask the same questions about liftings, reciprocals, and stresses about
the PL-realization of the dual partition. Notice, that in studies of liftings, stresses, and recip-
rocals the positions of the baricenters are not important. The above generalization is natural,
since the class of PL-realization where each cell is realized as a simplicial star is closed under
duality, whereas a dual complex for a PL-realization with embedded cells can have cells with
self-intersections.

One should notice that the orientability of1 is essential for our construction. Only in the
case of orientable manifold the constructed mappings can be correctly defined.

Since the generalized(d−k+1)-volume ofR can be expressed (non-uniquely) as a homo-
geneous polynomial of degreed − k + 1 in the (oriented) lengths of the edges ofR, and the
absolute values of the edges ofR equal to the absolute values of correspondingd-stresses (see
Section3), the constructed mappingspk from Stressd(1) to Stressk(1), k = 1, . . . ,d−1 are
polynomial of degreed−k+1. The coefficients of these polynomials depend on the geometry
of 1. According to Connelly, Sabitov, and Waltz [5] the 3-volume of an orientable simplicial
2-surface inR3 is an algebraic integer over the ring generated by the squared lengths of the
surface edges. It means that ifω is ad-stress on a(d − 2)-primitive oriented1, the value of
(d−2)-stresspd−2(s) on each(d−3)-cell of1 is an algebraic integer over the ring generated
by the squared values ofω on the(d−1)-cells of the star of this cell. It would be interesting to
know if there are any implications of this fact for the algebraic geometry of our mappingspk.

There are other canonical mappings between the spaces of stresses of different dimensions.
For instance, according to Stanley [23] and Lee [13], for homologyd-spheres inRd the space
of k-stresses has the same dimension asthe space of(d−k+1)-stresses, ifk ≤ bd+1

2 c. This is
due to the existence ofnatural isomorphisms between the spaces ofk-stresses and(d−k+1)-
stresses. These isomorphisms play an important role in Stanley’s and McMullen’s proofs of
theg-theorem [18, 23]. They are linear (see [13, 23]), whereas our mappings are not; ours are
polynomial. In general, our mappings arenot bijective,since for a generic realization of a sim-
plicial sphere inR3 the dimension of the space of 2-stresses may exceed the dimension of the
space of 3-stresses. For example, using the results of Lee [13] one can show that for a generic
realization inR3 of the boundary of the four-dimensionalcross-polytope dim(Stress2) = 6,
but dim(Stress3) = 4. In fact, in some sense, our mappings are almost never bijective.

7. STRESSES ONFRAMEWORKS

Maxwell [15, 16] discovered the ‘convex stress’ induced by projection of a convex polytope
on the plane (see Figure7). Crapo andWhiteley gave a rigorous treatment of Maxwell’s
theorem [6, 26, 27].
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FIGURE 7. Maxwell’s convex stress.

THEOREM 7.1 (Maxwell). The vertical projection of a strictly convex polyhedron, with no
faces vertical, produces a plane framework with a stress that is negative on the boundary
edges and positive on all edges interior to this boundary polygon.

Now we can formulate a partial analog of Maxwell’s theorem on convex stresses and pro-
jections of spatial polyhedra. It immediately follows from our main theorem.

THEOREM 7.2. Let P4 be a strictlyconvex polytope inR4 without vertical faces, and let
G be theprojection of Sk1(P4) ontoR3

⊂ R
4. Then G supports a stressω which is positive

on all edges of G that are in the interior of the projection. If all the edges of P4 that project
on the boundary of the projection are incident to exactly three3-cells of P4, then in addition
ω is negative on all edges of G that are on the boundary of the projection.

PROOF. The vertical projection of our polytopeP4 induces the realization of its complex
in R3; denotethis realization byP3. Using our main theorem, we construct the mappingp2 :

Stress3(P3)→ Stress2(P3) for the realizationP3. P4 can be thought of as the union of two
polyhedral ‘lids’: the upper one and the lower one. These lids share common boundary. The
upper lid is convex down, the lower lid is convex up. Obviously, since the upper and the lower
lids are convex, the reciprocals for the ‘interior’ (with respect to the body of the realization
P3) edges ofP3 are convex (1-skeletons of convex polytopes); it is easy to see that they must
have the generalized 2-volumes of the same sign. The reciprocals of the ‘boundary’ edges
need not be convex; however, if a ‘boundary’ edge has a simplicial reciprocal, its volume
ought to have the sign opposite to signs of the volumes of the reciprocals of the ‘interior’
edges. Therefore, if all the edges ofP4 that project on the boundary of the projection are
incident to exactly three 3-cells ofP4, then the reciprocals of the ‘boundary’ edges ofP3 are
all triangles and their generalized 2-volumes have the same sign. Thus, in this special case the
‘interior’ edges bear negative stress. 2

Theorem7.2 can be formulated in the case of general dimension. The proof repeats one-
to-one the arguments of Theorem7.2; noticethat (d − 1)-simplexes in the reciprocal of the
projectionplay the role of triangles.
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THEOREM 7.3. Let Pd be a strictlyconvex polytope inRd without facets parallel to xd-
axis. LetG be the projection of Sk1(Pd) onto{xd = 0} ⊂ Rd. Then G supports a self-stress
ω which is positive on all edges of G that are in the interior of the projection. If all the edges
of Pd that project on the boundary of the projection are incident to exactly d facets of Pd,
then, in addition,ω is negative on all edges of G that are on the boundary of the projection.

After the paper has been accepted for publication Robert Connelly told the authors that the
above Theorem 7.2 has important applications to Lovasz’s theorem on connections between
the Colin de Verdiere graph matrices and Steinitz’s theorem on graphs of convex 3-polytopes.
(see [11, 14] for interesting new prospectives).

Recall, that Maxwell’s correspondence states also thatany equilibrium stress can be inter-
preted as one induced by the projection of a spatial polytope. At the CMS winter meeting of
1998 Connelly asked if the following conjecture is true for our correspondence.

CONJECTURE7.4. Let M3 be a homology sphere realized inR3 and letω2 be a stress
(2-stress)on the1-skeleton of M3. There is a3-stressω3 on M3 such thatp2(ω3) = ω2.

As was mentioned in the Introduction, the generic realization of the boundary of the four-
dimensional cross-polytopeO4 provides a counterexample. According to Lee [13] dim
(Stress3(O4)) = 4, but dim(Stress2(O4)) = 6 (stresses on a framework are 2-stresses).
Since the mappings are algebraic the image of the space of 3-stresses cannot cover the space
of 2-stresses. It would be interesting to give a geometric or algebraic (in the simplicial case)
interpretation for those 2-stresses that can be interpreted as the images of 3-stresses under the
above mapping.

A cell-decomposition of a closedd-manifold is calledk-primitive if the star of eachk-cell
hasd− k+ 1 d-cells (some authors call 0-primitive decompositionssimple; our terminology
goes back to Voronoi and Delaunay). The meaning of this definition is that in a decomposition
of Rd by convex polyhedra,d − k + 1 is the minimal possible number ofd-cells making
contact in ak-cell. When ak-primitive cell-decomposition ofMd is assumed to be fixed,
we will refer to thisk-primitive decomposition ofMd ask-primitive manifoldMd. If a PL-
realization of a sphereSd in Rd can be lifted to a convex polytope inRd+1, then 0-primitive
vertices ofSd correspond to simple vertices of this convex polytope. The notion ofk-primitive
decomposition naturally arises in studies of space-fillers, lattice polytopes and stereohedra.
For example, the affine equivalence between space-fillers and Dirichlet domains of lattices
was proved by Voronoi only for 0-primitive (simple) tilings. The existence of a lattice Dirichlet
domain which is affinely isomorphic to a space-filler5 is equivalent to the existence of a
d-stress with some special symmetries on the lattice tilingT(5) by5 (Voronoi) [19, 21, 25].

A spider webis a framework (with vertices at infinity usually allowed) supporting a stress
strictly positive on all edges. Spider webs inR2 naturally appear from projections of convex
surfaces. Planar and spatial spider webs serve as a tool for investigating various problems
about dense packing of equal balls inR2 andR3 [1, 6, 7]. There are interesting applications of
the theory of stresses in frameworksto physics, chemistry and engineering (see [1, 3, 6, 7, 30]).
Since any(d−3)-primitivedecomposition ofRd is the projection of a convex surface [19, 21],
we have the following corollary.

COROLLARY 7.5. The1-skeleton ofa (d − 3)-primitive decomposition ofRd by convex
polyhedra is always a spider web.

For closed manifolds a similar statement is as follows.
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COROLLARY 7.6. Let M be arealization inRd of a (d − 3)-primitive manifold1 with
trivial H1(1,Z2). Suppose the body|M | of this realization is convex and M is a double cover
of int |M |. Then the1-skeleton of M admits a convex stress.

PROOF. By Rybnikov’s theorem [19, 20]M can be lifted to a convex polytope inRd+1. By
Theorem7.3 the vertical projection ofthis polytope onRd induces a stress on the 1-skeleton
of M , positive on the ‘interior’ edges, and negative on the ‘boundary’ edges ofM . 2

CONJECTURE7.7. Let 1 be an oriented simplicialhomology d-manifold. Then for any
realization of1 in a generalposition inRd mappingspk, k = 1, . . . ,d have Jacobians of
rankmin(dimStressk(1),dim Stressd(1)) at almost all pointsω ∈ Stressd(1).

One can ask about generic properties of the mappingspk only if the combinatorial structure
of 1 is preserved under any small perturbations of the coordinates of its vertices. In addition
to the simplicial case, it is also true whend = 2 and when1 is 0-primitive (simple). It
is plausible that in the last two cases, for general realizations of1 the mappingspk have
Jacobians of maximal possible ranks.

A stronger form of the above conjecture is as follows.

CONJECTURE7.8. Let1 be a closed orientedsimplicial homology d-manifold. Then for
any realization of1 in a general position inRd mappingspk, k = 1, . . . ,d are injective.

A necessary condition for our Conjecture7.7 about the Jacobians ofpk’s is
dim(Stressd) ≤ dim(Stressk) for k ≤ d. Below we give a count that demonstrates that this
condition holds fork = 2 (i.e. when ad-stress is mapped to a stress on the 1-skeleton). The di-
mension of the space ofd-stresses on a simpliciald-pseudomanifold inRd is at leastf0−d−1
(follows from [4]) and is equal tof0− d− 1 if 1 is a manifold withH1(1,Z2) = 0 [19]. By
the result of Fogelsanger [10]the 1-skeleton of a generic realization of ad-pseudomanifold in
R

d+1 is statically rigid. It means thatSk1(1) can resolve any external load inRd+1 (see the
Introduction). Thus dimStress2(1,d + 1) = f1 − (d + 1) f0 +

(d+2
2

)
= g2(1,d + 1) ≥ 0

(the lower bound theorem for general simplicial pseudomanifolds).
For Conjecture7.7to be true, it is necessary that

dim Stress2(1,d) ≥ dim Stressd(1,d) = f0− d − 1.

Let us verify this: dim Stress2(1,d) − ( f0 − d − 1) = f1 − (d + 1) f0 +
(d+2

2

)
=

dim Stress2(1,d + 1) = g2(1,d + 1) ≥ 0, as shown above. For connections between
the rigidity theory and the lower bound theorem see the paper of Kalai [12].
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