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Abstract

The twisted homogeneous coordinate ring is one of the basic constructions of the noncomm
projective geometry of Artin, Van den Bergh, and others. Chan generalized this construction
multi-homogeneous case, using a concept of right ampleness for a finite collection of inv
sheaves and automorphisms of a projective scheme. From this he derives that certain
homogeneous rings, such as tensor products of twisted homogeneous coordinate rings,
noetherian. We show that right and left ampleness are equivalent and that there is a simple c
for such ampleness. Thus we find under natural hypotheses that multi-homogeneous coordin
are noetherian and have integer GK-dimension.
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

LetR be anN-graded algebra over an algebraically closed fieldk such that dimRi < ∞
for all i. One of the main techniques of noncommutative projective geometry
study a graded ringR via a categoryC of gradedR-modules. More specifically, on
usually examines QGrR, the quotient category of graded rightR-modules modulo the
full subcategory of torsion modules; one hopes that QGrR will have geometric properties
since the Serre Correspondence Theorem says that ifR is commutative and generate
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in degree one, then there is a category equivalence QGrR ∼= QchX, where QchX is the
category of quasi-coherent sheaves onX = ProjR [1, Exercise II.5.9].

The twisted homogeneous coordinate rings are the most basic class of rings in no
mutative geometry. Such a ringR is constructed from a commutative projective schemeX,
an automorphismσ of X, and an invertible sheafL. When the pair(L, σ ) satisfies “right
σ -ampleness,” thenR is right noetherian and has QGrR ∼= QchX [2, Theorems 1.3, 1.4]
These rings were first used to show that Artin–Schelter regular algebras of dimen
are noetherian domains [3–5] and their basic properties were studied in [2]. Furthe
domain of GK-dimension 2, generated in degree one, is a twisted homogeneous coo
ring for some curveX [6].

A simple criterion for rightσ -ampleness was found in [7]. From this criterion one s
that right and leftσ -ampleness are equivalent. Hence the associated ringR is noetherian
One also sees that the GK-dimension ofR is an integer. (While this paper and [7] wo
over an algebraically closed field, we note that [8] generalized these results to the c
a commutative noetherian base ring.)

Chan introduced twisted multi-homogeneous coordinate rings in [9], which are
structed from a finite collection{(Li , σi)} of invertible sheaves and automorphisms o
projective schemeX. When the set{(Li , σi)} is “right ample,” then the category QGrR of
multi-graded rightR-modules modulo torsion modules again has QGrR ∼= QchX. With
some natural extra hypotheses,R will be right noetherian. Via these methods, Chan sh
that some rings associated to twisted homogeneous coordinate rings, like tensor p
of two such coordinate rings, are right noetherian.

In this paper, we will generalize the results of [7] to the multi-homogeneous cas
thereby strengthen [9]. More specifically, we show

Theorem 1.1 (see Theorem 2.7, Corollary 2.8).Let X be a projective scheme and l
{(Li , σi)} be a finite set of pairs of invertible sheaves and automorphisms. Then th
a simple criterion for{(Li , σi)} to be right ample. This criterion shows that right and l
ampleness are equivalent.

We then immediately have, in Corollary 3.5, that the tensor productB ⊗k B ′ is
noetherian, whereB,B ′ are twisted homogeneous coordinate rings associated to a
pairs(L, σ ), (L′, σ ′). If B is generated in degree one andI is the irrelevant ideal ofB,
then the Rees algebraB[I t] is noetherian; see Corollary 3.4.

We also show

Theorem 1.2 (see Theorem 4.6).Let B be a twisted multi-homogeneous coordin
ring under suitable hypotheses(Hypothesis4.1). Then GKdimB is an integer with
geometrically defined bounds.

Most of this paper appeared in the author’s Ph.D. thesis, under the directi
J.T. Stafford.
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2. Right ampleness is left ampleness

Because of the notational difficulties associated with handling the amplene
arbitrarily many pairs(Li , σi), we will use the concept of an invertible bimoduleLσ . In
this paper it will only be important to know how invertible bimodules act on a cohe
sheafF , so we will treatLσ as a notational convenience where

F ⊗Lσ = σ∗(F ⊗L), Lσ ⊗F = L⊗ σ ∗F

and the right-hand side of the above equations are justOX-modules. For a formal definitio
of invertible bimodule see [2, §2]. Given two invertible bimodulesLσ andMτ , one finds
the tensor product to be

Lσ ⊗Mτ = (L⊗ σ ∗M)τσ , (2.1)

where the second tensor product is the usual product on quasi-coherent shea
Lemma 2.14]. We will sometimes denote the product of invertible bimodules
juxtaposition if the meaning is clear. TheOX-module underlying a product of bimodul
Lσ ⊗Mτ will be denoted|Lσ ⊗Mτ |; in this particular case|Lσ ⊗Mτ | = L⊗ σ ∗M.

We will also use the notationLσ = σ ∗L. The automorphismσ induces a natura
isomorphism

F ⊗Lσ = σ∗(F ⊗L) ∼= Lσ−1 ⊗F σ−1 = Lσ−1

σ−1 ⊗F (2.2)

for any coherent sheafF .
We now sketch the construction of a twisted multi-homogeneous coordinate rin

details see [9, §2]. Let{(Li )σi } be a collection ofs invertible bimodules, possibly with rep
etitions. For notational convenience, we will writeL(i,σi) = (Li )σi . Given theses invertible
bimodules, one wishes to form an associated twisted multi-homogeneous coordina
B = B(X; {L(i,σi )}). For ans-tuple n̄ = (n1, . . . , ns) we define the multi-graded pieceBn̄

as

Bn̄ = H 0(X,Ln1
(1,σ1)

· · ·Lns

(s,σs)

)
, (2.3)

where the cohomology of an invertible bimodule is just cohomology of the under
sheaf. Multiplication should be given by

a · b = aσm̄(b), (2.4)

whena ∈ Bm̄ andb ∈ Bn̄. Hereσ m̄(b) = σ
m1
1 σ

m2
2 · · ·σms

s (b), where the action of an auto
morphism on a global section is induced by pullback.

However, to make the ring construction work, [9] shows that we need the inve
bimodules to commute with each other. Examining (2.1), we see that two bimoduleLσ ,
Mτ commute when

L⊗ σ ∗M ∼=M⊗ τ ∗L and στ = τσ. (2.5)
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Thus we need sheaf isomorphismsϕij :L(j,σj )L(i,σi ) →L(i,σi )L(j,σj ) for each 1� i < j �
s. It is further noted in [9] that when there are three or more bimodules, these isomorp
must be compatible on “overlaps” in the sense of Bergman’s Diamond Lemma. In ter
the isomorphismϕij this means [9, p. 444]

(ϕij ⊗ 1L(k,σk)
) ◦ (1L(j,σj )

⊗ ϕik) ◦ (ϕjk ⊗ 1L(i,σi )
)

= (1L(i,σi )
⊗ ϕjk) ◦ (ϕik ⊗ 1L(j,σj )

) ◦ (1L(k,σk)
⊗ ϕij ) (2.6)

in Hom(L(k,σk)L(j,σj )L(i,σi ),L(i,σi)L(j,σj )L(k,σk)). We will always assume that we ha
this compatibility when forming the ringB. Summarizing, we have

Proposition 2.1. Let {L(i,σi)} be a finite collection of commuting invertible bimodul
Assume that these bimodules have compatible pairwise commutation relations in th
of (2.6). Then there is a multi-graded ringB with multi-graded pieces given by(2.3)and
multiplication given by(2.4).

To study these rings, a multi-graded version ofσ -ampleness is introduced. Since w
will be interested in both this version of ampleness and the usual commutative on
will call this (right) NC-ampleness, whereas [9] uses the terminology (right) amplene
We define the ordering ons-tuples to be the standard one, i.e.,(n′

1, . . . , n
′
s) � (n1, . . . , ns)

if n′
i � ni for all i. For simplicity we writeLm̄

σ̄ = Lm1
(1,σ1)

· · ·Lms

(s,σs)
.

Definition 2.2. Let X be a projective scheme withs commuting invertible bimodule
{L(i,σi)}.

(1) If for any coherent sheafF , there exists an̄m0 such that

Hq
(
X,F ⊗Lm̄

σ̄

)= 0

for q > 0 andm̄ � m̄0, then the set{L(i,σi )} is calledright NC-ample.
(2) If for any coherent sheafF , there exists an̄m0 such that

Hq
(
X,Lm̄

σ̄ ⊗F
)= 0

for q > 0 andm̄ � m̄0, then the set{L(i,σi )} is calledleft NC-ample.

As in the case of one invertible bimodule, right and left NC-ampleness are related

Lemma 2.3 (cf. [7, Lemma 2.3]).LetX be a projective scheme withs commuting invertible

bimodules{(Li )σi }. Then the set{(Lσ−1
i

i )
σ−1
i

} commutes pairwise. Also, the set{(Li )σi } is

right NC-ample if and only if the set{(Lσ−1
i

i ) −1} is left NC-ample.

σi
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Proof. LetLσ ,Mτ be two commuting invertible bimodules. Then (2.5) holds. Obviou
σ−1τ−1 = τ−1σ−1. Now sinceL⊗ σ ∗M ∼=M⊗ τ ∗L, pulling back byσ−1τ−1 we have(

τ−1)∗(σ−1)∗L⊗ (
τ−1)∗M ∼= (

σ−1)∗(τ−1)∗M⊗ (
σ−1)∗L.

SoLσ−1

σ−1 = ((σ−1)∗L)σ−1 andMτ−1

τ−1 = ((τ−1)∗M)τ−1 commute.
Now using (2.2) and the fact that the bimodules commute, we see that

Hq
(
X,F ⊗ (L1)

m1
σ1

· · · (Ls )
ms
σs

)= Hq
(
X,
(
Lσ−1

1
1

)m1

σ−1
1

· · ·(Lσ−1
s

s

)ms

σ−1
s

⊗F
)

for all q,mi . Thus right NC-ampleness of{(Li )σi } is equivalent to left NC-ampleness

{(Lσ−1
i

i )
σ−1
i

}. ✷
Lemma 2.4. Let X be a projective scheme overk with s commuting invertible bimodule

{(Li )σi }. Assume that the commutation relations of{(Li )σi } and of {(Lσ−1
i

i )
σ−1
i

} are

compatible in the sense of(2.6). If B ′ = B(X; {(Li )σi }) andB = B(X; {(Lσ−1
i

i )
σ−1
i

}), then

B ∼= (B ′)op.

Proof. Let τ :B → (B ′)op be given byτ (a) = σ
n1
1 · · ·σns

s (a) for a ∈ B(n1,...,ns ). Extendτ
linearly so it is a vector space map. It is obviously a vector space isomorphism.

Let · be multiplication inB and∗ be multiplication in(B ′)op. Fora ∈ Bn̄, b ∈ Bm̄,

τ (a · b) = τ
(
aσ−n̄(b)

)= σ n̄+m̄(a)σ m̄(b),

τ (a) ∗ τ (b) = σ n̄(a) ∗ σ m̄(b) = σ m̄(b)σ n̄+m̄(a).

Thusτ (a · b) = τ (a) ∗ τ (b), as required. ✷
As in [7, Proposition 2.3], we have simpler equivalent conditions for a set of bimod

to be right NC-ample.

Proposition 2.5. Let X be a projective scheme withs commuting invertible bimodule
{L(i,σi)}. Then the following are equivalent:

(1) The set{L(i,σi)} is right NC-ample.
(2) For any coherent sheafF , there exists an̄m0 such thatF ⊗Lm̄

σ̄ is generated by globa
sections form̄ � m̄0.

(3) For any invertible sheafH, there exists an̄m0 such that|H−1 ⊗Lm̄
σ̄ | is very ample for

m̄ � m̄0.
(4) For any invertible sheafH, there exists anm̄0 such that|H−1 ⊗ Lm̄

σ̄ | is ample for
m̄ � m̄0.

A similar statement holds for leftNC-ample.
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Proof. This is a special case of [8, Theorem 1.3, Proposition 6.9].✷
We can now give a connection between right NC-ampleness and the conceptσ -

ampleness for one invertible sheafL.

Lemma 2.6. LetX be a projective scheme withs commuting invertible bimodules{L(i,σi )}.
Suppose that̄n = (n1, . . . , ns) ∈ (N+)s and setτ = σ

n1
1 · · ·σns

s . If the set of bimodules i
right NC-ample, then|Ln1

(1,σ1)
· · ·Lns

(s,σs)
| is τ -ample.

Proof. Let H be an invertible sheaf and let̄m0 be such that for allm̄ � m̄0, the sheaf
|H−1 ⊗Lm̄

σ̄ | is ample by Proposition 2.5(4).
Now there exists an integerl0 such that for alll � l0, we haveln̄ � m̄0. So |H−1 ⊗

(Ln̄
σ̄ )

l | is ample. Thus by [7, Proposition 2.3(4)],|Ln̄
σ̄ | is τ -ample. ✷

Recall that the Picard group ofX modulo numerical equivalence,A1
Num(X) = PicX/ ≡,

is a finitely generated free abelian group [10, p. 305, Remark 3]. Thus the action oσ on
A1

Num(X) is given by someP ∈ GLρ(Z) for someρ > 0. We say thatσ is unipotentif
all the eigenvalues ofP equal 1 and thatσ is quasi-unipotentif all the eigenvalues ofP
are roots of unity. This is a well-defined notion [8, Proposition 7.12]. We then have a
version of [7, Theorem 1.3].

Theorem 2.7. Let X be a projective scheme withs commuting invertible bimodule
{L(i,σi)}. The set{L(i,σi)} is (right) NC-ample if and only if everyσi is quasi-unipoten
and there exists̄m0 ∈ N

s such that|Lm̄
σ̄ | is ample for allm̄ � m̄0.

Proof. Suppose that{L(i,σi)} is right NC-ample. Then by Proposition 2.5(4), there ex
m̄0 ∈ N

s such that|Lm̄
σ̄ | is ample for all m̄ � m̄0. Further, by the previous lemm

Ln1
(1,σ1)

· · ·Lns

(s,σs)
is τ -ample whenτ = σ

n1
1 · · ·σns

s and eachni > 0. Now recall that all the

automorphisms commute and hence their actions onA1
Num(X) are commuting matrices

Thus the eigenvalues of the productσ
n1
1 · · ·σns

s are products of eigenvalues from eachσi .
So if σ1 were not quasi-unipotent, then eitherτ1 = σ1σ2 · · ·σs or τ2 = σ 2

1σ2 · · ·σs would
not be quasi-unipotent. Butτ1 andτ2 must be quasi-unipotent by [7, Theorem 1.3] since
corresponding sheavesL1

(1,σ1)
· · ·L1

(s,σs)
andL2

(1,σ1)
· · ·L1

(s,σs)
areτ1-ample andτ2-ample

respectively. Thus eachσi must be quasi-unipotent.
Now suppose that everyσi is quasi-unipotent and there existsm̄0 ∈ N

s such that|Lm̄
σ̄ |

is ample for allm̄ � m̄0. As theσi commute,τ = σ1 · · ·σs is quasi-unipotent. Then by [7
Theorem 1.3], the invertible bimoduleL(1,σ1) · · ·L(s,σs) is τ -ample. So given any invertibl
sheafH, there existsn0 ∈ N such that∣∣H−1 ⊗ (

L(1,σ1) · · ·L(s,σs)

)n∣∣= ∣∣H−1 ⊗Ln
(1,σ1)

· · ·Ln
(s,σs)

∣∣
is ample for n � n0 by [7, Proposition 2.3(4)]. Then we have that for allm̄ �
(n0, n0, . . . , n0) + m̄0 the invertible sheaf

∣∣H−1 ⊗Lm̄
σ̄

∣∣= ∣∣H−1 ⊗Ln0 · · ·Ln0
∣∣⊗ ∣∣Lm1−n0 · · ·Lms−n0

∣∣σn0
1 ···σn0

s

(1,σ1) (s,σs) (1,σ1) (s,σs)
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is the tensor product of two ample invertible sheaves. Hence it is ample and so the
invertible bimodules is right NC-ample by Proposition 2.5(4).✷
Corollary 2.8. Let X be a projective scheme withs commuting invertible bimodule
{L(i,σi)}. Then{L(i,σi)} is right NC-ample if and only if it is leftNC-ample.

Proof. Suppose that{L(i,σi)} is right NC-ample. Then eachσi is quasi-unipotent and ther
existsm̄0 such that|Lm1

(1,σ1)
· · ·Lms

(s,σs)
| is ample for(m1, . . . ,ms) � m̄0. Pulling back by

σ
−m1
1 · · ·σ−ms

s , we have that the invertible sheaf

∣∣(Lσ−1
1

1

)m1

σ−1
1

· · · (Lσ−1
s

s

)ms

σ−1
s

∣∣
is ample. Thus by Theorem 2.7, the set{(Lσ−1

i

i )
σ−1
i

} is right NC-ample. So the original s

{L(i,σi)} is left NC-ample by Lemma 2.3. The argument is clearly reversible.✷
Thus we may now refer to a set of bimodules as being simply NC-ample.
Note the difference between [7, Theorem 1.3] and Theorem 2.7. The former re

only that |Lm
σ | is ample for one value ofm, while the latter requires the product

bimodules to be ample for all̄m � m̄0. To see this stronger requirement is necessary, lX

be any projective scheme withL any ample invertible sheaf. We need to rule out the
L,L−1 where the bimodule action is the usual commutative one. In this particular ca
courseL1 ⊗ (L−1)0 is ample. ButLm1 ⊗ (L−1)m2 is not ample for all(m1,m2) sufficiently
large; just fixm1 and letm2 go to infinity.

It is not necessary for one of theLm
(i,σi )

to be ample form � 0, since onP1 × P
1, the

pairO(1,0),O(0,1) is NC-ample, where again these bimodules act only as commu
invertible sheaves.

3. Ring theoretic consequences

Unlike the case of only one bimodule, the multi-graded ringB may not be noetheria
when {L(i,σi)} is NC-ample. In fact, [9, Example 5.1] gives a simple commutative (
hence not finitely generated) counterexample. However, Chan introduces an add
property for an invertible bimoduleLσ onX to guarantee the noetherian condition.

Hypothesis 3.1. There exists a projective schemeY with automorphismσ and a σ -
equivariant morphismf :X → Y . That isσY ◦ f = f ◦ σX . There also exists an invertib
sheafL′ on Y such thatL = f ∗L′ and such thatL′

σ is σ -ample.([9] labels this prop-
erty (∗).)

This property (Hypothesis 3.1) is saying that form � 0, |Lm
σ | is generated by

global sections, since it is a pullback of|(L′)mσ |, which is eventually very ample by [7
Proposition 2.3(3)]. Note in particular that ifL is alreadyσ -ample, thenLσ satisfies
Hypothesis 3.1 trivially. Using this property, one determines



306 D.S. Keeler / Journal of Algebra 265 (2003) 299–311

ble
es

eous
e results
ectral

he NC-

r

t

Theorem 3.2 [9, Theorem 5.2].Let X be a projective scheme with commuting inverti
bimodulesLσ ,Mτ . Suppose that the pair is(right) NC-ample and each bimodule satisfi
Hypothesis3.1, possibly for differentY . ThenB(X;Lσ ,Mτ ) is right noetherian.

Then combining Corollary 2.8, Lemma 2.4, and the theorem above, we have

Theorem 3.3. LetX be a projective scheme with commuting invertible bimodulesLσ ,Mτ .
Suppose that the pair isNC-ample and each bimodule satisfies Hypothesis3.1, possibly for
differentY . ThenB(X;Lσ ,Mτ ) is noetherian.

Now we can prove that two particularly interesting twisted multi-homogen
coordinate rings, a Rees ring and a tensor product, are noetherian, strengthening th
of [9, Corollaries 5.7, 5.8]. In the latter case, we may replace his proof, based on sp
sequences, by an easier one since the criterion of Theorem 2.7 simplifies testing t
ampleness of the relevant pair of bimodules.

Corollary 3.4. LetLσ beσ -ample on a projective schemeX. Let the ringB = B(X;Lσ )

be generated in degree one. Then the Rees ringB[I t] =⊕∞
r=0 I r tr of B is noetherian,

whereI = B>0 is the irrelevant ideal.

Proof. The ringB[I t] has bigraded pieces

B(i,j) = H 0(X,Li
σLj

σ

)
tj

sinceI j = ⊕∞
l=j Bl whenB is generated in degree one. The pairLσ ,Lσ is obviously

NC-ample and satisfies Hypothesis 3.1. Thus Theorem 3.3 applies.✷
Corollary 3.5. LetLσ beσ -ample on a projective schemeX and letMτ beτ -ample on a
projective schemeY . ThenB(X;Lσ ) ⊗ B(Y ;Mτ ) is noetherian.

Proof. It is argued in [9, Example 4.3] that

B(X;Lσ ) ⊗ B(Y ;Mτ ) ∼= B
(
X × Y ; (π∗

1L
)
σ×1,

(
π∗

2M
)
1×τ

)
,

where theπi are the natural projections. These two invertible bimodules onX × Y

obviously satisfy Hypothesis 3.1.
SinceLσ is σ -ample andMτ is τ -ample, there is anm0 such that|Lm

σ | and|Mm
τ | is

ample for allm � m0. Note that(σ × 1)∗π∗
1L = π∗

1σ ∗L and a similar formula holds fo
Mτ . Then

∣∣(π∗
1L
)m1
σ×1

(
π∗

2M
)m2
1×τ

∣∣
is ample for all(m1,m2) � (m0,m0) by [1, p. 125, Exercise 5.11].

Now σ is quasi-unipotent and we wish to showσ × 1 is as well. It is tempting to think
that as a matrix acting onA1 (X × Y ) one hasσ × 1 = σ ⊕ 1. However, this may no
Num
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be the case, since in generalA1
Num(X × Y ) has larger rank thanA1

Num(X) ⊕ A1
Num(Y )

[1, p. 367, Exercise 1.6]. But letHX andHY be ample invertible sheaves onX andY ,
respectively. Ifσ × 1 is not quasi-unipotent, then by [7, Lemma 3.2], there existsr > 1,
c > 0, and an integral curveC onX × Y such that

((
(σ × 1)∗

)m(
π∗

1HX ⊗ π∗
2HY

)
.C
)
� crm for all m � 0. (3.1)

But

(
(σ × 1)∗

)m(
π∗

1HX ⊗ π∗
2HY

)= π∗
1

(
σ ∗)mHX ⊗ π∗

2HY .

Since σ is quasi-unipotent, the intersection numbers of the right-hand side with
curve C must be bounded by a polynomial. This contradicts (3.1). Soσ × 1 must
be quasi-unipotent. Similarly, 1× τ is quasi-unipotent. Thus by Theorem 2.7, the p
(π∗

1L)σ×1, (π
∗
2M)1×τ is NC-ample and thus the ring of interest is noetherian.✷

4. Gel’fand–Kirillov dimension

In this section we generalize the results of [7, §6], showing that a noetherian tw
multi-homogeneous coordinate ring has integer GK-dimension. We first fix hypothes
the ringB.

Hypothesis 4.1. Let X be a projective scheme withs commutingNC-ample bimodules
{L(i,σi)}. Assume that the commutation relations of{(Li )σi } are compatible in the sense
(2.6). LetB = B(X; {(Li )σi }) and suppose thatB is right noetherian.

If B is the twisted multi-homogeneous coordinate ring associated to an NC-amp
of invertible bimodules, then the vanishing of cohomology in Definition 2.2 allows on
control the dimension ofBı̄ for ı̄ � ı̄0 for somēı0 ∈ N

s . We are not guaranteed such cont
on the “edges”

⊕
j B(0,...,j,...,0). Thus, it will be easier to study the GK-dimension of t

idealB�ı̄0 rather then the GK-dimension ofB.

Lemma 4.2. LetB satisfy Hypothesis4.1, and letı̄ ∈ N
s . Then

GKdimB = GKdim
(
B�ı̄

)
B
.

Proof. If ̄ � ı̄, thenB�̄ ⊆ B�ı̄ and GKdimB�̄ � GKdimB�ı̄ . So we may assum

that ı̄ is sufficiently large so thatLj1
(1,σ1)

· · ·Ljs
(s,σs)

is generated by global sections f
(j1, . . . , js) � ı̄ by Proposition 2.5(2). SoB̄ ⊆ B̄+ı̄ for all ̄ ∈ N

s .
We may gradeB by {B�(n,n,...,n)/B�(n−1,n−1,...,n−1): n ∈ N} and gradeB�ı̄ by

{B�(n,n,...,n)+ı̄ /B�(n−1,n−1,...,n−1)+ı̄ : n ∈ N}. Then

GKdimB = limn logn dimB�(n,n,...,n) � limn logn dimB�(n,n,...,n)+ı̄ = GKdimB�ı̄
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since B�ı̄ is finitely generated [11, Lemma 6.1]. That GKdimB�ı̄ � GKdimB is
trivial. ✷

We will need to use multi-Veronese subrings and also generalize a standard lem
graded rings to the multi-graded case.

Definition 4.3. LetB be ak-algebra, finitely multi-graded byNs (that is, each multi-grade
piece is finite dimensional). Then the subring

B(n1,...,ns) =
⊕

(i1,...,is )∈Ns

B(n1i1,...,ns is )

is amulti-Veronese subringof B.

Lemma 4.4. LetB be ak-algebra, finitely multi-graded byNs .

(1) If B has ACC on multi-graded right ideals, thenB is right noetherian.
(2) If B is right noetherian, then the multi-Veronese subringA = B(n1,...,ns ) is right

noetherian for any(n1, . . . , ns) ∈ (N+)s .

Proof. Both claims are simple generalizations of the graded case. For (1), one may s
the conclusion is implicit in the proof that a right multi-filtered ring is right noetherian i
associated multi-graded ring is right noetherian [12, Theorem 1.5]. The proof of (2) is
[13, Proposition 5.10(1)], noting that ifI is a multi-graded ideal ofA, thenI = IB∩A. ✷

Now we may replaceB with a multi-Veronese.

Lemma 4.5. LetB satisfy Hypothesis4.1, and letn̄ ∈ (N+)s . ThenB(n̄) satisfies Hypothe
sis4.1andGKdimB = GKdimB(n̄).

Proof. Let n̄ = (n1, . . . , ns) and A = B(n̄). For the first claim, we have already se
in Lemma 4.4 thatA is right noetherian. The bimodules{Lni

(i,σi)
} commute compatibly

because their commutation relations are compositions of the commutation relatio
{L(i,σi)}. The bimodules{Lni

(i,σi )
} are also NC-ample by Theorem 2.7.

Now choosem̄ = (m1, . . . ,ms) ∈ N
s such thatLj1

(1,σ1)
· · ·Ljs

(s,σs)
is generated by globa

sections for(j1, . . . , js) � m̄ by Proposition 2.5(2). Then formi � ji < ni + mi there are
short exact sequences

0 →K(j1,...,js ) → B(j1,...,js ) ⊗OX → Lj1
(1,σ1)

· · ·Ljs
(s,σs)

→ 0.

Then tensoring withLn1a1
(1,σ1)

· · ·Lnsas

(s,σs)
and taking cohomology, we have

B(j1,...,js ) ⊗ H 0(Ln1a1
(1,σ1)

· · ·Lnsas

(s,σs)

) → B(j1+n1a1,...,js+nsas)

→ H 1(K(j1,...,js) ⊗Ln1a1 · · ·Lnsas
)
.

(1,σ1) (s,σs)
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For (a1, . . . , as) sufficiently large, the rightmost cohomology group vanishes. So t
existsb̄ such that

B�b̄ ⊆
∑

1�i�s

∑
0�ji<ni+mi

B(j1,...,js)A.

HenceB�b̄ is a finiteA-module, so

GKdimB = GKdim
(
B�b̄

)
B

= GKdim
(
B�b̄

)
A

� GKdimA

by Lemma 4.2 and [11, Corollary 5.4].✷
We may now generalize [7, Theorem 6.1] to the multi-homogeneous case.

Theorem 4.6. LetB satisfy Hypothesis4.1. ThenGKdimB is an integer and

dimX + 1 � GKdimB � s
(
(& + 1)dimX + 1

)
,

wheres is the number of commuting bimodules,ρ = ρ(X) is the Picard number ofX, and
& = 2�ρ−1

2 �.

Proof. By Lemma 4.5, we may replaceB with a multi-Veronese; hence, replacing ea
σi with σ

mi

i for somemi , we may assume eachσi is unipotent. That is, up to numeric
equivalence,σ−1

i ≡ I + Ni ∈ GLρ(Z). We knowN&+1
i = 0 for all i [7, Lemma 6.12].

(We choose to useσ−1
i since we will use Cartier divisors and ifL ∼= OX(D), then

Lσ ∼=OX(σ−1D).)
Since the set of bimodules is NC-ample, we may again replaceB with a multi-Veronese

and assume thatHq(X,Ln̄
σ̄ ) = 0 for all q > 0, ni > 0 where n̄ = (n1, . . . , ns). Thus

dimH 0(X,Ln̄
σ̄ ) = χ(Ln̄

σ̄ ) for ni > 0. So by the Riemann–Roch Theorem [14, p. 3
Example 18.3.6],

dimH 0(X,Ln̄
σ̄

)=
dimX∑
j=0

1

j !
∫
X

((
Ln̄

σ̄

)•j)∩ τX,j (OX), (4.1)

where •j denotesj th self-intersection and theτX,j (OX) are constantj -cycles. By
Lemma 4.2, we may ignore dimH 0(X,Ln̄

σ̄ ) when someni = 0.
Let Di be a Cartier divisor such thatLi

∼= OX(Di). The action ofσ−ni on Cartier
divisors modulo numerical equivalence is given by [7, (4.2), (4.3)]

σ
−ni

i ≡
&∑

c=0

(
ni

c

)
Nc

i ,

ni−1∑
σ−m
i ≡

&∑(
ni

d + 1

)
Nd

i .
m=0 d=0
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So up to numerical equivalence,

Ln̄
σ̄ ≡

s∑
a=1

[(
a−1∏
b=1

(
&∑

c=0

(
nb

c

)
Nc

b

))
·
(

&∑
d=0

(
na

d + 1

)
Nd

a Da

)]
.

Thus dimH 0(X,Ln̄
σ̄ ) is a polynomial inni , i = 1, . . . , s, with the degree ofni at most

(& + 1)dimX, since one has at most a(dimX)th self-intersection.
Now let B�(1,1,...,1) have the filtration given by assuming eachni � n. Thenf (n) =

dimB(1,1,...,1)�(n1,...,ns )�(n,...,n) is a polynomial inn of degree at mosts((&+1)dimX+1).
This is because summing over eachi = 1, . . . , s adds 1 to the degree ofni . Then the degre
f (n) is maximized if dimH 0(X,Ln̄

σ̄ ) has a term of the formn(&+1)dimX
1 · · ·n(&+1)dimX

s ,
since in this case,(& + 1)dimX + 1 is added to itselfs times.

Thus GKdimB is an integer with the desired upper bound by Lemma 4.2. N
by Lemma 2.6,B has a twisted homogeneous coordinate ringC as a subring. Now
dimX + 1 � GKdimC [8, Theorem 7.17], so the lower bound on GKdimB holds. ✷

Examining [7, Theorem 6.1], [8, Theorem 7.17] we see that these bounds on GKB
are not optimal for the cases = 1. However, the notational difficulties of repeating t
arguments of [7, §6] fors bimodules seem to outweigh the benefits, given that exact re
can be given in the following specific cases.

Proposition 4.7. LetLσ be aσ -ample invertible bimodule on a projective schemeX. Let
B = B(X;Lσ ) be generated in degree one. Then

GKdimB[I t] = GKdimB + 1,

whereI = B>0 is the irrelevant ideal.

Proof. By Lemma 4.5, we may replaceσ with someσm and assume thatσ is unipotent,
dimBm = χ(Lm

σ ) for m � 1, and dimBm � dimBm+1 for m � 0. Let f (m) = dimBm.
Then GKdimB = degf + 1 [7, (6.4)]. FilterB[I t] by (B[I t])(i,j)�(n,n), n ∈ N. Now
dim(B[I t])(i,j) = dimBi+j , so

g(n) =
n∑

i=0

n∑
j=0

f (i + j) = dim
(
B[I t])

(i,j)�(n,n)
.

Sincef (m) is a numerical polynomial, degg = degf +2. So GKdimB[I t] = degf +2 =
GKdimB + 1. ✷

For generalk-algebrasR,S, we have GKdim(R ⊗k S) � GKdimR + GKdimS [11,
Lemma 3.10]. However, for the tensor product of a twisted homogeneous coordina
and a generalk-algebra, we have equality, as in the commutative case.
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Proposition 4.8. LetLσ beσ -ample on a projective schemeX, and letB = B(X;Lσ ). Let
S be anyk-algebra. Then

GKdim(B ⊗ S) = GKdimB + GKdimS.

Proof. There exists a Veronese subalgebraB(n) of B such thatf (m) = dimB
(n)
m is a

polynomial form > 0 and GKdimB = GKdimB(n) [7, (6.3)–(6.4)]. We may also assum
thatB(n) is generated in degree one [8, Theorem 7.17]. LetV = B0⊕B

(n)
1 . Then dimV m is

a polynomial inm, so GKdim(B ⊗S) = GKdimB + GKdimS [11, Proposition 3.11]. ✷
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