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Abstract

Let F(z) = z — H(z) with order dH (z)) >1 be a formal map fronC" to C" and G(z) the
formal inverse map of (z). We first study the deformatioF; (z) = z — t H(z) of F(z) and its formal
inverseG;(z) =z + tN;(z). (Note thatG;—1(z) = G(z) when dH (z)) > 2.) We show thaiV; (z) is
the unique power series solution of a Cauchy problem of a PDE, from which we derive a recurrent
formula for G, (z). Secondly, motivated by the gradient reduction obtained by de Bondt and van den
Essen (A Reduction of the Jacobian Conjecture to the Symmetric Case, Report No. 0308, University
of Nijmegen, June 2003, Proc. of the AMS, to appear) and Meng (Legendre Transform, Hessian
Conjecture and Tree Formula, math-ph/0308035) for the Jacobian conjecture, we consider the formal
mapsF (z) = z — H(z) satisfying the gradient condition, i.&.(z) = V P(z) for someP(z) € C[[z]]
of order d P(z)) > 2. We show that, under the gradient conditidia(z) = V Q;(z) for someQ;(z) €
Cl[z, t]] and the PDE satisfied hy; (z) becomes tha-dimensional inviscid Burgers’ equation, from
which a recurrent formula fo@; (z) also follows. Furthermore, we clarify some close relationships
among the inversion problem, the Legendre transform and the inviscid Burgers’equations. In particular
the Jacobian conjecture is reduced to a problem on the inviscid Burgers’ equations. Finally, under
the gradient condition, we derive a binary rooted tree expansion inversion formudz foy. The
recurrent inversion formula and the binary rooted tree expansion inversion formula derived in this
paper can also be used as computational algorithms for solutions of certain Cauchy problems of the
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inviscid Burgers’ equations and the Legendre transforms of the power g&ggesvith o( f(z)) >2
and det Hegf)(0) # 0.
© 2005 Elsevier B.V. All rights reserved.

MSC:32H02; 39B32; 14R15

1. Introduction

Letz = (z1,22,...,2) and F(z) = z — H(z) be a formal map fronC" to C" with
0(H (z)) =1 andG(z) the formal inverse map df (z). The well-known Jacobian conjecture
first proposed by Kellgf12] in 1939 claims thaff F(z) is a polynomial map with the Jaco-
bian j (F)(z)=1,theinverse mag (z) mustalso be a polynomial mapespite intense study
from mathematicians in more than half a century, the conjecture is still wide open even for
the case=2.In 1998, Smal§l8] included the Jacobian conjecture in his list of 18 important
mathematical problems for the 21st century. For more history and known results on the Ja-
cobian conjecture, s¢8,6] and references there. One of natural approaches to the Jacobian
conjecture is to derive formulas for the inveiGéz). In literature, formulas which directly
orindirectly give the formal inversé (z) are called inversion formulas. Due to many impor-
tant applications in other areas, especially in enumerative combinatorics (See, for example,
[19,8] and references there.), inversion formulas attracted much attention from mathemati-
cians much earlier than the Jacobian conjecture. Thefirstinversion formulain history was the
Lagrange’s inversion formula given by Lagrari@é] in 1770, which provides a formula to
calculate all coefficients afi (z) for the one-variable case. This formula was generalized to
multi-variable cases by God#l] in 1965. JacoHil0] in 1830 also gave an inversion formula
for the cases <3 and latef11] in 1844 for the general case. This formula is now called the
Jacobi’s inversion formula. Another inversion formula is the Abhyankar—Gurjar inversion
formula, which was first proved by Gurjar in 1974 (unpublished), and later Abhydihkar
gave a simplified proof. By using the Abhyankar—Gurjar inversion formula, Basq&} &l.
1982 and Wrighf21] in 1989 proved the so-called Bass—Connell-Wright's tree expansion
formula. Recently, irf25], this formula has been generalized to a tree expansion formula
for formal flows F (z, t) generated by (z) which provides a uniform formula for all the
powersF!"l(z) = F(z, m) (m € Z) of F(z). Besides the inversion formulas above, there
are also many other inversion formulas in literature. See, for exaf8p?2] and references
there.

Recently, de Bondt and van den Es§éhand Meng[15] have made a breakthrough
on the Jacobian conjecture. They reduced the Jacobian conjecture to polynomial maps
F(z) = z — H(z) satisfying thegradient conditioni.e. H(z) is the gradienV P(z) of a
polynomial P(z). We will refer this reduction as thgradient reductiorand the condition
H(z) = VP(z) the gradient condition One great advantage of the gradient reduction is
that, it reduces the Jacobian conjecture that invahveslynomials to a problem that only
involves a single polynomial. Note that, by Poincaré lemma, a formalFiap=z — H(z)
with (0(H (z)) > 1) satisfies the gradient condition if and only if the Jacobian matfiXz)
is symmetric. Following the terminology [A], we also call the formal maps satisfying the
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gradient conditiorsymmetridormal maps. For some further studies on symmetric formal
maps, se@,5,7,15,24,26,27]

In this paper, we first study in Section 2 the deformatioty) =z — tH(z) of F(z) =
7z — H(z) and its inverse mag, (z), wheret is a formal parameter which commutes with
It is easy to see thd¥,(z) can always be written a8, (z) = z + t N,(z) for someN;(z) €
Cllz, t1I" andG;=1(z) = G(z) when d H(z)) > 2. We show in Theorem 2.4 thak(z) is
the unique solution of a Cauchy problem of a PDE, see Egs. (2.6) and (2.7). The PDE Eq.
(2.6) satisfied by, (z) has a similar form as the-dimensional inviscid Burgers’ equation
(See[16,17]or Egs. (4.1) and (4.2) in this paper.). By solving the Cauchy problem Egs.
(2.6) and (2.7) recursively, we get a recurrent formula (See Theorem 2. ) for. This
recurrent inversion formula not only has more computational efficiency in certain situation
than other inversion formulas, but also provides some new understandings on the inversion
problem. For some theoretical consequences and applications of this recurrent inversion
formula, seq23,24] Besides the main results described above, some other properties of
N;(z) including the one in Proposition 2.9 that characteriX¥e&) are also proved in this
section.

In Section 3, we consider the case of symmetric formal mapsFiet=z — H(z) with
H(z) = VP(z) forsomeP(z) € C[[z]] with o(P(z)) > 2. One can show that, in this case,
N;(z) = VO, (z) for someQ;(z) € C[[z, t]]. Furthermore, Eq. (2.6) satisfied B¥(z) in
general does become thelimensional inviscid Burgers’ equation! It can also be simplified
to a Cauchy problem Eg. (3.6) in a single formal power se@le&) € C[[z, t]] instead
of Ny(z) € C[[z, t]1]*" in general. By solving the Cauchy problem Eq. (3.6) recurrently,
we also get a simplified recurrent formula (See Proposition 3.7.Df@r). Some other
properties ofQ, (z) are also discussed in this section.

In Section 4, we clarify some connections among the inversion problem, the Legendre
transform and the inviscid Burgers’ equations. In particular, we reduce the Jacobian con-
jecture to a problem on the inviscid Burgers’ equations, see Conjecture 4.1 and Proposition
4.2. More preciselyy O, (z) is the unique power series solution of a Cauchy problem of the
inviscid Burgers’ equations with initial conditio Q;—o(z) = VP(z) = H(z). Note that
the inviscid Burgers’ equations are master equations for diffusions of air or liquids with
viscid constant = 0. It is surprising for us to see that the fate of the Jacobian conjecture is
completely determined by behaviors of airs or liquids with viscid congtan®.

The connection between the inversion problem and the Legendre transforii2 (Bse
is straightforward. For any (z) € C[[z]] of order d f (z)) > 2, we can always writ¢ (z) =
%Zl’.’zl Ziz — P(z) for someP(z) € C[[z]] with o(P(z)) >2. If det Heq f)(0) # 0, the
Legendre transfornf (z) of f(z) is by definition given byf (z) = $3"/_1z% — Q(z), where
0(z) is the unique formal power series with@(z)) > 2 such that the formal mags(z) =
z—VP(z)andG(z) =z — VQ(z) are inverse to each other. Hence, the Legendre transform
for formal power serieg (z) € C[[z]] with o(f(z)) > 2, is essentially the inversion problem
under the gradient condition. All results and inversion formulas derived in this paper can
also be used as computational algorithms for the Legendre transforms of formal power
seriesf (z) € C[[z]] with o(f(z)) >2 and det Hegf)(0) # 0.

Finally, in Section 5, by using the recurrent formula obtained in Proposition (3.7), we
derive a binary rooted tree expansion inversion formula for symmetric maps, see Theorem
5.2. Note that a tree expansion inversion formula for symmetric formal maps has been
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given by Meng[15] and Wright[24]. The binary rooted tree expansion inversion formula
we derive here is different from the one [(b5] and Wright[24]. It only involves binary
rooted trees.

Two remarks are as follows. First, we will fix as our base field. But all results, formulas
as well as their proofs given in this paper hold or work equally well for formal power
series over anf-algebra. Secondly, for convenience, we will mainly work on the setting
of formal power series oveét. But, for polynomial maps or local analytic maps, all formal
maps or power series involved in this paper are also locally convergent. This can be easily
seen either from the fact that any local analytic map with non-zero Jacobian at the origin
has a locally convergent inverse, or from the well-known Cauchy—Kowaleskaya theorem
(See[17], for example.) in PDE.

2. A Deformation of formal maps
Once and for all, we fix the following notation and conventions.

(1) We fixn>1 and setz = (z1, z2, . .., z). For anyQ-algebrak, we denote by|[z]
(resp.k[[z]]) the polynomial algebra (resp. formal power series algebra) kvar
zi (I<i<n).

(2) For any(Q-algebrak, by a formal mapF'(z) from k" to k", we simply meanF(z) =
(F1(2), F2(2), ..., F,,(2)) with F;(z) € k[[z]] (1<i<n). We denoted by (F) and
J (F) the Jacobian matrix and the Jacobiarft), respectively.

2
(3) We denote byl the Laplace operatoy_;_; aa—z Note that, a polynomial or formal

power seriesP(z) is said to beharmonicif AP —0.
(4) Foranyk>1 andU (z) = (U1(z), U2(2), ..., Ux(z)) € C[[z]]*¥, we set

o(U(2)) = 12niigk o(U; (2))

and, whenlJ (z) € C[z]**,

degU(z) = max. degU; (z).

For anyU,(z) € C[t1[z]** or C[[z, t11** (k>1) for some formal parametér the
notation U, (z)) and ded/; (z) stand for the order and the degredhfz) with respect
to z, respectively.

(5) For anyP(z) € C[[z]], we denote by P(z) the gradient ofP(z), i.e. VP = (az};,

gzi;, e %). We denote by He&P)(z) the Hessian matrix oP (z), i.e. HeqP)(z) =
%P ()
(m)'

(6) All n-vectors in this paper are supposed to be column vectors unless stated otherwise.
For any vector or matriXJ, we denote byU" its transpose. The standatibilinear
form of n-vectors is denoted by, -).
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In this paper, we will fix a formal mag'(z) from C" to C"* and always assume tha(z)
has the formF (z) = z — H(z) with o(H (z)) > 1. Note that, any formal map : C" — C"
with V(0) = 0 andj(V)(0) # 0 can be transformed into the form above by composing
with some affine automorphisms @f'.

Let t be a formal parameter which commutes with(1<i <n). We setF;(z) =z —
tH(z). SinceF;—1(z) = F(z), F;(z) can be viewed as a deformation of the formal map
F(z). From now on, we will denote by (z) and G,(z) the formal inverses of'(z) and
F;(z), respectively. Note that;,(z) can always be written a&,(z) = z + tN,(z) for
someN,(z) € Cl[[z, t]]*" with o(N;(z)) > 1. Furthermore, when(@/(z)) >2, N;(z) ac-
tually lies in C[¢][[z]]*" with o(N;(z))>2, and by the uniqueness of formal inverses,
we haveG,-1(z) = G(z) in this case. This can be easily proven by using any well-
known inversion formulas, for example, the Abhyankar—Gurjar inversion forfddilar
the Bass—Connell-Wright tree expansion form@p We will show in Theorem 2.4 that
N;(z) is the unique solution of a Cauchy problem of PDE, from which we derive a recur-
rent formula forNV;(z), see Theorem 2.7. We also discuss some other propertigg(of
including the one in Proposition 2.9, which characteri¥e&), see Proposition 2.10.

Lemma 2.1. For the formal power seried/;(z) € C[[z, t]]*" defined aboveve have the
following identities

Ni(Fi(2)) = H(2), (2.1)
H(G;) = N:(2). (2.2)
Proof. Sincez = G,(F;), we have
z=F(2) +tN(F(2)),
2=z —1H(2) +tN:(F(2)).
Therefore,
H(z) = Ni(F;(2)),

which is Eg. (2.1). By composing the both sides of Eq. (2.1) witkz) from right, we get
Eqg. (2.2). O

Lemma 2.2. The following statements are equivalent

(1) JH(z) is nilpotent

(2) TrJN,(z) =0.

(3) JN(z) is nilpotent

Proof. First, by the fact/ G, (F;(z)) = JF,_l(z), we have
I +tIN,(F)=(—-tJH)™},

tIN,(F)=—1+ (I —tJH) Y=tJH(UI —tJH)™,



304 W. Zhao / Journal of Pure and Applied Algebra 199 (2005) 299-317

IN((F)=JH(I —tJH) "t =" JH* ()" " (2.3)
k=1

Therefore we have

TrJN,(F,) = Z Tr (J H)k¢k=1 (2.4)
k=1

and, for anym >0,
JNM(F)=JH"(I —tJH)™", (2.5)

since the matricedH and(/ — ¢J H)~1 commute with each other.

By using the fact thaf; (z) is an automorphism of the power series algebrg]1[[z]],
we see that(l) < (2) follows from Eq. (2.4) and the fact that a matBxs nilpotent if and
only if Tr (B¥) =0 (k >1); while (1) < (3) follows form Eq. (2.5) and the fa¢t—rJ H (z)
is invertible inM,, (C[[¢1][[z]). O

By Eq. (2.5) and the faaV;—1(z) = N(z) when q P (z)) > 2, it is easy to see that we have
the following corollary.

Corollary 2.3. LetF(z)=z—H (z) witho(H (z)) >2andG(z)=z+ N (z) witho(N (z)) >2
the formal inverse off(z). Then for any m>1, we haveJ H"(z) = 0 if and only if
JN™(z) =0.In particular, J H(z) is nilpotent if and only if/ N (z) is.

Theorem 2.4. For any H(z) € C[[z]]*" and N,(z) € C[t][[z]]*" with o(H (z)) >1 and
0o(N,(z)) > 1, respectively. The following statements are equivalent

(1) The formal magG,(z) = z + tN,(z) is the formal inverse of;(z) =z — t H(2).
(2) N(z) is the unique power series solution of the following Cauchy problem of PDE’s

ON,
a_tt =JN; Ny, (2.6)
Ni—o(z) = H(z), (2.7)

whereJ N, is the Jacobian matrix oW, (z) with respect to z

Proof. First, we show(1) = (2). By applyinga‘% to the both sides of Eq. (2.1), we get

ON; (F)
0= ot
ON; 0F;
= a_t(Ft) + JN;(F;)K
@N,

= = (F) = IN(F)H.
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Therefore,
oN;
a_(Ft) =JN(F)H.
t
By composing withG, (z) from right, we get

ON;
EZJN[H(GZ)ZJNINt

Note thatG,—o(z) = z, for it is the formal inverse of,—o(z) = z. Eq. (2.7) follows
immediately from Eq. (2.2) by setting= 0.

To show(2) = (1), we assume that the formal inversefofz) = z — 1 H(z) is given
by G,(z) = z + tN,(z). By the fact proved above, we know thd}(z) also satisfies Egs.
(2.6) and (2.7). We will show in Proposition 2.5 below that the power series solutions of
the Cauchy problem Egs. (2.6) and (2.7) are actually unique. By this fact it is easy to see
that(2) = (1) also holds. [

We define the sequené&p,1(z)|m =1} by writing

Ni@) =) Npm(t" . (2.8)
m=1

Proposition 2.5. LetN;(z) =Y 4 N[ml(z)t’”‘l be a power series solution of Eq2.6)
and(2.7).Then

Niy(z) = H(z), (2.9)

1
Nim (@) = —— Y INw@ - Np() (2.10)
k+l=m
kil>1

foranym > 2.

Proof. First, Eq. (2.9) follows immediately from Eq. (2.7). Secondly, by Eq. (2.6), we have

> = DNyt 2 = (Z JN[k](Z)tkl> (Z N[z](z)tll> :
=1

m=1 k=1

Comparing the coefficients o' —2 of the both sides of the equation above, we have
(m — DNy (2) = Z J Nk (2) - Nipy(z)
s
for anym > 2. Hence we get Eq. (2.10).J

By using Egs. (2.9) and (2.10) and the mathematical induction, it is easy to show the
following lemma.
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Lemma 2.6. (&) a(Npu1(z)) =>m + 1foranym >1.

(b) SupposeH (z) € C[z]*", then for anym > 1, Ny, € Clz]*" with degNy,(z) <
(degH — 1)m + 1.

(c) If H(z) is homogeneous of degreetten Ny, (z) is homogeneous of degréé —
1)m + 1foranym>1.

Note that, by Lemma 2.6(a), the infinite s, ; Ny (z)t(’)"‘1 makes sense for any
complex number = rp. In particular, when =1, G,—1(z) gives us the formal inversg(z)
of F(2).

Theorem 2.7 (Recurrent inversion formu)a Let{Np,;(z)|m > 1} be the sequence defined
by Egs.(2.9) and (2.10) recursively Then the formal inverse of (z) = z — H(z) is
given by

G =z+ Y Npm). (2.11)

m=1

One interesting property aV,(z) is the following proposition. It basically says that
{N;(2)|t € C} gives a family of formal maps frort” to C", which are “closed” under the
inverse operation.

Proposition 2.8. For anys € C, the formal inverse ot/ ,(z) : =z — sN,(z) is given by
Vit (2) : =2 + sN45(2). Actually, U ;(2) = Fiq5 0 G1(2) and Vi ;(z) = F; o G4 (2).

Proof.

Fii50Gi(2) = Gi(2) — (t + 5)H(G4(2))
=z+1tN(2) — (@ +5)N: (2)
=7 —5N:(2)
=Us,t(z)~

Similarly, we can prové/; ;(z) = F; o Gy44(z). O
Another special property d¥, (z) is given by the following proposition.
Proposition 2.9. For any U (z) € C[[z]], the unique power series soluti@h (z) in z and

t of the Cauchy problem

ou,
{—OT = (VUi No), (2.12)

Ui—o(z) =U(2).

is given byU, (z) = U(z + tN,(2)).
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Proof. By similar arguments as the proof of Proposition 2.5, it is easy to see that the power
series solution irz andt of the Cauchy problem Eg. (2.12) is unique. So it will be enough
to show that; (z) = U(z + tN,(z)) is a solution of Eq. (2.12).

ou, 0
E = 5(](2 + tNt)
0
=(VU(z +1N,), a(z +1Ny))

oN;
= (VU(Z"‘tN;),Nt +ta>

and applying Eg. (2.6):

= (VU(z +tN,), N, +tJN,N,)
= (VU@ +tNy), (I+tJN)Ny)
= (Il +tJN)'VU(z +tN,), N;)
=(V(U(z+1Ny)), Ni)

=(VU, N). O

Actually, N, (z) is characterized by the property in Proposition 2.9.

Proposition 2.10. Forany N, (z) € Cl[[z, t]1*" with o(N;(z)) > 1, the following are equiv-
alent

(1) z 4+ tN,(2) is the formal inverse aof — r H(z) for someH (z) € C[[z]]*".
(2) Proposition2.9holds forN,(z).

Proof. First, (1) = (2) follows from Proposition 2.9. To show?2) = (1), let U, ;(z)
(1<i <n) be the unique power series solution of the Cauchy problem (2. 12)ith= z;
and set; (z) = (U;1(2), U; 2(2), . .., Ur.n(2)). Note that Eq. (2.12) fob; ; (z) (1<i<n)
can be written as

ou,  ~

By Proposition 2.9, we have
Ur(z) =2+ tN(2). (2.14)
By applyingaa—t to the equation above, we get

oU, ON,
= ey 2.15
Mty (2.15)
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By combining the equation above with Egs. (2.13) and (2.14), we have
ON; ~

Therefore, we have

0
L= IN N (2.16)

SetH (z) = N;—o(z). By Theorem 2.4, we see that (1) holdg.]

3. The case of symmetric formal maps

Let F(z) =z — H(z) with o(H(z)) >1 be a formal map fronC" to C". We say that
F(z) is asymmetridformal map if its Jacobian matriX(F) is symmetric. Note that, by
Poincaré lemma, itis easy to see that) is symmetric if and only if it satisfies trgradient
condition i.e. H(z) = VP(z) forsomeP(z) € C[[z]].

In this section, we study the deformatiéi(z) and its inverse maf, (z) for symmetric
formal mapsF (z). Besides some new properties ¥f(z), the main results and formulas
for N;(z) obtained in the previous section will also be simplified.

We first give a different proof for the following lemma which was first proveflLH.

Lemma 3.1. Let F(z) =z — H(z) witho(H (z)) >1 and j(F)(0) # 0 be a formal map
with formal inverseG (z) = z + N(z). Then F(z) is symmetric if and only i (z) is.

Proof. We first assume thatl (z) = VP (z) for someP(z) € C[[z]]. Note that/ H(z) =
Hes(P(z)) is symmetric. By Eqg. (2.3), we see thai,(F;) is symmetric. Hence so are
JN,(z) andJN(z) = JN,-1(z). By Poincaré Lemma, we know that(z) must be the
gradient of som& (z) € C[[z]],i.e.N(z) = VO(2).

By switching H (z) andN (z), we see that the converse also holdg]

Now, for any P (z) € C[[z]] with o(P(z)) > 2, we consider the deformatidn (z) =z —
tVP(z) and its inverseG,(z) = z + tN,(z). By applying Lemma 3.1 td;(z), we know
thatN; (z) =V Q;(z) for someQ; (z) € C[[z, t]] with o(Q;(z2)) > 2. We will fix the notation
Q:(z) as above through the rest of this paper unless stated otherwise.

Proposition 3.2. For any P(z) € C[[z]] witho(P(z)) > 2, the following are equivalent

(1) HesP(z) is nilpotent
(2) Q(z) is harmonigi.e.AQ,(z) =0.
(3) HesQ,(z) is nilpotent

Proof. (1) < (2) follows from Lemma 2.2(1) < (3) follows from Corollary 2.3. Hence
we also have?2) < (3). O
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Lemma 3.3. Let P(z), Fi(z), G:(z) and Q,(z) as above. Then we have the following
identities

(VO (F) =VP, .1

(VP)(Gr) =V Q. (3.2)

Proof. SinceH (z) = VP andN,(z) = VQ; in our case, the lemma follows immediately
from Lemma 2.1. [

Lemma 3.4.
0/(F)=P - %(VP, vP), (3.3)
P(G) =0, + §<VQ,, vO,). (3.4)

Proof. For any 1<i <n, we consider

aQt(Fl) 00, 0F,; j(Z)
S0y Z_(Ff) oz

and applying Eq. (3.1) in Lemma 3.3:

Z ( . o2p )
N az, b 0z;0z;
Z oP 0%p

azl aZJ aZ[aZJ

oP t 0O oP OP

:@_zi_Zazi j:lgjaj

0

t
=3 (P —5(VP. VP)) :

Hence, Eq. (3.3) holds. Eq. (3.4) can be proved similarly by using Eq. (3[2).
Lemma 3.5.

aQ’ (F)=3(VP,VP). (3.5)
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Proof. By applyingg—t to the both sides of Eq. (3.3), we get

00 OF, ;
—3(VP,VP) <F,>+Z —’(Ft) =7

an OP 0P
a (F0) = Z azq,' azj-

Qz

(F)) =(VP,VP).

Hence, Eq. (3.5) follows. (I
Under the gradient condition, Theorem 2.4 becomes the following theorem.

Theorem 3.6. For any Q;(z) € C[[z, t]] with 0(Q;(z))>2 and P(z) € C[[z]] with
0o(P(z)) > 2, the following are equivalent

(1) G:(z) =z +1tVQ;(z) is the formal inverse of;(z) =z — rVP(z).
(2) Q:(z) is the unique power series solution of the following Cauchy problem of PDE’s

{B—Qa(—) =3(V0,. V0, o
0:=0(z) = P(2). |

Note that,(2) = (1) follows from (1) = (2) and the uniqueness of the power series
solutions of the Cauchy problem Eq. (3.6). (For a similar argument, see the proof of Theorem
2.4.) While the uniqueness of the power series solutions of Eq. (3.6) can be proved by similar
arguments as the proof of Proposition 2.5. (Also see Proposition 3.7 below.) So we only
need show1l) = (2), for which we here give two different proofs.

First proof. First note that/ (VQ,) = Hes(Q,). By replacingN,(z) by VQ,(z) in Egs.
(2.6) and (2.7), we get

v _hes0)v o, (3.7)
VQi=0(z) = VP(2). (3.8)

Since @P(z)) >2 and @Q,(z)) > 2, Eq. (3.8) impliesD;—o(z) = P(z). Furthermore, Eq.
(3.7) implies that, for any £i <n, we have

gaQ, Z 0?Q: 30,

19
=L =2 (V0,,VO)).
0z < 02;0z; 0z 25 2 VO

Since QaQ’)>2 and q(VQ;, VQ,)) >2, the PDE in Eq. (3.6) also holds[]
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Second proof. By composing withG, (z) from right to both sides of Eq. (3.5) and applying
Eq. (3.2), we have

6Qt(Z)
or

((VP)(G1), (VP)(G)))

1
2
2(VQ., VOQ,).

The initial condition in Eq. (3.6), as proved in the first proof, follows from Eq. (2.7) in
Theorem 2.4. [J

We define a sequence of formal power sefi@g,(z) € C[[z]]|m =1} by writing
o0
Q)= Q" ™. (3.9)
m=1

From Eqg. (3.6), we geQ1;(z) = P(z). Furthermore, by replacin@, (z) by the sum
above and comparing the coefficients'df2 (m >2) in Eq. (3.6), we get Eq. (3.11) below.
So we obtain the following recurrent formula for the formal power sefi@g,(z) €
Cllzlllm > 1}.

Proposition 3.7. We have the following recurrent formula fgr; (z).

0111(z) = P(2), (3.10)
1
m = A5, A< \4 .V 3.11
Q@) = 507, gl( Qx1(2), VO (2)) (3.11)
k+l=m

for anym > 2. In particular, whenP (z) is a polynomial Qp,,1(z) (m > 1) are also polyno-
mials

For a uniform non-recurrent formula f@f(z) (k>=1) under the condition that H&#®)
is nilpotent, se¢26].

4. Relationships with Legendre transform and the inviscid Burgers’ equations

In this section, we clarify some close relationships of the inversion problem for symmetric
formal maps with the Legendre transform and the inviscid Burgers’ equations. In particular,
we reduce the Jacobian conjecture to a problem on the Cauchy problem Eq. (4.3), whose
PDE is the simplified version of the inviscid Burgers’ under the gradient condition.

Firstletusrecallthe Legendre transform (§e&2].). Let £ (z) € C[[z]]witho(f(z)) >2
and det Hesf)(0) # 0. Then the formal Legendre transforfitz) of f(z) by definition
is the uniquef (z) € C[[z]] with o( f(z)) >2 such that the inverse map of the formal map
Vf :C" — C"is given byV f. Note that, for anyf(z) € C[[z]] of order d f(z))>2,
one can always writgf (z) = 33"/, z2 — P(z) for someP(z) e C[[z]] with o(P(z)) > 2.



312 W. Zhao / Journal of Pure and Applied Algebra 199 (2005) 299-317

If det Hes(f)(0) # 0, itis easy to check that the Legendre transfgitn) of f(z) is given

by f(z)=3>";_1 22+ Q(z) forsomeQ(z) € C[[z]]with 0(Q(z)) > 2. Hence the Legendre
transform forf (z) € C[[z]] with o(f(z)) > 2 is essentially the inversion problem under the
gradient condition. Therefore, the recurrent inversion formula in Proposition 3.7 and the
binary rooted tree expansion formula in Theorem 5.2 that will be derived in next section
can also be used as computational algorithms for the Legendre transform for formal power
seriesf (z) € C[[z]] of o(f(z)) >2 and det He¢f)(0) # 0.

Next we consider some relationships of the inversion problem for symmetric formal
maps with the inviscid Burgers’ equations. The Burgers’ equations [[B&#&7] and the
references there.) are master equations in Diffusion theory. Recall thatdineensional
inviscid Burgers’ equation is usually written as

ouU,

a—tt(z) +(JUN(2) - Ui(z) =0 4.1)
or

o, .

5 @=0UU)'@ U, (4.2)

whereU, (z) is an-vector-valued function of, z) and(J U,)(z) denotes the Jacobian matrix
of U, (z) with respect t@.

Note that, for anyn-vector-valued functiolV; (z) of (¢, z), V;(z) satisfies Eq. (4.1) if and
only if —V;(z) satisfies Eq. (4.2). Hence Egs. (4.1) and (4.2) are equivalent to each other.
In this paper, we will refer the PDE (4.2) as thelimensional inviscid Burgers’ equation.

By comparing Egs. (2.6) and (4.2), we see that, the main PDE Eg. (2.6) for the gen-
eral inversion problem without the gradient condition is almositdémensional inviscid
Burgers’ equation (4.2) except the transpose part. More interestingly, under the gradient
condition, we havel N,(z) = Hes(Q;) which is symmetric and Eq. (2.6) becomes exactly
then-dimensional inviscid Burgers’equation Eq. (4.2). The PDE in the Cauchy problem Eq.
(3.6) is just a simplified version of the inviscid Burgers’ equation (4.2) under the assump-
tion thatU; (z) = V Q;(z) for some function), (z) of t andz Motivated by the connections
above, we formulate the following conjecture.

Conjecture 4.1. For any homogeneous polynomilz) of degree/ > 2 with the Hessian
matrix Hes(P) nilpotent let U, (z) be the unique power series solution of the following
Cauchy problem of PDE’s
U,
F@) = 3(VUI(2). VU 2)), 43)
Ur=0(z) = P(2).
ThenU, (z) must be a polynomial in both z and t

Proposition 4.2. Conjecture (4.1) above ford = 4 is equivalent to the Jacobian
conjecture
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Proof. First, by using the gradient reduction[#] and[15] and the homogeneous reduc-

tion in [3] on the Jacobian conjecture, we see that the Jacobian conjecture is reduced to
polynomial mapsF(z) = z — VP(z) with P(z) homogeneous of degrée= 4. Secondly,
sinceP(z) is homogeneous, the polynomial majz) = z — V P(z) satisfies the Jacobian
conditionj (F)(z) =1if and only if the Hessian matrix H&®) = J (V P) is nilpotent. Then

it is easy to see, using Eqgs. (2.8) and (2.11), that the equivalence of Conjecture 4.1 and the
Jacobian conjecture follows directly from Theorem 3.6

Since the Jacobian conjecture for polynomial mafig) of degree ded’(z) <2 has
been proved by Wanf20], we see that Conjecture 4.1 is true b= 2, 3. It would be
very interesting to find some proofs for these results by PDE methods, especially for the
cased = 3. Understandings of Conjecture 4.1 &b 3 from PDE point view certainly will
provide new insights to the Jacobian conjecture.

5. A binary rooted tree expansion inversion formula

In this section, we derive a binary rooted tree inversion expansion formula for symmetric
formal maps. (See Theorem 5.2.) First let us fix the following notations and conventions.

By arooted treewe mean a finite 1-connected graph with one vertex designated as its
root. In a rooted tree there are natural ancestral relations between vertices. We say a vertex
w is a child of vertex if the two are connected by an edge amties further from the root
thanv. We define thelegreeof a vertexv of T to be the number of its children. A vertex is
called aleafif it has no children. A rooted tre€is said to be dinary rooted treef every
non-leaf vertex ofl has exactly two children. When we speak of isomorphisms between
rooted trees, we will always mean root-preserving isomorphisms.

Notation Once and for all, we fix the following notation for the rest of this paper.

(1) We letT (resp.B) be the set of isomorphism classes of all rooted trees (resp. binary
rooted trees). For amt > 1, we letT,, be the set of isomorphism classes of all rooted
trees withmvertices.

(2) We call the rooted tree with one vertex tsiagleton denoted by. For convenience,
we also view the empty set as a rooted tree, denotetl by

(3) For any rooted tre€, we set the following notation:

rty denotes the root vertex ot

|T| denotes the number of the verticesladnd/ (7)) the number of leaves.
o(T) denotes the number of the elements of the automorphism grouf Aut
T denotes the rooted tree obtained by deleting all the leavés of

For any set of rooted treds, T», ..., T;, we defineB, (T1, T>, ..., Ty) to be the rooted
tree obtained by connecting all roots®f(i =1, 2, ..., d) to a single new vertex, which
is set to the root of the new rooted tr8e (Ty, T, ..., T;). Note that, for anyly, 7o € B,
we haveB, (Ty, T2) € B.
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Next let us recalll-factorial 7! of rooted treed, which was first introduced by Kreimer
[13]. It is defined inductively as follows:

(1) Forthe empty rooted trégand the singleton, we set)! = 1 ando! = 1.
(2) Forany rooted tre& = B (T1, 1o, ..., Ty), we set

T\ =|T|TW\To! - Ty (5.1)

Note that, for the chain§,, (m € N), i.e. the rooted trees witin vertices and height
m — 1, we haveC,,! = m!. Therefore thel-factorial of rooted trees can be viewed as a
generalization of the usual factorial of natural numbers.

Now, for any binary rooted tre€, we set

B(T)=au(T)T\. (5.2)

Lemma 5.1. (a) For any non-empty binary rooted treg We have
|T|=2I(T) — 1, (5.3)
\T) =I(T) — 1. (5.4)
(b) ForanyT € B with T = B, (T1, T»), we have

2((T) = HP(TP(T2) if Ty =T, (5.5)

B(T) = { U(T) = DRTVJ(T2)  if T1# Ta.

Proof. (a) First note that Eq. (5.4) follows from Eg. (5.3) and the ﬂéﬁt: |T| — I(T).
Hence we only need to show Eg. (5.3).

We use the mathematical induction|@i. When|T'|=1, we havel’ =oc and|T |=I(T)=1,
hence (a) holds.

For anyT € B with |T|>2. We writeT = B, (T1, T2). Note that71, 7> # ¥ and
|T;| < |T| (i =1, 2). By our induction assumption, we have

IT|=|T1| + |T2] +1
=Q2(T) -+ QT -1 +1
=2((T1) +I(Tr)) — 1
=21(T) — 1.

(b) First note that, we always have

| 2u(T)(T2) it Ty~ To,
oT) = {a(n)a(m it 7% To. 56
By Egs. (5.1) and (5.4), we also have
T\ =TT T = ((T) — D) Th! T»!. (5.7)

Then, it is easy to see that Eq. (5.5) follows directly from Egs. (5.2), (5.6) and (4.7).
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Now we fix P(z) € C[[z]] and Q;(z) € C[[z, t]] as in Section 3. We assign a formal
power serieg)7(z) € C[[z]] for each non-empty binary rooted tr€eas follows:

(1) ForT =o,we setQr(z) = P(2).
(2) For any binary rooted treE = B, (T1, T>2), we set

071(2) =(VOrn(2), VOr1,(2)).

Finally we are ready to state and prove the main theorem of this section.

Theorem 5.2. For anym > 1, we have

1 1
Om@= Y ——=0r@)= Y =—0r(. (5.8)
reer BT ~ BT

I(T)=m
Therefore by Eq (3.9)we have

tl(T)—l

0:/(z) = %‘;\@ i 0r(2), (5.9)
0@ = ) LT 07 (2). (5.10)
TeB\¢ ﬂ( )

Proof. Note that, by Eq. (5.3) in Lemma 5.1, we have

Ban-1=A{T € BI(T) = m}

for anym > 1. Hence the two sums in Eq. (5.8) are equal to each other.
To prove Eq. (5.8), we first set, for amy>1,

1
Vim(2) = Z WQT(Z)
TeB

I(T)=m

and then to show thaf},,;;(z) = Qm)(z) (m >1). By Proposition 3.7, it will be enough to
show that the sequen¢®[,,)(z) € C[[z]]|m > 1} also satisfy Egs. (3.10) and (3.11).

For the casen = 1, since there is only one binary rooted tiewith /(7)) = 1, namely,
T = o, we haveVj1(z) = Qr=0(z) = P(z) = O[11(z). Hence we have Eq. (3.10).
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For anym > 2, we consider

1
20m — 1) Y (VVi@, Vi)

kil>1
k+l=m

1
= v ,V
Z 2m — DRIDPT LT VO
(T =k, I(Tp)=1,
k=1 k+I=m

1
= Z 0B, (11,1 (2).
T1.To€B, 2(m — 1)ﬂ(Tl)ﬂ(T2) "
Ty =k 1(Tp)=l,
k=1 k+l=m

Note that, the general term in the sum above appears twice ®hen 7> but only once
whenT; >~ T». By applying Eq. (5.5) in Lemma 5.1:

1
Z WQT(Z)

Teb
(T)=m

= V[m](Z)'
Hence we have Eq. (3.11).0J
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