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Abstract

Let F(z) = z − H(z) with order o(H(z))�1 be a formal map fromCn to Cn andG(z) the
formal inverse map ofF(z). We first study the deformationFt (z)= z− tH(z) of F(z) and its formal
inverseGt(z)= z + tNt (z). (Note thatGt=1(z)=G(z) when o(H(z))�2.) We show thatNt (z) is
the unique power series solution of a Cauchy problem of a PDE, from which we derive a recurrent
formula forGt(z). Secondly, motivated by the gradient reduction obtained by de Bondt and van den
Essen (A Reduction of the Jacobian Conjecture to the Symmetric Case, Report No. 0308, University
of Nijmegen, June 2003, Proc. of the AMS, to appear) and Meng (Legendre Transform, Hessian
Conjecture and Tree Formula, math-ph/0308035) for the Jacobian conjecture, we consider the formal
mapsF(z)= z−H(z) satisfying the gradient condition, i.e.H(z)= ∇P(z) for someP(z) ∈ C[[z]]
of order o(P (z))�2.We show that, under the gradient condition,Nt (z)= ∇Qt(z) for someQt(z) ∈
C[[z, t]] and the PDE satisfied byNt (z) becomes then-dimensional inviscid Burgers’ equation, from
which a recurrent formula forQt(z) also follows. Furthermore, we clarify some close relationships
among the inversionproblem, theLegendre transformand the inviscidBurgers’equations. In particular
the Jacobian conjecture is reduced to a problem on the inviscid Burgers’ equations. Finally, under
the gradient condition, we derive a binary rooted tree expansion inversion formula forQt(z). The
recurrent inversion formula and the binary rooted tree expansion inversion formula derived in this
paper can also be used as computational algorithms for solutions of certain Cauchy problems of the
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inviscid Burgers’ equations and the Legendre transforms of the power seriesf (z) with o(f (z))�2
and det Hes(f )(0) 	= 0.
© 2005 Elsevier B.V. All rights reserved.

MSC:32H02; 39B32; 14R15

1. Introduction

Let z = (z1, z2, . . . , zn) andF(z) = z − H(z) be a formal map fromCn to Cn with
o(H(z))�1 andG(z) the formal inversemap ofF(z). Thewell-known Jacobian conjecture
first proposed by Keller[12] in 1939 claims that,if F(z) is a polynomial map with the Jaco-
bianj (F )(z)=1,the inversemapG(z)mustalsobeapolynomialmap.Despite intensestudy
from mathematicians in more than half a century, the conjecture is still wide open even for
the casen=2. In 1998,Smale[18] included the Jacobian conjecture in his list of 18 important
mathematical problems for the 21st century. For more history and known results on the Ja-
cobian conjecture, see[3,6] and references there. One of natural approaches to the Jacobian
conjecture is to derive formulas for the inverseG(z). In literature, formulas which directly
or indirectly give the formal inverseG(z) are called inversion formulas. Due tomany impor-
tant applications in other areas, especially in enumerative combinatorics (See, for example,
[19,8] and references there.), inversion formulas attracted much attention from mathemati-
ciansmuchearlier than theJacobianconjecture.Thefirst inversion formula inhistorywas the
Lagrange’s inversion formula given by Lagrange[14] in 1770, which provides a formula to
calculate all coefficients ofG(z) for the one-variable case. This formula was generalized to
multi-variable cases byGood[9] in 1965. Jacobi[10] in 1830 also gave an inversion formula
for the casesn�3 and later[11] in 1844 for the general case. This formula is now called the
Jacobi’s inversion formula. Another inversion formula is the Abhyankar–Gurjar inversion
formula, which was first proved by Gurjar in 1974 (unpublished), and later Abhyankar[1]
gave a simplified proof. By using theAbhyankar–Gurjar inversion formula, Bass et al.[3] in
1982 andWright[21] in 1989 proved the so-called Bass–Connell–Wright’s tree expansion
formula. Recently, in[25], this formula has been generalized to a tree expansion formula
for formal flowsF(z, t) generated byF(z) which provides a uniform formula for all the
powersF [m](z) = F(z,m) (m ∈ Z) of F(z). Besides the inversion formulas above, there
are also many other inversion formulas in literature. See, for example,[8,22]and references
there.
Recently, de Bondt and van den Essen[4] and Meng[15] have made a breakthrough

on the Jacobian conjecture. They reduced the Jacobian conjecture to polynomial maps
F(z) = z − H(z) satisfying thegradient condition, i.e.H(z) is the gradient∇P(z) of a
polynomialP(z). We will refer this reduction as thegradient reductionand the condition
H(z) = ∇P(z) the gradient condition. One great advantage of the gradient reduction is
that, it reduces the Jacobian conjecture that involvesn polynomials to a problem that only
involves a single polynomial. Note that, by Poincaré lemma, a formal mapF(z)=z−H(z)
with (o(H(z))�1) satisfies the gradient condition if and only if the Jacobian matrixJF(z)

is symmetric. Following the terminology in[4], we also call the formal maps satisfying the
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gradient conditionsymmetricformal maps. For some further studies on symmetric formal
maps, see[4,5,7,15,24,26,27].
In this paper, we first study in Section 2 the deformationFt(z) = z − tH(z) of F(z) =

z−H(z) and its inverse mapGt(z), wheret is a formal parameter which commutes withz.
It is easy to see thatGt(z) can always be written asGt(z)= z+ tNt (z) for someNt(z) ∈
C[[z, t]]×n andGt=1(z)=G(z) when o(H(z))�2. We show in Theorem 2.4 thatNt(z) is
the unique solution of a Cauchy problem of a PDE, see Eqs. (2.6) and (2.7). The PDE Eq.
(2.6) satisfied byNt(z) has a similar form as then-dimensional inviscid Burgers’ equation
(See[16,17] or Eqs. (4.1) and (4.2) in this paper.). By solving the Cauchy problem Eqs.
(2.6) and (2.7) recursively, we get a recurrent formula (See Theorem 2.7.) forNt(z). This
recurrent inversion formula not only has more computational efficiency in certain situation
than other inversion formulas, but also provides some new understandings on the inversion
problem. For some theoretical consequences and applications of this recurrent inversion
formula, see[23,24]. Besides the main results described above, some other properties of
Nt(z) including the one in Proposition 2.9 that characterizesNt(z) are also proved in this
section.
In Section 3, we consider the case of symmetric formal maps. LetF(z)= z−H(z) with

H(z)= ∇P(z) for someP(z) ∈ C[[z]] with o(P (z))�2. One can show that, in this case,
Nt(z) = ∇Qt(z) for someQt(z) ∈ C[[z, t]]. Furthermore, Eq. (2.6) satisfied byNt(z) in
general does become then-dimensional inviscid Burgers’equation! It can also be simplified
to a Cauchy problem Eq. (3.6) in a single formal power seriesQt(z) ∈ C[[z, t]] instead
of Nt(z) ∈ C[[z, t]]×n in general. By solving the Cauchy problem Eq. (3.6) recurrently,
we also get a simplified recurrent formula (See Proposition 3.7.) forQt(z). Some other
properties ofQt(z) are also discussed in this section.
In Section 4, we clarify some connections among the inversion problem, the Legendre

transform and the inviscid Burgers’ equations. In particular, we reduce the Jacobian con-
jecture to a problem on the inviscid Burgers’ equations, see Conjecture 4.1 and Proposition
4.2. More precisely,∇Qt(z) is the unique power series solution of a Cauchy problem of the
inviscid Burgers’ equations with initial condition∇Qt=o(z) = ∇P(z) = H(z). Note that
the inviscid Burgers’ equations are master equations for diffusions of air or liquids with
viscid constantc= 0. It is surprising for us to see that the fate of the Jacobian conjecture is
completely determined by behaviors of airs or liquids with viscid constantc = 0.
The connection between the inversion problem and the Legendre transform (See[2,15])

is straightforward. For anyf (z) ∈ C[[z]] of order o(f (z))�2, we can always writef (z)=
1
2

∑n
i=1 z2i − P(z) for someP(z) ∈ C[[z]] with o(P (z))�2. If det Hes(f )(0) 	= 0, the

Legendre transform̄f (z) of f (z) is by definition given byf̄ (z)= 1
2

∑n
i=1z2i −Q(z), where

Q(z) is the unique formal power series with o(Q(z))�2 such that the formal mapsF(z)=
z−∇P(z) andG(z)= z−∇Q(z) are inverse to each other. Hence, the Legendre transform
for formal power seriesf (z) ∈ C[[z]]with o(f (z))�2, is essentially the inversion problem
under the gradient condition. All results and inversion formulas derived in this paper can
also be used as computational algorithms for the Legendre transforms of formal power
seriesf (z) ∈ C[[z]] with o(f (z))�2 and det Hes(f )(0) 	= 0.
Finally, in Section 5, by using the recurrent formula obtained in Proposition (3.7), we

derive a binary rooted tree expansion inversion formula for symmetric maps, see Theorem
5.2. Note that a tree expansion inversion formula for symmetric formal maps has been
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given by Meng[15] and Wright[24]. The binary rooted tree expansion inversion formula
we derive here is different from the one in[15] and Wright[24]. It only involves binary
rooted trees.
Two remarks are as follows. First, we will fixC as our base field. But all results, formulas

as well as their proofs given in this paper hold or work equally well for formal power
series over anyQ-algebra. Secondly, for convenience, we will mainly work on the setting
of formal power series overC. But, for polynomial maps or local analytic maps, all formal
maps or power series involved in this paper are also locally convergent. This can be easily
seen either from the fact that any local analytic map with non-zero Jacobian at the origin
has a locally convergent inverse, or from the well-known Cauchy–Kowaleskaya theorem
(See[17], for example.) in PDE.

2. A Deformation of formal maps

Once and for all, we fix the following notation and conventions.

(1) We fix n�1 and setz = (z1, z2, . . . , zn). For anyQ-algebrak, we denote byk[z]
(resp.k[[z]]) the polynomial algebra (resp. formal power series algebra) overk in
zi (1� i�n).

(2) For anyQ-algebrak, by a formal mapF(z) from kn to kn, we simply meanF(z) =
(F1(z), F2(z), . . . , Fn(z)) with Fi(z) ∈ k[[z]] (1� i�n). We denoted byJ (F ) and
j (F ) the Jacobian matrix and the Jacobian ofF(z), respectively.

(3) We denote by� the Laplace operator
∑n
i=1

�2

�z2i
. Note that, a polynomial or formal

power seriesP(z) is said to beharmonicif �P = 0.
(4) For anyk�1 andU(z)= (U1(z), U2(z), . . . , Uk(z)) ∈ C[[z]]×k, we set

o(U(z))= min
1� i�k

o(Ui(z))

and, whenU(z) ∈ C[z]×k,

degU(z)= max
1� i�k

degUi(z).

For anyUt(z) ∈ C[t][z]×k orC[[z, t]]×k (k�1) for some formal parametert, the
notation o(Ut (z)) and degUt(z) stand for the order and the degree ofUt(z)with respect
to z, respectively.

(5) For anyP(z) ∈ C[[z]], we denote by∇P(z) the gradient ofP(z), i.e.∇P = (
�P
�z1
,

�P
�z2
, . . . ,

�P
�zn
). We denote by Hes(P )(z) the Hessian matrix ofP(z), i.e. Hes(P )(z)=

(
�2P(z)
�zi�zj

).
(6) All n-vectors in this paper are supposed to be column vectors unless stated otherwise.
For any vector or matrixU, we denote byU � its transpose. The standardC-bilinear
form of n-vectors is denoted by〈·, ·〉.
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In this paper, we will fix a formal mapF(z) fromCn toCn and always assume thatF(z)
has the formF(z)= z−H(z) with o(H(z))�1. Note that, any formal mapV : Cn → Cn

with V (0) = 0 andj (V )(0) 	= 0 can be transformed into the form above by composing
with some affine automorphisms ofCn.
Let t be a formal parameter which commutes withzi (1� i�n). We setFt(z) = z −

tH(z). SinceFt=1(z) = F(z), Ft(z) can be viewed as a deformation of the formal map
F(z). From now on, we will denote byG(z) andGt(z) the formal inverses ofF(z) and
Ft(z), respectively. Note that,Gt(z) can always be written asGt(z) = z + tNt (z) for
someNt(z) ∈ C[[z, t]]×n with o(Nt (z))�1. Furthermore, when o(H(z))�2, Nt(z) ac-
tually lies in C[t][[z]]×n with o(Nt (z))�2, and by the uniqueness of formal inverses,
we haveGt=1(z) = G(z) in this case. This can be easily proven by using any well-
known inversion formulas, for example, the Abhyankar–Gurjar inversion formula[1] or
the Bass–Connell–Wright tree expansion formula[3]. We will show in Theorem 2.4 that
Nt(z) is the unique solution of a Cauchy problem of PDE, from which we derive a recur-
rent formula forNt(z), see Theorem 2.7. We also discuss some other properties ofNt(z)

including the one in Proposition 2.9, which characterizesNt(z), see Proposition 2.10.

Lemma 2.1. For the formal power seriesNt(z) ∈ C[[z, t]]×n defined above, we have the
following identities.

Nt(Ft (z))=H(z), (2.1)

H(Gt)=Nt(z). (2.2)

Proof. Sincez=Gt(Ft ), we have
z= Ft(z)+ tNt (Ft (z)),
z= z− tH(z)+ tNt (Ft (z)).

Therefore,

H(z)=Nt(Ft (z)),
which is Eq. (2.1). By composing the both sides of Eq. (2.1) withGt(z) from right, we get
Eq. (2.2). �

Lemma 2.2. The following statements are equivalent.

(1) JH(z) is nilpotent.
(2) Tr JNt(z)= 0.
(3) JNt(z) is nilpotent.

Proof. First, by the factJGt(Ft (z))= JF−1
t (z), we have

I + tJNt (Ft )= (I − tJH)−1,
tJNt (Ft )= −I + (I − tJH)−1= tJH(I − tJH)−1,
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JNt(Ft )= JH(I − tJH)−1=
∞∑
k=1

JHk(z)tk−1. (2.3)

Therefore we have

Tr JNt(Ft )=
∞∑
k=1

Tr (JH)ktk−1 (2.4)

and, for anym�0,

JNmt (Ft )= JHm(I − tJH)−m, (2.5)

since the matricesJH and(I − tJH)−1 commute with each other.
By using the fact thatFt(z) is an automorphism of the power series algebraC[[t]][[z]],

we see that,(1)⇔ (2) follows from Eq. (2.4) and the fact that a matrixB is nilpotent if and
only if Tr (Bk)=0 (k�1); while (1)⇔ (3) follows form Eq. (2.5) and the factI − tJH(z)
is invertible inMn(C[[t]][[z]]). �

By Eq. (2.5) and the factNt=1(z)=N(z)when o(P (z))�2, it is easy to see that we have
the following corollary.

Corollary 2.3. LetF(z)=z−H(z)witho(H(z))�2andG(z)=z+N(z)witho(N(z))�2
the formal inverse ofF(z). Then, for any m�1, we haveJHm(z) = 0 if and only if
JNm(z)= 0. In particular, JH(z) is nilpotent if and only ifJN(z) is.

Theorem 2.4. For anyH(z) ∈ C[[z]]×n andNt(z) ∈ C[t][[z]]×n with o(H(z))�1 and
o(Nt (z))�1, respectively. The following statements are equivalent.

(1) The formal mapGt(z)= z+ tNt (z) is the formal inverse ofFt(z)= z− tH(z).
(2) Nt(z) is the unique power series solution of the following Cauchy problem of PDE’s.

�Nt
�t

= JNt ·Nt, (2.6)

Nt=0(z)=H(z), (2.7)

whereJNt is the Jacobian matrix ofNt(z) with respect to z.

Proof. First, we show(1)⇒ (2). By applying �
�t to the both sides of Eq. (2.1), we get

0= �Nt(Ft )
�t

= �Nt
�t
(Ft )+ JNt(Ft )�Ft�t

= �Nt
�t
(Ft )− JNt(Ft )H.
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Therefore,

�Nt
�t
(Ft )= JNt(Ft )H.

By composing withGt(z) from right, we get

�Nt
�t

= JNt ·H(Gt)= JNtNt .

Note thatGt=0(z) = z, for it is the formal inverse ofFt=0(z) = z. Eq. (2.7) follows
immediately from Eq. (2.2) by settingt = 0.
To show(2) ⇒ (1), we assume that the formal inverse ofFt(z) = z − tH(z) is given

byGt(z) = z + tÑt (z). By the fact proved above, we know that̃Nt(z) also satisfies Eqs.
(2.6) and (2.7). We will show in Proposition 2.5 below that the power series solutions of
the Cauchy problem Eqs. (2.6) and (2.7) are actually unique. By this fact it is easy to see
that(2)⇒ (1) also holds. �

We define the sequence{N[m](z)|m�1} by writing

Nt(z)=
∞∑
m=1

N[m](z)tm−1. (2.8)

Proposition 2.5. LetNt(z)=∑∞
m=1N[m](z)tm−1 be a power series solution of Eqs.(2.6)

and(2.7).Then

N[1](z)=H(z), (2.9)

N[m](z)= 1

m− 1
∑
k+l=m
k,l�1

JN [k](z) ·N[l](z) (2.10)

for anym�2.

Proof. First, Eq. (2.9) follows immediately from Eq. (2.7). Secondly, by Eq. (2.6), we have

∞∑
m=1

(m− 1)N[m](z)tm−2=
( ∞∑
k=1

JN [k](z)tk−1
)( ∞∑

l=1
N[l](z)t l−1

)
.

Comparing the coefficients oftm−2 of the both sides of the equation above, we have

(m− 1)N[m](z)=
∑
k+l=m
k,l�1

JN [k](z) ·N[l](z)

for anym�2. Hence we get Eq. (2.10).�

By using Eqs. (2.9) and (2.10) and the mathematical induction, it is easy to show the
following lemma.
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Lemma 2.6. (a) o(N[m](z))�m+ 1 for anym�1.
(b) SupposeH(z) ∈ C[z]×n, then, for anym�1, N[m] ∈ C[z]×n with degN[m](z)�

(degH − 1)m+ 1.
(c) If H(z) is homogeneous of degree d, then, N[m](z) is homogeneous of degree(d −

1)m+ 1 for anym�1.

Note that, by Lemma 2.6(a), the infinite sum
∑∞
m=1N[m](z)tm−1

0 makes sense for any
complex numbert = t0. In particular, whent =1,Gt=1(z) gives us the formal inverseG(z)
of F(z).

Theorem 2.7(Recurrent inversion formula). Let {N[m](z)|m�1} be the sequence defined
by Eqs.(2.9) and (2.10) recursively. Then the formal inverse ofF(z) = z − H(z) is
given by

G(z)= z+
∞∑
m=1

N[m](z). (2.11)

One interesting property ofNt(z) is the following proposition. It basically says that
{Nt(z)|t ∈ C} gives a family of formal maps fromCn toCn, which are “closed” under the
inverse operation.

Proposition 2.8. For anys ∈ C, the formal inverse ofUs,t (z) : =z − sNt (z) is given by
Vs,t (z) : =z+ sNt+s(z). Actually, Us,t (z)= Ft+s ◦Gt(z) andVs,t (z)= Ft ◦Gs+t (z).

Proof.

Ft+s ◦Gt(z)=Gt(z)− (t + s)H(Gt(z))
= z+ tNt (z)− (t + s)Nt (z)
= z− sNt (z)
=Us,t (z).

Similarly, we can proveVs,t (z)= Ft ◦Gs+t (z). �

Another special property ofNt(z) is given by the following proposition.

Proposition 2.9. For anyU(z) ∈ C[[z]], the unique power series solutionUt(z) in z and
t of the Cauchy problem

{ �Ut
�t = 〈∇Ut,Nt 〉,
Ut=0(z)= U(z). (2.12)

is given byUt(z)= U(z+ tNt (z)).
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Proof. By similar arguments as the proof of Proposition 2.5, it is easy to see that the power
series solution inzandt of the Cauchy problem Eq. (2.12) is unique. So it will be enough
to show thatUt(z)= U(z+ tNt (z)) is a solution of Eq. (2.12).

�Ut
�t

= �
�t
U(z+ tNt )

= 〈∇U(z+ tNt ), �
�t
(z+ tNt )〉

= 〈∇U(z+ tNt ), Nt + t �Nt�t
〉

and applying Eq. (2.6):

= 〈∇U(z+ tNt ), Nt + tJNtNt 〉
= 〈∇U(z+ tNt ), (I + tJNt )Nt 〉
= 〈(I + tJNt )�∇U(z+ tNt ), Nt 〉
= 〈∇(U(z+ tNt )), Nt 〉
= 〈∇Ut, Nt 〉. �

Actually,Nt(z) is characterized by the property in Proposition 2.9.

Proposition 2.10. For anyNt(z) ∈ C[[z, t]]×n witho(Nt (z))�1, the following are equiv-
alent.

(1) z+ tNt (z) is the formal inverse ofz− tH(z) for someH(z) ∈ C[[z]]×n.
(2) Proposition2.9holds forNt(z).

Proof. First, (1) ⇒ (2) follows from Proposition 2.9. To show(2) ⇒ (1), let Ut,i(z)
(1� i�n) be the unique power series solution of the Cauchy problem (2.12) withU(z)=zi
and set̃Ut(z)= (Ut,1(z), Ut,2(z), . . . , Ut,n(z)). Note that Eq. (2.12) forUt,i(z) (1� i�n)
can be written as

�Ũt
�t

= J Ũt ·Nt . (2.13)

By Proposition 2.9, we have

Ũt (z)= z+ tNt (z). (2.14)

By applying �
�t to the equation above, we get

�Ũt
�t

=Nt + t �Nt�t
. (2.15)
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By combining the equation above with Eqs. (2.13) and (2.14), we have

Nt + t �Nt�t
= J Ũt ·Nt = (I + tJNt ) ·Nt .

Therefore, we have

�Nt
�t

= JNt ·Nt . (2.16)

SetH(z)=Nt=0(z). By Theorem 2.4, we see that (1) holds.�

3. The case of symmetric formal maps

Let F(z) = z − H(z) with o(H(z))�1 be a formal map fromCn to Cn. We say that
F(z) is asymmetricformal map if its Jacobian matrixJ (F ) is symmetric. Note that, by
Poincaré lemma, it is easy to see thatF(z) is symmetric if and only if it satisfies thegradient
condition, i.e.H(z)= ∇P(z) for someP(z) ∈ C[[z]].
In this section, we study the deformationFt(z) and its inverse mapGt(z) for symmetric

formal mapsF(z). Besides some new properties ofNt(z), the main results and formulas
for Nt(z) obtained in the previous section will also be simplified.
We first give a different proof for the following lemma which was first proved in[15].

Lemma 3.1. Let F(z) = z − H(z) with o(H(z))�1 and j (F )(0) 	= 0 be a formal map
with formal inverseG(z)= z+N(z). Then, F(z) is symmetric if and only ifG(z) is.

Proof. We first assume thatH(z) = ∇P(z) for someP(z) ∈ C[[z]]. Note thatJH(z) =
Hes(P (z)) is symmetric. By Eq. (2.3), we see thatJNt(Ft ) is symmetric. Hence so are
JNt(z) andJN(z) = JNt=1(z). By Poincaré Lemma, we know thatN(z) must be the
gradient of someQ(z) ∈ C[[z]], i.e.N(z)= ∇Q(z).
By switchingH(z) andN(z), we see that the converse also holds.�

Now, for anyP(z) ∈ C[[z]] with o(P (z))�2, we consider the deformationFt(z)= z−
t∇P(z) and its inverseGt(z) = z + tNt (z). By applying Lemma 3.1 toFt(z), we know
thatNt(z)=∇Qt(z) for someQt(z) ∈ C[[z, t]]with o(Qt (z))�2.We will fix the notation
Qt(z) as above through the rest of this paper unless stated otherwise.

Proposition 3.2. For anyP(z) ∈ C[[z]] with o(P (z))�2, the following are equivalent.
(1) HesP(z) is nilpotent.
(2) Qt(z) is harmonic, i.e.�Qt(z)= 0.
(3) HesQt(z) is nilpotent.

Proof. (1)⇔ (2) follows from Lemma 2.2.(1)⇔ (3) follows from Corollary 2.3. Hence
we also have(2)⇔ (3). �
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Lemma 3.3. Let P(z), Ft(z), Gt(z) andQt(z) as above. Then we have the following
identities.

(∇Qt)(Ft )= ∇P, (3.1)

(∇P)(Gt)= ∇Qt. (3.2)

Proof. SinceH(z) = ∇P andNt(z) = ∇Qt in our case, the lemma follows immediately
from Lemma 2.1. �

Lemma 3.4.

Qt(Ft )= P − t

2
〈∇P,∇P 〉, (3.3)

P(Gt)=Qt + t

2
〈∇Qt,∇Qt 〉. (3.4)

Proof. For any 1� i�n, we consider

�Qt(Ft )
�zi

=
n∑
j=1

�Qt
�zj

(Ft )
�Ft,j (z)

�zi

and applying Eq. (3.1) in Lemma 3.3:

=
n∑
j=1

�P
�zj

(
�i,j − t �2P

�zi�zj

)

= �P
�zi

− t
n∑
j=1

�P
�zj

�2P
�zi�zj

= �P
�zi

− t

2

�
�zi

n∑
j=1

�P
�zj

�P
�zj

= �
�zi

(
P − t

2
〈∇P,∇P 〉

)
.

Hence, Eq. (3.3) holds. Eq. (3.4) can be proved similarly by using Eq. (3.2).�

Lemma 3.5.

�Qt
�t
(Ft )= 1

2〈∇P,∇P 〉. (3.5)
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Proof. By applying �
�t to the both sides of Eq. (3.3), we get

−1
2〈∇P,∇P 〉 = �Qt

�t
(Ft )+

n∑
j=1

�Qt
�zj

(Ft )
�Ft,j
�t

= �Qt
�t
(Ft )−

n∑
j=1

�P
�zj

�P
�zj

= �Qt
�t
(Ft )− 〈∇P,∇P 〉.

Hence, Eq. (3.5) follows. �

Under the gradient condition, Theorem 2.4 becomes the following theorem.

Theorem 3.6. For any Qt(z) ∈ C[[z, t]] with o(Qt (z))�2 and P(z) ∈ C[[z]] with
o(P (z))�2, the following are equivalent.

(1) Gt(z)= z+ t∇Qt(z) is the formal inverse ofFt(z)= z− t∇P(z).
(2) Qt(z) is the unique power series solution of the following Cauchy problem of PDE’s.{ �Qt (z)

�t = 1
2〈∇Qt,∇Qt 〉,

Qt=0(z)= P(z). (3.6)

Note that,(2) ⇒ (1) follows from (1) ⇒ (2) and the uniqueness of the power series
solutions of theCauchyproblemEq. (3.6). (For a similar argument, see theproof ofTheorem
2.4.)While the uniqueness of the power series solutions of Eq. (3.6) can be proved by similar
arguments as the proof of Proposition 2.5. (Also see Proposition 3.7 below.) So we only
need show(1)⇒ (2), for which we here give two different proofs.

First proof. First note thatJ (∇Qt) = Hes(Qt ). By replacingNt(z) by ∇Qt(z) in Eqs.
(2.6) and (2.7), we get

∇ �Qt
�t

= Hes(Qt )∇Qt, (3.7)

∇Qt=0(z)= ∇P(z). (3.8)

Since o(P (z))�2 and o(Qt (z))�2, Eq. (3.8) impliesQt=0(z) = P(z). Furthermore, Eq.
(3.7) implies that, for any 1� i�n, we have

�
�zi

�Qt
�t

=
n∑
j=1

�2Qt
�zi�zj

�Qt
�zj

= 1

2

�
�zi

〈∇Qt,∇Qt 〉.

Since o(�Qt�t )�2 and o(〈∇Qt,∇Qt 〉)�2, the PDE in Eq. (3.6) also holds.�
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Second proof.By composing withGt(z) from right to both sides of Eq. (3.5) and applying
Eq. (3.2), we have

�Qt(z)
�t

= 1
2〈(∇P)(Gt), (∇P)(Gt)〉

= 1
2〈∇Qt,∇Qt 〉.

The initial condition in Eq. (3.6), as proved in the first proof, follows from Eq. (2.7) in
Theorem 2.4. �

We define a sequence of formal power series{Q[m](z) ∈ C[[z]]|m�1} by writing

Qt(z)=
∞∑
m=1

Q[m](z)tm−1. (3.9)

From Eq. (3.6), we getQ[1](z) = P(z). Furthermore, by replacingQt(z) by the sum
above and comparing the coefficients oftm−2 (m�2) in Eq. (3.6), we get Eq. (3.11) below.
So we obtain the following recurrent formula for the formal power series{Q[m](z) ∈
C[[z]]|m�1}.

Proposition 3.7.We have the following recurrent formula forQt(z).

Q[1](z)= P(z), (3.10)

Q[m](z)= 1

2(m− 1)
∑
k,l�1
k+l=m

〈∇Q[k](z),∇Q[l](z)〉 (3.11)

for anym�2. In particular,whenP(z) is a polynomial,Q[m](z) (m�1) are also polyno-
mials.

For a uniform non-recurrent formula forQkt (z) (k�1) under the condition that Hes(P )
is nilpotent, see[26].

4. Relationships with Legendre transform and the inviscid Burgers’ equations

In this section,we clarify someclose relationships of the inversion problem for symmetric
formal maps with the Legendre transform and the inviscid Burgers’equations. In particular,
we reduce the Jacobian conjecture to a problem on the Cauchy problem Eq. (4.3), whose
PDE is the simplified version of the inviscid Burgers’ under the gradient condition.
First let us recall theLegendre transform (See[15,2].). Letf (z) ∈ C[[z]]witho(f (z))�2

and det Hes(f )(0) 	= 0. Then the formal Legendre transform̄f (z) of f (z) by definition
is the uniquef̄ (z) ∈ C[[z]] with o(f̄ (z))�2 such that the inverse map of the formal map
∇f : Cn → Cn is given by∇f̄ . Note that, for anyf (z) ∈ C[[z]] of order o(f (z))�2,
one can always writef (z)= 1

2

∑n
i=1 z2i − P(z) for someP(z) ∈ C[[z]] with o(P (z))�2.
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If det Hes(f )(0) 	= 0, it is easy to check that the Legendre transformf̄ (z) of f (z) is given
by f̄ (z)= 1

2

∑
i=1 z2i +Q(z) for someQ̄(z) ∈ C[[z]]with o(Q(z))�2. Hence the Legendre

transform forf (z) ∈ C[[z]]with o(f (z))�2 is essentially the inversion problem under the
gradient condition. Therefore, the recurrent inversion formula in Proposition 3.7 and the
binary rooted tree expansion formula in Theorem 5.2 that will be derived in next section
can also be used as computational algorithms for the Legendre transform for formal power
seriesf (z) ∈ C[[z]] of o(f (z))�2 and det Hes(f )(0) 	= 0.
Next we consider some relationships of the inversion problem for symmetric formal

maps with the inviscid Burgers’ equations. The Burgers’ equations (See[16,17] and the
references there.) are master equations in Diffusion theory. Recall that then-dimensional
inviscid Burgers’ equation is usually written as

�Ut
�t
(z)+ (JUt )�(z) · Ut(z)= 0 (4.1)

or

�Ut
�t
(z)= (JUt )�(z) · Ut(z), (4.2)

whereUt(z) is an-vector-valued function of(t, z)and(JUt )(z)denotes the Jacobianmatrix
of Ut(z) with respect toz.
Note that, for anyn-vector-valued functionVt (z) of (t, z), Vt (z) satisfies Eq. (4.1) if and

only if −Vt (z) satisfies Eq. (4.2). Hence Eqs. (4.1) and (4.2) are equivalent to each other.
In this paper, we will refer the PDE (4.2) as then-dimensional inviscid Burgers’ equation.
By comparing Eqs. (2.6) and (4.2), we see that, the main PDE Eq. (2.6) for the gen-

eral inversion problem without the gradient condition is almost then-dimensional inviscid
Burgers’ equation (4.2) except the transpose part. More interestingly, under the gradient
condition, we haveJNt(z)=Hes(Qt ) which is symmetric and Eq. (2.6) becomes exactly
then-dimensional inviscid Burgers’equation Eq. (4.2). The PDE in theCauchy problemEq.
(3.6) is just a simplified version of the inviscid Burgers’ equation (4.2) under the assump-
tion thatUt(z)= ∇Qt(z) for some functionQt(z) of t andz. Motivated by the connections
above, we formulate the following conjecture.

Conjecture 4.1. For any homogeneous polynomialP(z) of degreed�2with the Hessian
matrix Hes(P ) nilpotent, let Ut(z) be the unique power series solution of the following
Cauchy problem of PDE’s.

�Ut
�t (z)= 1

2〈∇Ut(z),∇Ut(z)〉,
Ut=0(z)= P(z). (4.3)

ThenUt(z) must be a polynomial in both z and t.

Proposition 4.2. Conjecture (4.1) above for d = 4 is equivalent to the Jacobian
conjecture.
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Proof. First, by using the gradient reduction in[4] and[15] and the homogeneous reduc-
tion in [3] on the Jacobian conjecture, we see that the Jacobian conjecture is reduced to
polynomial mapsF(z)= z − ∇P(z) with P(z) homogeneous of degreed = 4. Secondly,
sinceP(z) is homogeneous, the polynomial mapF(z)= z− ∇P(z) satisfies the Jacobian
conditionj (F )(z)=1 if and only if the Hessianmatrix Hes(P )=J (∇P) is nilpotent. Then
it is easy to see, using Eqs. (2.8) and (2.11), that the equivalence of Conjecture 4.1 and the
Jacobian conjecture follows directly from Theorem 3.6.�

Since the Jacobian conjecture for polynomial mapsF(z) of degree degF(z)�2 has
been proved by Wang[20], we see that Conjecture 4.1 is true ford = 2,3. It would be
very interesting to find some proofs for these results by PDE methods, especially for the
cased =3. Understandings of Conjecture 4.1 ford =3 from PDE point view certainly will
provide new insights to the Jacobian conjecture.

5. A binary rooted tree expansion inversion formula

In this section, we derive a binary rooted tree inversion expansion formula for symmetric
formal maps. (See Theorem 5.2.) First let us fix the following notations and conventions.
By a rooted treewe mean a finite 1-connected graph with one vertex designated as its

root. In a rooted tree there are natural ancestral relations between vertices. We say a vertex
w is a child of vertexv if the two are connected by an edge andw lies further from the root
thanv. We define thedegreeof a vertexv of T to be the number of its children. A vertex is
called aleaf if it has no children. A rooted treeT is said to be abinary rooted treeif every
non-leaf vertex ofT has exactly two children. When we speak of isomorphisms between
rooted trees, we will always mean root-preserving isomorphisms.
Notation: Once and for all, we fix the following notation for the rest of this paper.

(1) We letT (resp.B) be the set of isomorphism classes of all rooted trees (resp. binary
rooted trees). For anym�1, we letTm be the set of isomorphism classes of all rooted
trees withmvertices.

(2) We call the rooted tree with one vertex thesingleton, denoted by◦. For convenience,
we also view the empty set as a rooted tree, denoted by∅.

(3) For any rooted treeT, we set the following notation:

• rtT denotes the root vertex ofT.
• |T | denotes the number of the vertices ofT andl(T ) the number of leaves.
• �(T ) denotes the number of the elements of the automorphism group Aut(T ).
• T̂ denotes the rooted tree obtained by deleting all the leaves ofT.

For any set of rooted treesT1, T2, . . . , Td , we defineB+(T1, T2, . . . , Td) to be the rooted
tree obtained by connecting all roots ofTi (i = 1,2, . . . , d) to a single new vertex, which
is set to the root of the new rooted treeB+(T1, T2, . . . , Td). Note that, for anyT1, T2 ∈ B,
we haveB+(T1, T2) ∈ B.
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Next let us recallT-factorialT ! of rooted treesT, which was first introduced by Kreimer
[13]. It is defined inductively as follows:

(1) For the empty rooted tree∅ and the singleton◦, we set∅! = 1 and◦! = 1.
(2) For any rooted treeT = B+(T1, T2, . . . , Td), we set

T ! = |T |T1!T2! · · · Td !. (5.1)

Note that, for the chainsCm (m ∈ N), i.e. the rooted trees withm vertices and height
m − 1, we haveCm! = m!. Therefore theT-factorial of rooted trees can be viewed as a
generalization of the usual factorial of natural numbers.
Now, for any binary rooted treeT, we set

�(T )= �(T ) T̂ !. (5.2)

Lemma 5.1. (a)For any non-empty binary rooted tree T, we have

|T | = 2l(T )− 1, (5.3)

|T̂ | = l(T )− 1. (5.4)

(b) For anyT ∈ B with T = B+(T1, T2), we have

�(T )=
{
2(l(T )− 1)�(T1)�(T2) if T1 � T2,
(l(T )− 1)�(T1)�(T2) if T1 /� T2. (5.5)

Proof. (a) First note that Eq. (5.4) follows from Eq. (5.3) and the fact|T̂ | = |T | − l(T ).
Hence we only need to show Eq. (5.3).
Weuse themathematical induction on|T |.When|T |=1,wehaveT=◦and|T |=l(T )=1,

hence (a) holds.
For anyT ∈ B with |T |�2. We writeT = B+(T1, T2). Note thatT1, T2 	= ∅ and

|Ti |< |T | (i = 1,2). By our induction assumption, we have
|T | = |T1| + |T2| + 1

= (2l(T1)− 1)+ (2l(T2)− 1)+ 1
= 2(l(T1)+ l(T2))− 1
= 2l(T )− 1.

(b) First note that, we always have

�(T )=
{
2�(T1)�(T2) if T1 � T2,
�(T1)�(T2) if T1 /� T2. (5.6)

By Eqs. (5.1) and (5.4), we also have

T̂ ! = |T̂ | T̂1! T̂2! = (l(T )− 1) T̂1! T̂2!. (5.7)

Then, it is easy to see that Eq. (5.5) follows directly from Eqs. (5.2), (5.6) and (5.7).�
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Now we fix P(z) ∈ C[[z]] andQt(z) ∈ C[[z, t]] as in Section 3. We assign a formal
power seriesQT (z) ∈ C[[z]] for each non-empty binary rooted treeT as follows:

(1) ForT = ◦, we setQT (z)= P(z).
(2) For any binary rooted treeT = B+(T1, T2), we set

QT (z)= 〈∇QT1(z),∇QT2(z)〉.

Finally we are ready to state and prove the main theorem of this section.

Theorem 5.2. For anym�1,we have

Q[m](z)=
∑

T ∈B2m−1

1

�(T )
QT (z)=

∑
T ∈B
l(T )=m

1

�(T )
QT (z). (5.8)

Therefore, by Eq. (3.9)we have

Qt(z)=
∑
T ∈B\∅

t l(T )−1

�(T )
QT (z), (5.9)

Q(z)=
∑
T ∈B\∅

1

�(T )
QT (z). (5.10)

Proof. Note that, by Eq. (5.3) in Lemma 5.1, we have

B2m−1= {T ∈ B|l(T )=m}

B2m = ∅,

for anym�1. Hence the two sums in Eq. (5.8) are equal to each other.
To prove Eq. (5.8), we first set, for anym�1,

V[m](z)=
∑
T ∈B
l(T )=m

1

�(T )
QT (z)

and then to show thatV[m](z)=Q[m](z) (m�1). By Proposition 3.7, it will be enough to
show that the sequence{V[m](z) ∈ C[[z]]|m�1} also satisfy Eqs. (3.10) and (3.11).
For the casem = 1, since there is only one binary rooted treeT with l(T ) = 1, namely,

T = ◦, we haveV[1](z)=QT=◦(z)= P(z)=Q[1](z). Hence we have Eq. (3.10).
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For anym�2, we consider
1

2(m− 1)
∑
k,l�1
k+l=m

〈∇V[k](z),∇V[l](z)〉

=
∑

T1,T2∈B,
l(T1)=k,l(T2)=l,
k,l�1,k+l=m

1

2(m− 1)�(T1)�(T2) 〈∇QT1(z),∇QT2(z)〉

=
∑

T1,T2∈B,
l(T1)=k,l(T2)=l,
k,l�1,k+l=m

1

2(m− 1)�(T1)�(T2)QB+(T1,T2)(z).

Note that, the general term in the sum above appears twice whenT1 /� T2 but only once
whenT1 � T2. By applying Eq. (5.5) in Lemma 5.1:

=
∑
T ∈B
l(T )=m

1

�(T )
QT (z)

= V[m](z).

Hence we have Eq. (3.11).�
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