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Abstract

The twisted homogeneous coordinate ring is one of the basic constructions of the noncommutative
projective geometry of Artin, Van den Bergh, and others. Chan generalized this construction to the
multi-homogeneous case, using a concept of right ampleness for a finite collection of invertible
sheaves and automorphisms of a projective scheme. From this he derives that certain multi-
homogeneous rings, such as tensor products of twisted homogeneous coordinate rings, are right
noetherian. We show that right and left ampleness are equivalent and that there is a simple criterion
for such ampleness. Thus we find under natural hypotheses that multi-homogeneous coordinate rings
are noetherian and have integer GK-dimension.
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1. Introduction

Let R be anN-graded algebra over an algebraically closed fteddch that dinR; < oo
for all i. One of the main techniques of nhoncommutative projective geometry is to
study a graded ringe via a categoryC of gradedR-modules. More specifically, one
usually examines Q@&, the quotient category of graded rigRtmodules modulo the
full subcategory of torsion modules; one hopes that ®@®iill have geometric properties,
since the Serre Correspondence Theorem says thatisf commutative and generated
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in degree one, then there is a category equivalenceREs0QchX, where QclX is the
category of quasi-coherent sheaves¥#a: ProjR [1, Exercise 11.5.9].

The twisted homogeneous coordinate rings are the most basic class of rings in noncom-
mutative geometry. Such a rimgjis constructed from a commutative projective scheine
an automorphisna of X, and an invertible sheal. When the pai(L, o) satisfies “right
o-ampleness,” ther is right noetherian and has Q®r= QchX [2, Theorems 1.3, 1.4].
These rings were first used to show that Artin—Schelter regular algebras of dimension 3
are noetherian domains [3-5] and their basic properties were studied in [2]. Further, any
domain of GK-dimension 2, generated in degree one, is a twisted homogeneous coordinate
ring for some curvex [6].

A simple criterion for righto-ampleness was found in [7]. From this criterion one sees
that right and leftz-ampleness are equivalent. Hence the associatedrrisgnoetherian.

One also sees that the GK-dimensionkfs an integer. (While this paper and [7] work
over an algebraically closed field, we note that [8] generalized these results to the case of
a commutative noetherian base ring.)

Chan introduced twisted multi-homogeneous coordinate rings in [9], which are con-
structed from a finite collectiof(L;, o;)} of invertible sheaves and automorphisms on a
projective schem& . When the set(L;, o;)} is “right ample,” then the category Q@rof
multi-graded rightR-modules modulo torsion modules again has @& QchX. With
some natural extra hypothes&swill be right noetherian. Via these methods, Chan shows
that some rings associated to twisted homogeneous coordinate rings, like tensor products
of two such coordinate rings, are right noetherian.

In this paper, we will generalize the results of [7] to the multi-homogeneous case and
thereby strengthen [9]. More specifically, we show

Theorem 1.1 (see Theorem 2.7, Corollary 2.8)et X be a projective scheme and let
{(Li,01)} be a finite set of pairs of invertible sheaves and automorphisms. Then there is
a simple criterion for{(L;, 0;)} to be right ample. This criterion shows that right and left
ampleness are equivalent.

We then immediately have, in Corollary 3.5, that the tensor produ@; B’ is
noetherian, where, B’ are twisted homogeneous coordinate rings associated to ample
pairs (L, o), (L',¢"). If B is generated in degree one ahds the irrelevant ideal o,
then the Rees algeb®{[t] is noetherian; see Corollary 3.4.

We also show

Theorem 1.2 (see Theorem 4.6)_et B be a twisted multi-homogeneous coordinate
ring under suitable hypothesg$lypothesis4.1). Then GKdimB is an integer with
geometrically defined bounds.

Most of this paper appeared in the author's Ph.D. thesis, under the direction of
J.T. Stafford.
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2. Right amplenessisleft ampleness

Because of the notational difficulties associated with handling the ampleness of
arbitrarily many pair9L;, o;), we will use the concept of an invertible bimodulg . In
this paper it will only be important to know how invertible bimodules act on a coherent
sheafF, so we will treat’, as a notational convenience where

FRL; =0.(FRL), Lo QF=LQc*F

and the right-hand side of the above equations ar&jystnodules. For a formal definition
of invertible bimodule see [2, §2]. Given two invertible bimodulgsand M, one finds
the tensor product to be

Lo @ M :(AC@U*M)ro: (21)

where the second tensor product is the usual product on quasi-coherent sheaves [2,
Lemma 2.14]. We will sometimes denote the product of invertible bimodules by
juxtaposition if the meaning is clear. Tli&y-module underlying a product of bimodules
Ls @ M will be denoted £, ® M. |[; in this particular caseC, @ M| =L Q c* M.

We will also use the notatiof” = ¢*£. The automorphisnz induces a natural
isomorphism

F@®Ly=0u(FRLZL ®F =LI,QF (2.2)

for any coherent sheaf.

We now sketch the construction of a twisted multi-homogeneous coordinate ring; for
details see [9, 82]. Ldi(L;)., } be a collection of invertible bimodules, possibly with rep-
etitions. For notational convenience, we will wrifg 5,y = (£;),, . Given these invertible
bimodules, one wishes to form an associated twisted multi-homogeneous coordinate ring
B = B(X;{L0)}). Forans-tuplen = (ny, ..., n;) we define the multi-graded pied
as

Bi=HOX, LY )+ L) (2.3)
where the cohomology of an invertible bimodule is just cohomology of the underlying
sheaf. Multiplication should be given by

a-b=ac™(b), (2.4)
whena € Bj; andb € B;. Herea" (b) = 0" 0,2 - - - 04" (b), where the action of an auto-
morphism on a global section is induced by pullback.

However, to make the ring construction work, [9] shows that we need the invertible
bimodules to commute with each other. Examining (2.1), we see that two bimofules
M commute when

LOM=EM*L and ot =r7o0. (2.5)
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Thus we need sheaf isomorphiss: L;.o;)L.0:) = Lo Lij.o; foreach 1<i < j <

s. Itis further noted in [9] that when there are three or more bimodules, these isomorphisms
must be compatible on “overlaps” in the sense of Bergman’s Diamond Lemma. In terms of
the isomorphisny;; this means [9, p. 444]

@ij @1z ) 0L, @ik 0 @ik ®1e,,)
— (1£(,"gi) ® (p/k) [e) ((plk ® 1£(10/)) e} (1£(k’gk) ® (pl]) (2-6)

in Hom([:(k,ok)ﬁ(j,(,j)ﬁ(i,m), E(i,ﬂi)‘c(j,ﬁj)ﬁ(kﬂk))' We will always assume that we have
this compatibility when forming the ringg. Summarizing, we have

Proposition 2.1. Let {L; )} be a finite collection of commuting invertible bimodules.
Assume that these bimodules have compatible pairwise commutation relations in the sense
of (2.6). Then there is a multi-graded ring with multi-graded pieces given §2.3)and
multiplication given by(2.4).

To study these rings, a multi-graded versionsempleness is introduced. Since we
will be interested in both this version of ampleness and the usual commutative one, we
will call this (right) NC-amplenesswhereas [9] uses the terminology (right) ampleness.
We define the ordering afntuples to be the standard one, i@y, ..., n}) > (n1,...,ny)

if n) > n; for alli. For simplicity we write£? = L on Loy

Definition 2.2. Let X be a projective scheme with commuting invertible bimodules
{Li.ont-

(1) If for any coherent shedf, there exists arig such that
HI(X,F®LY)=

for ¢ > 0 andm > myo, then the sefL; ,,)} is calledright NC-ample
(2) If for any coherent shedf, there exists arig such that

HI(X, LEQF) =
for g > 0 andm > myo, then the sefL; ,,)} is calledleft NC-ample
As in the case of one invertible bimodule, right and left NC-ampleness are related.

Lemma2.3(cf.[7,Lemma 2. 3])LetX be a projective scheme wittcommuting invertible
bimodules(L;)s, }. Then the se{(ﬁ i ) _1} commutes pairwise. Also, the §€L; )., } is

right NC-ample if and only if the se{(ﬁi 0_71} is left NC-ample.
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Proof. Let L, M. be two commuting invertible bimodules. Then (2.5) holds. Obviously

ot =116~ Now sinceL ® o* M = M ® t*L, pulling back byo ~1r~1 we have

(o) La ) ME(E) (Y Mol L
SOC” =((07H*L)y1 andM’ = ((z71*M),-1 commute.
Now using (2.2) and the fact that the bimodules commute, we see that
-1
HI(X. F @ (Lo (L) = HO (X, (652 )2ty (67 ) @ 7)

for all ¢, m;. Thus right NC-ampleness ¢tL;).,} is equivalent to left NC-ampleness of
ot
{(;’ )Ul_—l}. O

Lemma 2.4. Let X be a projective scheme ovewith s commuting invertible bimodules
-1
{(Li)s;}. Assume that the commutation relations {¢f;),,} and of {(ﬁf" ), -1} are

-1
compatible in the sense ¢2.6). If B’ = B(X; {(Li)s;}) and B = B(X; {([f" ),-1}), then
B = (B')°P.

Proof. Lett:B — (B')°P be given byr(a) =0y -+ 05" (a) for a € B(,,,...n,). Extendr
linearly so it is a vector space map. It is obviously a vector space isomorphism.
Let - be multiplication inB andx be multiplication in(B")°P. Fora € B;, b € B,

t(a-b) = t(ac™" (b)) =" (@)™ (b),
t(a) *T(b) = " (a) * ™ (b) = ™ (b)oc" " (a).
Thust(a - b) = t(a) * t(b), as required. O

Asin [7, Proposition 2.3], we have simpler equivalent conditions for a set of bimodules
to be right NC-ample.

Proposition 2.5. Let X be a projective scheme withcommuting invertible bimodules
{Li,0;)}- Then the following are equivalent

(1) The sef{ L s} is right NC-ample.

(2) For any coherent sheaf, there exists arig such thatF ® E’}} is generated by global
sections fom > mg.

(3) For any invertible sheaft, there exists arg such tha 1 ® £ is very ample for

m > mo. .
(4) For any invertible sheaf, there exists amig such that|H ! ® L2| is ample for
m = mo.

A similar statement holds for lelfC-ample.
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Proof. This is a special case of [8, Theorem 1.3, Proposition 6.8].

We can now give a connection between right NC-ampleness and the concept of
ampleness for one invertible sheaf

Lemma 2.6. Let X be a projective scheme withcommuting invertible bimodulé£ ; »,)}.
Suppose thai = (n1, .. ns) € (N+)5 and setr = o;*---0,". If the set of bimodules is
right NC-ample, therw(l op Loyl IS T-ample.

Proof Let H be an invertible sheaf and leig be such that for alln > mg, the sheaf
"H1® £Z| is ample by Proposition 2.5(4).

Now there exists an integés such that for all > lo, we havelii > mg. So|H 1 ®
(L1 is ample. Thus by [7, Proposition 2.3(4)f2 | is T-ample. O

Recall that the Picard group af modulo numerical equivalenca,{,um(X) =PicX/ =,
is a finitely generated free abelian group [10, p. 305, Remark 3]. Thus the actoorof
A,{,um(X) is given by someP € GL,(Z) for somep > 0. We say that is unipotentif
all the eigenvalues of equal 1 and that is quasi-unipotentif all the eigenvalues of
are roots of unity. This is a well-defined notion [8, Proposition 7.12]. We then have a new
version of [7, Theorem 1.3].

Theorem 2.7. Let X be a projective scheme with commuting invertible bimodules
{Lion} The set{L s} is (right) NC-ample if and only if every; is quasi-unipotent
and there existsig € N* such that £Z | is ample for allriz > mg.

Proof. Suppose thatL; )} is right NC-ample. Then by Proposition 2.5(4), there exists
mo € N° such that|£Z?| is ample for allm > mo. Further, by the previous lemma,

E’(’ial) - L 5.y is T-ample where =0, 05" and each; > 0. Now recall that all the

automorphisms commute and hence their actlonsthn(X) are commuting matrices.
Thus the eigenvalues of the prodmﬁf‘t1 ..o, are products of eigenvalues from eagh
So if o1 were not quasi-unipotent, then eithgr= c102---0; or 72 = 01202 ..oy would
not be quasi-unipotent. But andzr, must be quasi- unipotent by [7, Theorem 1.3] since the
corresponding sheav o) El o) andﬁzla) .-LY  arer;-ample andrp-ample
respectively. Thus each must be quasi-unipotent.

Now suppose that every is quasi-unipotent and there exigig € N* such thauﬁ’};ﬂ
is ample for allm > mg. As thes; commuter = o1 - - - g iS quasi-unipotent. Then by [7,
Theorem 1.3], the invertible bimodul& ) - - - L(s,q,) IS T-ample. So given any invertible
sheafH, there existsg € N such that

(s,05)

IH @ (Ltop - Lison) | = [HH QLY 4 Ll o)

is ample forn > ng by [7, Proposition 2.3(4)]. Then we have that for all >
(no, no, - - ., no) + mo the invertible sheaf

no

no
o | o1

1@ L | = (M @ LDy L0 | @ L L0

(s,05)
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is the tensor product of two ample invertible sheaves. Hence it is ample and so the set of
invertible bimodules is right NC-ample by Proposition 2.5(4)z

Corollary 2.8. Let X be a projective scheme with commuting invertible bimodules
{Li,on} Then{L; 5} is right NC-ample if and only if it is lefNC-ample.

Proof. Suppose tha{tc(, o} is right NC-ample. Then each is quasi-unipotent and there
eXIStSmo such that|£(la) E';“)GS)| is ample for(ms, ..., my) > mg. Pulling back by

o, "oy ™, we have that the invertible sheaf

1 _1
(e Ve

is ample. Thus by Theorem 2.7, the {s(em i ) 71} is right NC-ample. So the original set
{Li ;) is left NC-ample by Lemma 2.3. The argument is clearly reversibte.

Thus we may now refer to a set of bimodules as being simply NC-ample.

Note the difference between [7, Theorem 1.3] and Theorem 2.7. The former requires
only that |£”| is ample for one value oz, while the latter requires the product of
bimodules to be ample for ak > rig. To see this stronger requirement is necessary let
be any projective scheme with any ample invertible sheaf. We need to rule out the pair
L, £~ where the bimodule action is the usual commutative one. In this particular case, of
coursel ® (£~1)%is ample. ButC”t ® (£~1)"2 is not ample for allm1, m») sufficiently
large; just fixm1 and letm2 go to infinity

It is not necessary for one of t ) to be ample for > 0, since onP! x P!, the
pair O(1, 0), O(0, 1) is NC-ample, wi ere again these bimodules act only as commutative
invertible sheaves.

3. Ring theoretic consequences

Unlike the case of only one bimodule, the multi-graded rbhgnay not be noetherian
when{L s} is NC-ample. In fact, [9, Example 5.1] gives a simple commutative (and
hence not finitely generated) counterexample. However, Chan introduces an additional
property for an invertible bimodulé, on X to guarantee the noetherian condition.

Hypothesis 3.1. There exists a projective scheniewith automorphisms and ao-
equivariant morphisny : X — Y. Thatisoy o f = f o ox. There also exists an invertible
sheafl’ on Y such thatl = f*£’ and such thatZ) is o-ample.([9] labels this prop-
erty (x).)

This property (Hypothesis 3.1) is saying that far>> 0, || is generated by
global sections, since it is a pullback @) |, which is eventually very ample by [7,
Proposition 2.3(3)]. Note in particular that & is alreadyo-ample, then’, satisfies
Hypothesis 3.1 trivially. Using this property, one determines
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Theorem 3.2 [9, Theorem 5.2]Let X be a projective scheme with commuting invertible
bimodulesZ,, M. Suppose that the pair {sight) NC-ample and each bimodule satisfies
Hypothesis3.1, possibly for different. ThenB(X; L,, M-) is right noetherian.

Then combining Corollary 2.8, Lemma 2.4, and the theorem above, we have

Theorem 3.3. Let X be a projective scheme with commuting invertible bimoddlgs\ .
Suppose that the pair BC-ample and each bimodule satisfies Hypoth8sispossibly for
differentY. ThenB(X; L., M) is noetherian.

Now we can prove that two particularly interesting twisted multi-homogeneous
coordinate rings, a Rees ring and a tensor product, are noetherian, strengthening the results
of [9, Corollaries 5.7, 5.8]. In the latter case, we may replace his proof, based on spectral
sequences, by an easier one since the criterion of Theorem 2.7 simplifies testing the NC-
ampleness of the relevant pair of bimodules.

Corollary 3.4. Let L, beo-ample on a projective schem& Let the ringB = B(X; L)
be generated in degree one. Then the Rees Bhly] = @y 1"t" of B is noetherian,
wherel = B. is the irrelevant ideal.

Proof. The ringB[/¢] has bigraded pieces
B,y = HO(X. L,.LL )t/

sincel/ = @[’i/ B; when B is generated in degree one. The péjr, L, is obviously
NC-ample and satisfies Hypothesis 3.1. Thus Theorem 3.3 applies.

Corollary 3.5. Let L, bec-ample on a projective schemand let M bet-ample on a
projective schem&. ThenB(X; L,) ® B(Y; M) is noetherian.

Proof. Itis argued in [9, Example 4.3] that

B(X:Lo) @ B(Y;: M) ZB(X x Y: (n{L)_ 4. (3 M), ).
where thern; are the natural projections. These two invertible bimodulesXor Y
obviously satisfy Hypothesis 3.1.

SinceL, is o-ample andM; is t-ample, there is amg such thaf £ | and |MY] is
ample for allm > mo. Note that(c x 1)*n; L = nfo*L and a similar formula holds for
M. Then

|(71L)5 s (r3 M)TE,
is ample for all(m1, m2) > (mo, mo) by [1, p. 125, Exercise 5.11].

Now o is quasi-unipotent and we wish to shewx 1 is as well. It is tempting to think

that as a matrix acting oA}, (X x Y) one hasr x 1= o @ 1. However, this may not
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be the case, since in genetf, (X x ¥) has larger rank thady,(X) ® A ,(Y)
[1, p. 367, Exercise 1.6]. But let{y andHy be ample invertible sheaves ghand?Y,
respectively. Ifo x 1 is not quasi-unipotent, then by [7, Lemma 3.2], there existsl,
¢ > 0, and an integral curv€ on X x Y such that

(0 x *)"(nfHx ® 75 Hy).C) = cr™ forallm > 0. (3.1)
But
((G X 1)*)’” (JTik'HX ® JT;'Hy) = 7'[5_k (o’*)mHX ® TL’;'Hy.

Since o is quasi-unipotent, the intersection numbers of the right-hand side with any
curve C must be bounded by a polynomial. This contradicts (3.1).0Se 1 must

be quasi-unipotent. Similarly, & 7 is quasi-unipotent. Thus by Theorem 2.7, the pair
(L), 1 (53 M)1x: is NC-ample and thus the ring of interest is noetherian.

4, Gel’fand—Kirillov dimension

In this section we generalize the results of [7, §6], showing that a noetherian twisted
multi-homogeneous coordinate ring has integer GK-dimension. We first fix hypotheses on
the ringB.

Hypothesis 4.1. Let X be a projective scheme withcommutingNC-ample bimodules
{L o} Assume that the commutation relationg @;).,} are compatible in the sense of
(2.6). Let B = B(X; {(£i)s;}) and suppose thaR is right noetherian.

If B is the twisted multi-homogeneous coordinate ring associated to an NC-ample set
of invertible bimodules, then the vanishing of cohomology in Definition 2.2 allows one to
control the dimension aB; for 7 > ig for someip € N°. We are not guaranteed such control
on the “edgestd; B(.....j,...0- Thus, it will be easier to study the GK-dimension of the
ideal B>, rather then the GK-dimension &,

Lemma 4.2. Let B satisfy Hypothesid.1, and leti € N*. Then
GKdim B = GKdim (Bx;) ;.

Proof. If j > 1, thenBx; C By; and GKd|mB>, GKdim Bx;. So we may assume

that 7 is sufficiently large so thaﬁfla) L:’S is generated by global sections for
(J1, ..., Js) =1 by Proposition 2.5(2). S8; < B,+, forall j € N°.

We may gradeB by {Bg(n,n,...,n)/Bg(n 1n-1..n—1): n € N} and gradeB>,- by
{B<@n,...my+i/ B<@n—-1n—1,..n—1+7: n € N}. Then

GKdim B = iim,, log, dimBgu.n,...n) < fim,, log, dimBg . n,....n)+ = GKdim B>;
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since By; is finitely generated [11, Lemma 6.1]. That GKdBy; < GKdimB is
trivial. O

We will need to use multi-Veronese subrings and also generalize a standard lemma for
graded rings to the multi-graded case.

Definition 4.3. Let B be ak-algebra, finitely multi-graded byi* (that is, each multi-graded
piece is finite dimensional). Then the subring

Bn1.ns) @ Bugiy...msis)
(i1,...,is) NS

is amulti-Veronese subringf B.
Lemma 4.4. Let B be ak-algebra, finitely multi-graded bi¥s.

(1) If B has ACC on multi-graded right ideals, théhis right noetherian.
(2) If B is right noetherian, then the multi-Veronese subriag= B®1-"s) is right
noetherian for any(ny, ..., ny) € (NT)S,

Proof. Both claims are simple generalizations of the graded case. For (1), one may see that
the conclusion is implicit in the proof that a right multi-filtered ring is right noetherian if its
associated multi-graded ring is right noetherian [12, Theorem 1.5]. The proof of (2) is asin
[13, Proposition 5.10(1)], noting thatifis a multi-graded ideal oA, then/ = IBNA. O

Now we may replacé# with a multi-Veronese.

Lemma4.5. Let B satisfy Hypothesig.1, and letii € (N*)*. ThenB™ satisfies Hypothe-
sis4.1andGKdim B = GKdim B™ .

Proof. Let 1 = (n1,...,ns) and A = B™. For the first claim, we have already seen

in Lemma 4.4 thatA is right noetherian. The blmodule{$:”’ } commute compatibly
because their commutation relations are compositions of the commutation relations for
{Liop} The blmodule$£( o )} are also NC-ample by Theorem 2.7.

Now choosen = (m1, ..., m;) € N° such tha‘r[,’1 £(; 0 is generated by global
sections for(j1, . .., js) = m by Proposition 2. 5(2) Tjhenf < Jji <n; +m; there are
short exact sequences

Js
i = B, ])®OX—>‘C(101) Ligoy = 0.

(s,0%)

.....

Then tensoring witm’(’fl;l) .. L% - and taking cohomology, we have

(s,0%)

0 nia sds
Bji....j» ® H (ﬁ(ioll) o ~£?S$S)) = B(jitniay....js+nsas)
1 nsds
= HY(K(jy,....j») ®£(1 o) ‘C(s,crs))'
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For (a1, ...,as) sufficiently large, the rightmost cohomology group vanishes. So there
existsh such that

BosS Y > Blu.pA.
1<i<s 0 ji <nj+m;

HenceB ; is a finite A-module, so
GKdim B = GKdim(B,;) , = GKdim(B5) , < GKdim A
by Lemma 4.2 and [11, Corollary 5.4].0
We may now generalize [7, Theorem 6.1] to the multi-homogeneous case.
Theorem 4.6. Let B satisfy Hypothesid.1 ThenGKdim B is an integer and
dimX + 1< GKdimB < s((¢ + 1 dimX + 1),

wheres islthe number of commuting bimoduless o (X) is the Picard number ok, and
=257

Proof. By Lemma 4.5, we may replack with a multi-Veronese; hence, replacing each
o; with crl.’"" for somem;, we may assume eaeh is unipotent. That is, up to numerical
equivalenceg; t = I + N; € GL,(Z). We know N/t =0 for all i [7, Lemma 6.12].
(We choose to userl.‘1 since we will use Catrtier divisors and £ = Ox (D), then
L° = Ox(c1D).)

Since the set of bimodules is NC-ample, we may again regiaeéh a multi-Veronese
and assume thati?(X, %) =0 for all ¢ > 0, n; > 0 wheren = (ng,...,ny). Thus
dimHO(X, £1) = x (L) for n; > 0. So by the Riemann—Roch Theorem [14, p. 361,
Example 18.3.6],

dimXx
1
dimHO(X, £7) Z]—/ ((£5)™) Nzx (O, (4.1)

where oj denotesjth self-intersection and they ;(Ox) are constantj-cycles. By
Lemma 4.2, we may ignore difi®(X, Lf-;) when somes; = 0.

Let D; be a Cartier divisor such that; = Ox(D;). The action ofc " on Cartier
divisors modulo numerical equivalence is given by [7, (4.2), (4.3)]

14
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So up to numerical equivalence,

<[((50)9) (5022

a=1

Thus dimH%(X, £2) is a polynomial inn;, i = 1,...,s, with the degree ofi; at most
(£ + 1)dimX, since one has at mosidim X)th self-intersection.

Now let Bx(1,1,...1) have the filtration given by assuming eagh< n. Then f(n) =
dimB,1,.. 1)< (m1,....n)<(n,...,n) 1S @ polynomial im of degree at most((¢ + 1) dimX +1).
This is because summing over edch 1, ..., s adds 1 to the degree of. Then the degree
f(n) is maximized if dimHO(X, £2) has a term of the form{{TDAMX ., (CrDydimX
since in this casg¢ + 1) dim X + 1 is added to itself times.

Thus GKdimB is an integer with the desired upper bound by Lemma 4.2. Now
by Lemma 2.6,B has a twisted homogeneous coordinate rfhgas a subring. Now
dimX + 1< GKdimC [8, Theorem 7.17], so the lower bound on GKdinholds. O

Examining [7, Theorem 6.1], [8, Theorem 7.17] we see that these bounds on BKdim
are not optimal for the case= 1. However, the notational difficulties of repeating the
arguments of [7, 86] for bimodules seem to outweigh the benefits, given that exact results
can be given in the following specific cases.

Proposition 4.7. Let L, be ac-ample invertible bimodule on a projective scheiel et
B = B(X; L) be generated in degree one. Then

GKdimB[It] =GKdimB + 1,
wherel = B. g is the irrelevant ideal.

Proof. By Lemma 4.5, we may replaee with someo™ and assume that is unipotent,
dimB,, = x (L) for m > 1, and dimB,, < dimBy,1 for m > 0. Let f(m) = dimBy,.
Then GKdimB = degf + 1 [7, (6.4)]. Filter B[It] by (B[It1)(, j)<(n.n)» n € N. Now
dim(B[It])(,»,j) =dim Bl'+j, SO

n

g(n) = sz +j)= dim(B[It])(i)j)g(n’n).

i=0 ;=0

Sincef (m) is a numerical polynomial, deg= degf + 2. So GKdimB[I¢] =degf +2=
GKdmB+1. O

For generak-algebrasr, S, we have GKdiniR ®; S) < GKdimR + GKdim S [11,
Lemma 3.10]. However, for the tensor product of a twisted homogeneous coordinate ring
and a generdl-algebra, we have equality, as in the commutative case.
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Proposition 4.8. Let £, bec-ample on a projective schemig and letB = B(X; L, ). Let
S be anyk-algebra. Then

GKdim(B ® S) = GKdim B 4+ GKdim S.

Proof. There exists a Veronese subalge®@ of B such thatf(m) = dim B,(n") is a
polynomial form > 0 and GKdimB = GKdim B™ [7, (6.3)—(6.4)]. We may also assume

that B™ is generated in degree one [8, Theorem 7.17]M.et Bo® B.". Then dimV"” is
a polynomial inm, so GKdim(B ® §) = GKdim B 4+ GKdim S [11, Proposition 3.11]. O
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