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In this paper, we establish a Composition–Diamond lemma for the
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by lifting a given Gröbner–Shirshov basis in the tensor product
k[X] ⊗ k〈Y 〉 in which k[X] is the polynomial algebra.
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1. Introduction

In [31], A.I. Shirshov established the theory of one-relator Lie algebras Lie(X |s = 0). This theory is
in full analogy, by statements but not by method, of the celebrated theory of Magnus on one-relater
groups [22,23] (see also [24,21]). In particular, A.I. Shirshov provided the algorithmic decidality of the
word problem for any one-relator Lie algebra. In order to proceed his ideas, he first created the so-
called Gröbner–Shirshov bases theory for Lie algebras Lie(X |S) which are presented by generators and
defining relations. The main notion of Shirshov’s theory was a notion of composition ( f , g)w of two
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Lie polynomials, f , g ∈ Lie(X) relative to some associative word w . Based on this notion, he defined
an infinite algorithm of adding all non-trivial compositions to some set S until a set Sc is obtained
which is closed under compositions. In addition, S and Sc generate the same ideal, i.e., Id(S) = Id(Sc).
We now call Sc the Gröbner–Shirshov basis of Id(S).

The following lemma was proved by Shirshov [31].

Let Lie(X) ⊂ k〈X〉 be a free Lie algebra over a field k which is regarded as an algebra of the Lie polynomials
in the free algebra k〈X〉, and let S be a subset of Lie(X). If f ∈ Id(S), then f̄ = us̄v, where s ∈ Sc , u, v ∈ X∗ , f̄ ,
s̄ are the leading associative words of the corresponding Lie polynomials f , s with respect to the deg-lex order
on X∗ and X∗ is the free monoid generated by X.

The following corollary is an easy consequence of the above lemma.

Irr(Sc) = {[u] | u �= as̄b, s ∈ S,a,b ∈ X∗} is a linear basis of the algebra Lie(X |S) = Lie(X)/Id(S), where u
is an associative Lyndon–Shirshov word in X∗ and [u] is the corresponding non-associative Lyndon–Shirshov
word under the Lie brackets [xy] = xy − yx.

In order to define the Lie composition ( f , g)w of two monic Lie polynomials, where f̄ = ac, ḡ = cb,
c �= 1, a, b, c are associative words and w = acb, A.I. Shirshov first defined the associative composition
f b − ag . Then by putting on f b and ag some special brackets [ f b], [ag] (see [29]), he obtained the
Lie composition ( f , g)w = [ f b] − [ag]. Following [31], one can easily deduce the same lemma for a
free associative algebra, that is, let S ⊂ k〈X〉 and Sc be defined as before. If f ∈ Id(S), then f̄ = as̄b for
some s ∈ Sc , a,b ∈ X∗ . This lemma was later formulated by L.A. Bokut [3] as an analogy of Shirshov’s
Lie composition lemma, and by G. Bergman [1] under the name “Diamond lemma” after the Newman’s
Diamond lemma for graphs [28].

Nowadays, Shirshov’s lemma is named the “Composition–Diamond lemma” for Lie and associative
algebras. The formulation of this lemma will be given in the next section of this paper.

This kind of ideas were also independently discovered by H. Hironaka [17] for power series alge-
bras and by B. Buchberger [9,10] for polynomial algebras. The name “Gröbner bases” was suggested
by B. Buchberger. The applications of Gröbner bases in mathematics are now well known and are well
recognized, particularly in algebraic geometry, computer science and information science.

At present, there are many Composition–Diamond lemmas (CD-lemma for short) for different
classes of non-commutative or non-associative algebras. We now list some of them below.

A.I. Shirshov [30] proved himself the first CD-lemma for commutative (anti-commutative) non-
associative algebras, and he mentioned that this CD-lemma is also valid for non-associative algebras.
It gave a solution of the word problem for these classes of algebras. For non-associative algebras,
a version of CD-lemma was proved by A.I. Zhukov in [33].

A.A. Mikhalev [25] proved a CD-lemma for Lie superalgebras.
T. Stokes [32] proved a CD-lemma for left ideals of an algebra k[X] ⊗ Ek(Y ), the tensor product of

a polynomial algebra and an exterior (Grassmann) algebra.
A.A. Mikhalev and E.A. Vasilieva [26] proved a CD-lemma for free supercommutative polynomial

algebras.
A.A. Mikhalev and A.A. Zolotykh [27] proved a CD-lemma for k[X] ⊗ k〈Y 〉, the tensor product of a

polynomial algebra and a free algebra.
L.A. Bokut, Y. Fong and W.F. Ke [7] proved a CD-lemma for associative conformal algebras.
L. Hellström [16] proved a CD-lemma for a non-commutative power series algebra.
S.-J. Kang and K.-H. Lee [18,19] and E.S. Chibrikov [13] proved a CD-lemma for a module over an

algebra (see also [12]).
D.R. Farkas, C.D. Feustel and E.L. Green [15] proved a CD-lemma for path algebras.
L.A. Bokut and K.P. Shum [8] proved a CD-lemma for Γ -algebras.
Y. Kobayashi [20] proved a CD-lemma for algebras based on well-ordered semigroups.
L.A. Bokut, Yuqun Chen and Cihua Liu [5] proved a CD-lemma for dialgebras (see also [4]).
Yuqun Chen, Yongshan Chen and Yu Li [11] proved a CD-lemma for differential algebras.
L.A. Bokut, Yuqun Chen and Jianjun Qiu [6] proved a CD-lemma for associative algebras with mul-

tiple linear operators.
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Let X and Y be sets and k〈X〉 ⊗ k〈Y 〉 be the tensor product of free algebras. In this paper, we will
give a Composition–Diamond lemma for the algebra k〈X〉 ⊗ k〈Y 〉 (see Theorem 3.4). As a result, we
prove a theorem on the pair of algebras (k[X] ⊗ k〈Y 〉,k〈X〉 ⊗ k〈Y 〉) following the spirit of Eisenbud–
Peeva–Sturmfels’ theorem [14] on the pair (k[X],k〈X〉). Namely, we construct a Gröbner–Shirshov
basis S ′ in k〈X〉 ⊗ k〈Y 〉 by lifting a given Gröbner–Shirshov basis S in the tensor product k[X] ⊗ k〈Y 〉
(in the sense of [27]) such that (k〈X〉⊗k〈Y 〉)/Id(S ′) ∼= (k[X]⊗k〈Y 〉)/Id(S). Also, we give another proof
of the Eisenbud–Peeva–Sturmfels’ theorem above.

2. Preliminaries

We first cite some known concepts and results in the literature [31,2,3] concerning the Gröbner–
Shirshov bases theory of associative algebras.

Let k be a field, k〈X〉 the free associative algebra over k generated by X and X∗ the free monoid
generated by X , where the empty word is the identity which is denoted by 1. For a word w ∈ X∗ , we
denote the length of w by |w|.

A well ordering > on X∗ is monomial if it is compatible with the multiplication of the words, that
is, for u, v ∈ X∗ , we have

u > v ⇒ w1uw2 > w1 v w2, for all w1, w2 ∈ X∗.

A standard example of monomial ordering on X∗ is the deg-lex ordering to compare two words first
by their degrees and then lexicographically, where X is a well-ordered set.

Let f ∈ k〈X〉 with the leading word f̄ . Then we call f monic if f̄ has coefficient 1.
If f and g are two monic polynomials in k〈X〉 and > a well ordering on X∗ , then there are two

kinds of compositions:

(i) If w is a word such that w = f̄ b = aḡ for some a,b ∈ X∗ with | f̄ |+|ḡ| > |w|, then the polynomial
( f , g)w = f b − ag is called the intersection composition of f and g with respect to w .

(ii) If w = f̄ = aḡb for some a,b ∈ X∗ , then the polynomial ( f , g)w = f − agb is called the inclusion
composition of f and g with respect to w .

Let S ⊂ k〈X〉 with each s ∈ S monic. Then the composition ( f , g)w is called trivial modulo (S, w)

if ( f , g)w = ∑
αiai sibi , where each αi ∈ k, ai,bi ∈ X∗ , si ∈ S and ai sibi < w . If this is the case, then

we write

( f , g)w ≡ 0 mod(S, w).

In general, for p,q ∈ k〈X〉, we write p ≡ q mod(S, w) which means that p − q ≡ 0 mod(S, w).
We now call the set S a Gröbner–Shirshov basis in k〈X〉 with respect to the monomial ordering >

if any composition of polynomials in S is trivial modulo S and corresponding w .

Lemma 2.1 (Composition–Diamond lemma for associative algebras). Let S ⊂ k〈X〉 be a set of monic polyno-
mials and > a monomial ordering on X∗ . Then the following statements are equivalent:

(i) S is a Gröbner–Shirshov basis in k〈X〉.
(ii) f ∈ Id(S) ⇒ f̄ = as̄b for some s ∈ S and a,b ∈ X∗ , where Id(S) is the ideal of k〈X〉 generated by S.

(iii) Irr(S) = {u ∈ X∗ | u �= as̄b, s ∈ S, a,b ∈ X∗} is a k-basis of the algebra A = k〈X |S〉.

3. Composition–Diamond lemma for tensor product

Let X and Y be two well-ordered sets, T = {yx = xy | x ∈ X, y ∈ Y }. With the deg-lex ordering
(y > x for any x ∈ X , y ∈ Y ) on (X ∪ Y )∗ , T is clearly a Gröbner–Shirshov basis in k〈X ∪ Y 〉. Then, by
Lemma 2.1,
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N = X∗Y ∗ = Irr(T ) = {
u = u X uY

∣∣ u X ∈ X∗ and uY ∈ Y ∗}

is the set of normal words of the tensor product

k〈X〉 ⊗ k〈Y 〉 = k〈X ∪ Y | T 〉.

Let kN be a k-space spanned by N . For any u = u X uY , v = v X vY ∈ N , we define the multiplication
of the normal words as follows

uv = u X v X uY vY ∈ N.

It is clear that kN is exactly the tensor product algebra k〈X〉 ⊗ k〈Y 〉, that is, kN = k〈X ∪ Y |T 〉 =
k〈X〉 ⊗ k〈Y 〉.

Now, we order the set N . For any u = u X uY , v = v X vY ∈ N ,

u > v ⇔ |u| > |v| or
(|u| = |v| and

(
u X > v X or

(
u X = v X and uY > vY )))

,

where |u| = |u X |+|uY | is the length of u. Obviously, > is a monomial ordering on N . Such an ordering
is also called the deg-lex ordering on N = X∗Y ∗ . Throughout this paper, we will adopt this ordering
unless otherwise stated.

For any polynomial f ∈ k〈X〉 ⊗ k〈Y 〉, f has a unique presentation of the form

f = α f̄ f̄ +
∑

αiui,

where f̄ , ui ∈ N , f̄ > ui , α f̄ , αi ∈ k.
The proof of the following lemma is straightforward and we hence omit the details.

Lemma 3.1. Let f ∈ k〈X〉 ⊗ k〈Y 〉 be a monic polynomial. Then u f v = u f̄ v for any u, v ∈ N.

We give here the definition of compositions. Let f and g be two monic polynomials of k〈X〉⊗k〈Y 〉
and w = w X wY ∈ N . Then we have the following compositions.

1. Inclusion
1.1. X-inclusion only
Suppose that w X = f̄ X = aḡ X b for some a,b ∈ X∗ , and f̄ Y , ḡY are disjoint. Then there are two

compositions according to wY = f̄ Y c ḡY and wY = ḡY c f̄ Y for c ∈ Y ∗ , respectively:

( f , g)w1 = f c ḡY − f̄ Y cagb, w1 = f X f̄ Y c ḡY

and

( f , g)w2 = ḡY c f − agbc f̄ Y , w2 = f X ḡY c f̄ Y .

1.2. Y -inclusion only
Suppose that wY = f̄ Y = c ḡY d for c,d ∈ Y ∗ and f̄ X , ḡ X are disjoint. Then there are two composi-

tions according to w X = f̄ X aḡ X and w X = ḡ Xa f̄ X for a ∈ X∗ , respectively:

( f , g)w1 = f aḡ X − f̄ Xacgd, w1 = f̄ Xaḡ X f Y

and

( f , g)w2 = ḡ Xaf − cgda f̄ X , w2 = ḡ Xa f̄ X f Y .
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1.3. X, Y -inclusion
Suppose that w X = f̄ X = aḡ X b for some a,b ∈ X∗ and wY = f̄ Y = c ḡY d for some c,d ∈ Y ∗ . Then

( f , g)w = f − acgbd.

The transformation f �→ ( f , g)w = f − acgbd is said to be the elimination of leading word (ELW) of
g in f .

1.4. X, Y -skew-inclusion
Suppose that w X = f̄ X = aḡ X b for some a,b ∈ X∗ and wY = ḡY = c f̄ Y d for some c,d ∈ Y ∗ . Then

( f , g)w = cf d − agb.

2. Intersection
2.1. X-intersection only
Suppose that w X = f̄ Xa = bḡ X for some a,b ∈ X∗ with | f̄ X |+|ḡ X | > |w X |, and f̄ Y , ḡY are disjoint.

Then there are two compositions according to wY = f̄ Y c ḡY and wY = ḡY c f̄ Y for c ∈ Y ∗ , respectively:

( f , g)w1 = f ac ḡY − f̄ Y cbg, w1 = w X f̄ Y c ḡY

and

( f , g)w2 = ḡY c f a − bgc f̄ Y , w2 = w X ḡY c f̄ Y .

2.2. Y -intersection only
Suppose that wY = f̄ Y c = dḡ X for some c,d ∈ Y ∗ with | f̄ Y |+ |ḡY | > |wY |, and f̄ X , ḡ X are disjoint.

Then there are two compositions according to w X = f̄ X aḡ X and w X = ḡ Xa f̄ X for a ∈ X∗ , respectively:

( f , g)w1 = f caḡ X − f̄ Xadg, w1 = f̄ Xaḡ X wY

and

( f , g)w2 = ḡ Xaf c − dga f̄ X , w2 = ḡ Xa f̄ X wY .

2.3. X, Y -intersection
If w X = f̄ X a = bḡ X for some a,b ∈ X∗ and wY = f̄ Y c = dḡY for some c,d ∈ Y ∗ together with

| f̄ X | + |ḡ X | > |w X | and | f̄ Y | + |ḡY | > |wY |, then

( f , g)w = f ac − bdg.

2.4. X, Y -skew-intersection
If w X = f̄ X a = bḡ X for some a,b ∈ X∗ and wY = c f̄ Y = ḡY d for some c,d ∈ Y ∗ together with

| f̄ X | + |ḡ X | > |w X | and | f̄ Y | + |ḡY | > |wY |, then

( f , g)w = cf a − bgd.

3. Both inclusion and intersection
3.1. X-inclusion and Y -intersection
There are two subcases to consider.
If w X = f̄ X = aḡ X b for some a,b ∈ X∗ and wY = f̄ Y c = dḡY for some c,d ∈ Y ∗ with | f̄ Y | + |ḡY | >

|wY |, then

( f , g)w = f c − adgb.
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If w X = f̄ X = aḡ X b for some a,b ∈ X∗ and wY = c f̄ Y = ḡY d for some c,d ∈ Y ∗ with | f̄ Y | + |ḡY | >
|wY |, then

( f , g)w = cf − agbd.

3.2. X-intersection and Y -inclusion
There are two subcases to consider.
If w X = f̄ X a = bḡ X for some a,b ∈ X∗ with | f̄ X | + |ḡ X | > |w X | and wY = f̄ Y = c ḡY d for some

c,d ∈ Y ∗ , then

( f , g)w = f a − bcgd.

If w X = f̄ X a = bḡ X for some a,b ∈ X∗ with | f̄ X | + |ḡ X | > |w X | and wY = c f̄ Y d = ḡY for some
c,d ∈ Y ∗ , then

( f , g)w = cf ad − bg.

From Lemma 3.1, it follows that for any case of compositions

( f , g)w < w.

If Y = ∅, then the compositions of f , g are the same in k〈X〉 as mentioned in Section 2.
Let S be a monic subset of k〈X〉 ⊗ k〈Y 〉 and f , g ∈ S . A composition ( f , g)w is said to be trivial

modulo (S, w), denoted by

( f , g)w ≡ 0 mod(S, w),

if ( f , g)w = ∑
i αiai sibi , where ai,bi ∈ N , si ∈ S , αi ∈ k and ai s̄ibi < w for any i.

In general, for any p,q ∈ k〈X〉 ⊗ k〈Y 〉, we have p ≡ q mod(S, w) if p − q ≡ 0 mod(S, w).
We call S a Gröbner–Shirshov basis in k〈X〉 ⊗ k〈Y 〉 if all compositions of elements in S are trivial

modulo S and corresponding w .

Lemma 3.2. Let S be a Gröbner–Shirshov basis in k〈X〉 ⊗ k〈Y 〉 and s1, s2 ∈ S. If w = a1 s̄1b1 = a2 s̄2b2 for
some ai,bi ∈ N, i = 1,2, then a1s1b1 ≡ a2s2b2 mod(S, w).

Proof. There are four cases to consider.
Case 1. Inclusion
1.1. X-inclusion only
Suppose that w X

1 = s̄X
1 = as̄X

2 b, a,b ∈ X∗ and s̄Y
1 , s̄Y

2 are disjoint. Then aX
2 = aX

1 a and bX
2 = bbX

1 .
There are two subcases to consider: wY

1 = s̄Y
1 cs̄Y

2 and wY
1 = s̄Y

2 cs̄Y
1 , where c ∈ Y ∗ .

For wY
1 = s̄Y

1 cs̄Y
2 , we have w1 = sX

1 s̄Y
1 cs̄Y

2 , aY
2 = aY

1 s̄Y
1 c, bY

1 = cs̄Y
2 bY

2 , w = a1 w1bX
1 bY

2 = a1 s̄1acs̄2b2
and hence

a1s1b1 − a2s2b2 = a1s1bX
1 cs̄Y

2 bY
2 − aX

1 aaY
1 s̄Y

1 cs2bbX
1 bY

2

= a1
(
s1cs̄Y

2 − s̄Y
1 cas2b

)
bX

1 bY
2

= a1(s1, s2)w1 bX
1 bY

2

≡ 0 mod(S, w).

For wY
1 = s̄Y

2 cs̄Y
1 , we have w1 = sX

1 s̄Y
2 cs̄Y

1 , aY
1 = aY

2 s̄Y
2 c, bY

2 = cs̄Y
1 bY

1 , w = aX
1 aY

2 w1b1 and hence
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a1s1b1 − a2s2b2 = aX
1 aY

2 s̄Y
2 cs1b1 − aX

1 aaY
2 s2bbX

1 cs̄Y
1 bY

1

= aX
1 aY

2

(
s̄Y

2 cs1 − as2bcs̄Y
1

)
b1

= aX
1 aY

2 (s1, s2)w1 b1

≡ 0 mod(S, w).

1.2. Y -inclusion only
This case is similar to 1.1.
1.3. X, Y -inclusion
We may assume that s̄2 is a subword of s̄1, i.e., w1 = s̄1 = acs̄2bd, a,b ∈ X∗ , c,d ∈ Y ∗ , aX

2 = aX
1 a,

bX
2 = bbX

1 , aY
2 = aY

1 c and bY
2 = dbY

1 . Thus, a2 = a1ac, b2 = bdb1, w = a1 w1b1 and hence

a1s1b1 − a2s2b2 = a1s1b1 − a1acs2bdb1

= a1(s1 − acs2bd)b1

= a1(s1, s2)w1 b1

≡ 0 mod(S, w).

1.4. X, Y -skew-inclusion
Assume that w X

1 = s̄X
1 = as̄X

2 b, a,b ∈ X∗ and wY
1 = s̄Y

2 = cs̄Y
1 d, c,d ∈ Y ∗ . Then aX

2 = aX
1 a, bX

2 = bbX
1 ,

aY
1 = aY

2 c and bY
1 = dbY

2 . Thus, w = aX
1 aY

2 w1bX
1 bY

2 and hence

a1s1b1 − a2s2b2 = aX
1 aY

2 cs1bX
1 dbY

2 − aX
1 aaY

2 s2bbX
1 bY

2

= aX
1 aY

2 (cs1d − as2b)bX
1 bY

2

= aX
1 aY

2 (s1, s2)w1 bX
1 bY

2

≡ 0 mod(S, w).

Case 2. Intersection
2.1. X-intersection only
We may assume that s̄X

1 is at the left of s̄X
2 , i.e., w X

1 = s̄X
1 b = as̄X

2 , a,b ∈ X∗ and |s̄X
1 | + |s̄X

2 | > |w X
1 |.

Then aX
2 = aX

1 a and bX
1 = bbX

2 . There are two subcases to consider: wY
1 = s̄Y

1 cs̄Y
2 and wY

1 = s̄Y
2 cs̄Y

1 ,
c ∈ Y ∗ .

For wY
1 = s̄Y

1 cs̄Y
2 , i.e., w1 = s̄1bcs̄Y

2 , we have aY
2 = aY

1 s̄Y
1 c, bY

1 = cs̄Y
2 bY

2 , w = a1 s̄1acs̄2b2 = a1 w1b2 and

a1s1b1 − a2s2b2 = a1s1bbX
2 cs̄Y

2 bY
2 − aX

1 aaY
1 s̄Y

2 cs2b2

= a1
(
s1bcs̄Y

2 − as̄Y
2 cs2

)
b2

= a1(s1, s2)w1 b2

≡ 0 mod(S, w).

For wY
1 = s̄Y

2 cs̄Y
1 , i.e., w1 = s̄Y

2 cs̄1b, we have aY
1 = aY

2 s̄Y
2 c, bY

2 = cs̄Y
1 bY

1 , w = aX
1 aY

2 w1bX
2 bY

1 and hence

a1s1b1 − a2s2b2 = aX
1 aY

2 s̄Y
2 cs1bbX

2 bY
1 − aX

1 aaY
2 s2bX

2 cs̄Y
1 bY

1

= aX
1 aY

2

(
s̄Y

2 cs1b − as2cs̄Y
1

)
bX

2 bY
1
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= aX
1 aY

2 (s1, s2)w1 bX
2 bY

1

≡ 0 mod(S, w).

2.2. Y -intersection only
This case is similar to 2.1.
2.3. X, Y -intersection
Assume that w X

1 = s̄X
1 b = as̄X

2 , wY
1 = s̄Y

1 d = cs̄Y
2 , a,b ∈ X∗ , c,d ∈ Y ∗ , |s̄X

1 | + |s̄X
2 | > |w X

1 | and |s̄Y
1 | +

|s̄Y
2 | > |wY

1 |. Then aX
2 = aX

1 a, bX
1 = bbX

2 , aY
2 = aY

1 c, bY
1 = dbY

2 , w = a1 w1b2 and hence

a1s1b1 − a2s2b2 = a1s1bbX
2 dbY

2 − aX
1 aaY

1 cs2b2

= a1(s1bd − acs2)b2

= a1(s1, s2)w1 b2

≡ 0 mod(S, w).

2.4. X, Y -skew-intersection
Assume that w X

1 = s̄X
1 b = as̄X

2 , wY
1 = cs̄Y

1 = s̄Y
2 d, |s̄X

1 | + |s̄X
2 | > |w X

1 |, |s̄Y
1 | + |s̄Y

2 | > |wY
1 |, a,b ∈ X∗ ,

c,d ∈ Y ∗ . Then aX
2 = aX

1 a, bX
1 = bbX

2 , aY
1 = aY

2 c, bY
2 = dbY

1 , w = aX
1 aY

2 w1bX
2 bY

1 and hence

a1s1b1 − a2s2b2 = aX
1 aY

2 cs1bbX
2 bY

1 − aX
1 aaY

2 s2bX
2 dbY

1

= aX
1 aY

2 (cs1b − as2d)bX
2 bY

1

= aX
1 aY

2 (s1, s2)w1 bX
2 bY

1

≡ 0 mod(S, w).

Case 3. Both inclusion and intersection
3.1. X-inclusion and Y -intersection
We may assume that w X

1 = s̄X
1 = as̄X

2 b, a,b ∈ X∗ . Then aX
2 = aX

1 a and bX
2 = bbX

1 . There two cases to
consider: wY

1 = s̄Y
1 d = cs̄Y

2 and wY
1 = cs̄Y

1 = s̄Y
2 d, where c,d ∈ Y ∗ , |s̄Y

1 | + |s̄Y
2 | > |wY

1 |.
For wY

1 = s̄Y
1 d = cs̄Y

2 , we have aY
2 = aY

1 c, bY
1 = dbY

2 , w = a1 w1bX
1 bY

2 and hence

a1s1b1 − a2s2b2 = a1s1bX
1 dbY

2 − aX
1 aaY

1 cs2bbX
1 bY

2

= a1(s1d − acs2b)bX
1 bY

2

= a1(s1, s2)w1 b2

≡ 0 mod(S, w).

For wY
1 = cs̄Y

1 = s̄Y
2 d, we have aY

1 = aY
2 c, bY

2 = dbY
1 , w = aX

1 aY
2 w1bX

2 dbY
1 and hence

a1s1b1 − a2s2b2 = aX
1 aY

2 cs1b1 − aX
1 aaY

2 s2bbX
1 dbY

1

= aX
1 aY

2 (cs1 − as2bd)b1

= aX
1 aY

2 (s1, s2)w1 b1

≡ 0 mod(S, w).
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3.2. X-intersection and Y -inclusion
Assume that w X

1 = s̄X
1 b = as̄X

2 , a,b ∈ Y ∗ with |s̄X
1 | + |s̄X

2 | > |w X
1 |. Then aX

2 = aX
1 a, bX

1 = bbX
2 . There

are two subcases to consider: wY
1 = s̄Y

1 = cs̄Y
2 d and s̄Y

2 = cs̄Y
1 d, where c,d ∈ Y ∗ .

For wY
1 = s̄Y

1 = cs̄Y
2 d, we have aY

2 = aY
1 c, bY

2 = dbY
1 , w = a1 w1bX

2 bY
1 and hence

a1s1b1 − a2s2b2 = a1s1bbX
2 bY

1 − a1acs2bX
2 dbY

1

= a1(s1b − acs2d)bX
2 bY

1

= a1(s1, s2)w1 bX
2 bY

1

≡ 0 mod(S, w).

For wY
1 = s̄Y

2 = cs̄Y
1 d, we have aY

1 = aY
2 c, bY

1 = dbY
2 , w = aX

1 aY
2 w1b2 and hence

a1s1b1 − a2s2b2 = aX
1 aY

2 cs1bbX
2 dbY

2 − aX
1 aaY

2 s2b2

= aX
1 aY

2 (cs1bd − as2)b2

= aX
1 aY

2 (s1, s2)w1 b2

≡ 0 mod(S, w).

Case 4. s̄1 and s̄2 are disjoint
For w = w X wY , by symmetry, there are two subcases to consider: wY = aY

1 s̄Y
1 cs̄Y

2 bY
2 and wY =

aY
2 s̄Y

2 cs̄Y
1 bY

1 , where w X = aX
1 s̄X

1 as̄X
2 bX

2 , a ∈ X∗ , aX
2 = aX

1 s̄X
1 a, bX

1 = as̄X
2 bX

2 and c ∈ Y ∗ .
For w = aX

1 s̄X
1 as̄X

2 bX
2 aY

1 s̄Y
1 cs̄Y

2 bY
2 = a1 s̄1acs̄2b2, we have a2 = a1 s̄1ac, b1 = acs̄2b2 and hence

a1s1b1 − a2s2b2 = a1s1acs̄2b2 − a1 s̄1acs2b2

= a1(s1 − s̄1)acs2b2 − a1s1ac(s2 − s̄2)b2

≡ 0 mod(S, w).

For w = aX
1 s̄X

1 as̄X
2 bX

2 aY
2 s̄Y

2 cs̄Y
1 bY

1 , we have aY
1 = aY

2 s̄Y
2 c, bY

2 = cs̄Y
1 bY

1 and hence

a1s1b1 − a2s2b2 = aX
1 aY

2 s̄Y
2 cs1as̄X

2 bX
2 bY

1 − aX
1 s̄X

1 aaY
2 s2bX

2 cs̄Y
1 bY

1

= aX
1 aY

2

(
s̄Y

2 cs1as̄X
2 − s̄X

1 as2cs̄Y
1

)
bX

2 bY
1 .

Let s1 = ∑n
i=1 αiu X

1iu
Y
1i and s2 = ∑m

j=1 β ju X
2 ju

Y
2 j , where α1 = β1 = 1. Then

s̄Y
2 cs1as̄X

2 − s̄X
1 as2cs̄Y

1 =
n∑

i=2

αiu
X
1ias̄2cuY

1i −
m∑

j=2

βiu
Y
2 jcs̄1au X

2 j

=
n∑

i=2

αiu
X
1ia(s̄2 − s2)cuY

1i +
m∑

j=2

β ju
Y
2 jc(s1 − s̄1)au X

2 j

+
n∑

i=2

αiu
X
1ias2cuY

1i −
m∑

j=2

β ju
Y
2 jcs1au X

2 j
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≡
n∑

i=2

m∑
j=2

αiβ ju
X
1iau X

2 ju
Y
2 jcuY

1i −
m∑

j=2

n∑
i=2

αiβ ju
Y
2 jcuY

1iu
X
1iau X

2 j

≡ 0 mod(S, w1)

where w1 = s̄Y
2 cs̄1as̄X

2 = s̄X
1 as̄2cs̄Y

1 . Since w = aX
1 aY

2 w1bX
2 bY

1 , we have

a1s1b1 − a2s2b2 = aX
1 aY

2

(
s̄Y

2 cs1as̄X
2 − s̄X

1 as2cs̄Y
1

)
bX

2 bY
1

≡ 0 mod(S, w).

This completes the proof. �
Lemma 3.3. Let S ⊂ k〈X〉 ⊗ k〈Y 〉 with each s ∈ S monic and Irr(S) = {w ∈ N | w �= asb, a,b ∈ N, s ∈ S}.
Then for any f ∈ k〈X〉 ⊗ k〈Y 〉,

f =
∑

ai s̄ibi� f̄

αiai sibi +
∑

u j� f̄

β ju j

where each αi, β j ∈ k, ai,bi ∈ N, si ∈ S and u j ∈ Irr(S).

Proof. Let f = ∑
i αiui ∈ k〈X〉 ⊗ k〈Y 〉, where 0 �= αi ∈ k and u1 > u2 > · · · . If u1 ∈ Irr(S), then let

f1 = f − α1u1. If u1 /∈ Irr(S), then there exist some s ∈ S and a1,b1 ∈ N such that f̄ = a1 s̄1b1. Let
f1 = f − α1a1s1b1. In both cases, we have f̄1 < f̄ . Then the result follows from induction on f̄ . �

By summing up the above lemmas, we arrive at the following theorem.

Theorem 3.4 (Composition–Diamond lemma for tensor product k〈X〉⊗k〈Y 〉). Let S ⊂ k〈X〉⊗k〈Y 〉 with each
s ∈ S monic and < the ordering on N = X∗Y ∗ as before. Then the following statements are equivalent:

(i) S is a Gröbner–Shirshov basis in k〈X〉 ⊗ k〈Y 〉.
(ii) f ∈ Id(S) ⇒ f̄ = asb for some a,b ∈ N, s ∈ S.
(iii) Irr(S) = {w ∈ N | w �= asb,a,b ∈ N, s ∈ S} is a k-linear basis for the factor algebra k〈X〉 ⊗ k〈Y 〉/Id(S).

Proof. (i) ⇒ (ii). Suppose that 0 �= f ∈ Id(S). Then f = ∑
αiai sibi for some αi ∈ k, ai,bi ∈ N , si ∈ S .

Let wi = ai s̄ibi and w1 = w2 = · · · = wl > wl+1 � · · · . We will prove that f̄ = as̄b for some a,b ∈ N ,
s ∈ S , by using induction on l and w1. If l = 1, then the result is clear. If l > 1, then w1 = a1 s̄1b1 =
a2 s̄2b2. Now, by (i) and Lemma 3.2, we see that a1s1b1 ≡ a2s2b2 mod(S, w1). Thus,

α1a1s1b1 + α2a2s2b2 = (α1 + α2)a1s1b1 + α2(a2s2b2 − a1s1b1)

≡ (α1 + α2)a1s1b1 mod(S, w1).

By induction on l and w1, we obtain the desired result.
(ii) ⇒ (iii). For any 0 �= f ∈ k〈X〉 ⊗ k〈Y 〉, by Lemma 3.3, we can express f as

f =
∑

αiai sibi +
∑

β ju j,

where αi, β j ∈ k, ai,bi ∈ N , si ∈ S and u j ∈ Irr(S). Then Irr(S) generates the factor algebra. Moreover,
if 0 �= h = ∑

β ju j ∈ Id(S), u j ∈ Irr(S), u1 > u2 > · · · and β1 �= 0, then u1 = h̄ = as̄b for some a,b ∈ N ,
s ∈ S by (ii), a contradiction. This shows that Irr(S) is a linear basis of the factor algebra.
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(iii) ⇒ (i). For any f , g ∈ S , we have h = ( f , g)w ∈ Id(S). The result is now trivial if ( f , g)w = 0.
Assume that ( f , g)w �= 0. Then, by Lemma 3.3 and (iii), we have

h =
∑

ai s̄ibi�h̄

αiai sibi .

Now, by noting that h̄ = ( f , g)w < w , we see immediately that (i) holds. �
Remark. Theorem 3.4 is valid for any monomial ordering on X∗Y ∗ .

Remark. Theorem 3.4 is precisely the Composition–Diamond lemma for associative algebras (Lem-
ma 2.1) when Y = ∅.

4. Applications

Now, we give some applications of Theorem 3.4.

Example 4.1. Suppose that for the deg-lex ordering, S1 and S2 are Gröbner–Shirshov bases in k〈X〉
and k〈Y 〉 respectively. Then for the deg-lex ordering on X∗Y ∗ as before, S1 ∪ S2 is a Gröbner–Shirshov
basis in k〈X ∪ Y |T 〉 = k〈X〉 ⊗ k〈Y 〉. It follows that k〈X |S1〉 ⊗ k〈Y |S2〉 = k〈X ∪ Y |T ∪ S1 ∪ S2〉.

Proof. The possible compositions in S1 ∪ S2 are X-including only, X-intersection only, Y -including
only and Y -intersection only. Suppose that f , g ∈ S1 and ( f , g)w1 ≡ 0 mod(S1, w1) in k〈X〉. Then
in k〈X〉 ⊗ k〈Y 〉, ( f , g)w = ( f , g)w1 c, where w = w1c for any c ∈ Y ∗ . From this it follows that each
composition in S1 ∪ S2 is trivial modulo S1 ∪ S2. �

A special case of Example 4.1 is the following:

Example 4.2. Let X , Y be well-ordered sets, k[X] the free commutative associative algebra generated
by X . Then S = {xi x j = x j xi | xi > x j, xi, x j ∈ X} is a Gröbner–Shirshov basis in k〈X〉⊗k〈Y 〉 with respect
to the deg-lex ordering. Therefore, k[X] ⊗ k〈Y 〉 = k〈X ∪ Y |T ∪ S〉.

In [14], a Gröbner–Shirshov basis in k〈X〉 is constructed by lifting a commutative Gröbner basis and
adding some commutators. Let X = {x1, x2, . . . , xn}, let [X] be the free commutative monoid generated
by X and k[X] the polynomial ring. Let

S1 = {hij = xix j − x jxi | i > j} ⊂ k〈X〉.
Then, consider the natural map γ : k〈X〉 → k[X] which maps xi to xi and the lexicographic splitting
of γ , which is defined as the k-linear map

δ : k[X] → k〈X〉, xi1 xi2 · · · xir �→ xi1 xi2 · · · xir if i1 � i2 � · · · � ir .

For any u ∈ [X], we present u = xl1
1 xl2

2 · · · xln
n , where li � 0.

We use any monomial ordering on [X].
Following [14], we define an ordering on X∗ using the ordering x1 < x2 < · · · < xn as follows: for

any u, v ∈ X∗ ,

u > v ⇔ γ (u) > γ (v) in [X] or
(
γ (u) = γ (v) and u >lex v

)
.

It is easy to check that this ordering is monomial on X∗ and δ(s) = δ(s̄) for any s ∈ k[X]. Moreover,
for any v ∈ γ −1(u), v � δ(u).



L.A. Bokut et al. / Journal of Algebra 323 (2010) 2520–2537 2531
For any m = xi1 xi2 · · · xir ∈ [X], i1 � i2 � · · · � ir , denote the set of all the monomials u ∈ [xi1+1,

. . . , xir−1] by U (m).
The proofs of the following lemmas are straightforward.

Lemma 4.3. Let a,b ∈ X∗ , a = δ(γ (a)), b = δ(γ (b)) and s ∈ k[X]. If w = aδ(s̄)b = δ(γ (ab)s̄), then, in k〈X〉,

aδ(s)b ≡ δ
(
γ (ab)s

)
mod(S1, w).

Proof. Suppose that s = s̄ + s′ and h = aδ(s)b − δ(γ (ab)s). Since aδ(s̄)b = δ(γ (ab)s̄), we have h =
aδ(s′)b − δ(γ (ab)s′), and h̄ < w . By noting that γ (aδ(s′)b) = γ (δ(γ (ab)s′)), h ≡ 0 mod(S1, w). �
Lemma 4.4. Let f , g ∈ k[X], ḡ = xi1 xi2 · · · xir (i1 � i2 � · · · � ir) and w = δ( f̄ ḡ). Then, in k〈X〉,

δ
(
( f − f̄ )g

) ≡
∑

αiaiδ(ui g)bi mod(S1, w)

where αi ∈ k, ai ∈ [x ∈ X | x � xi1 ], bi ∈ [x ∈ X | x � xir ], ui ∈ U (ḡ) and γ (
∑

αiaiuibi) = f − f̄ .

Theorem 4.5. (See [14].) Let the orderings on [X] and X∗ be defined as above. If S is a minimal Gröbner basis
in k[X], then S ′ = {δ(us) | s ∈ S, u ∈ U (s̄)} ∪ S1 is a Gröbner–Shirshov basis in k〈X〉.

Proof. We will show that all the possible compositions of elements in S ′ are trivial. Let f = δ(us1),
g = δ(vs2) and hij = xi x j − x j xi ∈ S ′ .

(i) f ∧ g
Case 1. f and g have a composition of including, i.e., w = δ(us̄1) = aδ(vs̄2)b for some a,b ∈ X∗

and a = δ(γ (a)), b = δ(γ (b)).
If s1 and s2 have no composition in k[X], i.e., lcm(s̄1 s̄2) = s̄1 s̄2, then u = u′ s̄2, γ (ab)v = u′ s̄1 for

some u′ ∈ [X]. By Lemmas 4.3 and 4.4, we have

( f , g)w = δ(us1) − aδ(vs2)b

≡ δ(us1) − δ
(
γ (ab)vs2

)
≡ δ

(
u′ s̄2s1

) − δ
(
u′ s̄1s2

)
≡ δ

(
u′(s1 − s̄1)s2

) − δ
(
u′(s2 − s̄2)s1

)
≡ 0 mod

(
S ′, w

)
.

Since, in k[X], S is a minimal Gröbner basis, the possible compositions are only intersection. If
s1 and s2 have composition of intersection in k[X], i.e., (s1, s2)w ′ = a′s1 − b′s2, where a′,b′ ∈ [X],
w ′ = a′ s̄1 = b′ s̄2 and |w ′| < |s̄1| + |s̄2|, then w ′ is a subword of γ (w). Hence, we deduce that w =
δ(t w ′) = δ(ta′ s̄1) = δ(tb′ s̄2) and u = ta′, γ (ab)v = tb′ for some t ∈ [X]. Then

( f , g)w = δ(us1) − aδ(vs2)b

≡ δ(us1) − δ
(
γ (ab)vs2

)
≡ δ

(
ta′s1

) − δ
(
tb′s2

)
≡ δ

(
t
(
a′s1 − b′s2

))
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≡ δ
(
t(s1, s2)w ′

)
≡ 0 mod

(
S ′, w

)

since t(s1, s2)w ′ < t w ′ = γ (w).
Case 2. If f and g have a composition of intersection, we may assume that f̄ is on the left of ḡ ,

i.e., w = δ(us̄1)a = bδ(vs̄2) for some a,b ∈ X∗ and a = δγ (a), b = δγ (b). Similarly to Case 1, we have
to consider whether s1 and s2 have compositions in k[X] or not. One can check that both cases are
trivial mod(S ′, w) by Lemmas 4.3 and 4.4.

(ii) f ∧ hij

By noting that hij = xi x j cannot be a subword of f̄ = δ(us̄1) since i > j, only possible compositions
are intersection. Suppose that s̄1 = xi1 · · · xir xi (i1 � i2 � · · · � ir � i). Then f̄ = δ(us̄1) = xi1 vxi for
some v ∈ k〈X〉, v = δγ (v) and w = δ(us̄1)x j .

If j � i1, then

( f ,hij)w = δ(us1)x j − xi1 v(xi x j − x jxi)

= δ
(
u(s1 − s̄1)

)
x j + xi1 vx jxi

≡ x jδ
(
u(s1 − s̄1)

) + x jxi1 vxi

≡ x j
(
δ
(
u(s1 − s̄1)

) + δ(us̄1)
)

≡ x jδ(us1)

≡ 0 mod
(

S ′, w
)
.

If j > i1, then ux j ∈ U (s̄1) and

( f ,hij)w = δ(us1)x j − xi1 v(xix j − x jxi)

= δ
(
u(s1 − s̄1)

)
x j + xi1 vx jxi

≡ δ
(
ux j(s1 − s̄1)

) + δ(xi1 vxix j)

≡ δ
(
ux j(s1 − s̄1)

) + δ(ux j s̄1)

≡ δ(ux j s1)

≡ 0 mod
(

S ′, w
)
.

Thus, the proof is completed. �
Now we extend γ and δ as follows:

γ ⊗ 1: k〈X〉 ⊗ k〈Y 〉 → k[X] ⊗ k〈Y 〉, u X uY �→ γ
(
u X)

uY ,

δ ⊗ 1: k[X] ⊗ k〈Y 〉 → k〈X〉 ⊗ k〈Y 〉, u X uY �→ δ
(
u X)

uY .

Any polynomial f ∈ k[X] ⊗ k〈Y 〉 has a presentation f = ∑
αiu X

i uY
i , where αi ∈ k, u X

i ∈ [X] and
uY

i ∈ Y ∗ .
Let the orderings on [X] and Y ∗ be any monomial orderings respectively. We order the set [X]Y ∗ =

{u = u X uY | u X ∈ [X], uY ∈ Y ∗} as follows. For any u, v ∈ [X]Y ∗ ,

u > v ⇔ uY > vY or
(
uY = vY and u X > v X)

.
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Now, we order X∗Y ∗: for any u, v ∈ X∗Y ∗ ,

u > v ⇔ γ
(
u X)

uY > γ
(

v X)
vY or

(
γ

(
u X)

uY = γ
(

v X)
vY and u X >lex v X)

.

This ordering is clearly a monomial ordering on X∗Y ∗ .
The following definitions of compositions and the Gröbner–Shirshov basis are taken from [27].
Let f , g be monic polynomials of k[X] ⊗ k〈Y 〉, L the least common multiple of f̄ X and ḡ X .
1. Inclusion
Let ḡY be a subword of f̄ Y , say, f̄ Y = c ḡY d for some c,d ∈ Y ∗ . If f̄ Y = ḡY then f̄ X � ḡ X and if

ḡY = 1 then we set c = 1. Let w = L f̄ Y = Lc ḡY d. We define the composition

C1( f , g, c)w = L

f̄ X
f − L

ḡ X
cgd.

2. Overlap
Let a non-empty beginning of ḡY be a non-empty ending of f̄ Y , say, f̄ Y = cc0, ḡY = c0d, f̄ Y d =

c ḡY for some c,d, c0 ∈ Y ∗ and c0 �= 1. Let w = L f̄ Y d = Lc ḡY . We define the composition

C2( f , g, c0)w = L

f̄ X
f d − L

ḡ X
cg.

3. External
Let c0 ∈ Y ∗ be any associative word (possibly empty). In the case that the greatest common divisor

of f̄ X and ḡ X is non-empty and f̄ Y , ḡY are non-empty, we define the composition

C3( f , g, c0)w = L

f̄ X
f c0 ḡY − L

ḡ X
f̄ Y c0 g

where w = L f̄ Y c0 ḡY .
Let S be a monic subset of k[X] ⊗ k〈Y 〉. Then S is called a Gröbner–Shirshov basis (standard basis)

in k[X] ⊗ k〈Y 〉 if for any element f ∈ Id(S), f̄ contains s̄ as its subword for some s ∈ S .
It is defined as usual that a composition is trivial modulo S and corresponding w . We also have

that S is a Gröbner–Shirshov basis in k[X] ⊗ k〈Y 〉 if and only if all the possible compositions of its
elements are trivial. A Gröbner–Shirshov basis in k[X]⊗ k〈Y 〉 is called minimal if for any s ∈ S and all
si ∈ S \ {s}, s̄i is not a subword of s̄.

Similar to the proof of Theorem 4.5, we have the following theorem.

Theorem 4.6. Let the orderings on [X]Y ∗ and X∗Y ∗ be defined as before. If S is a minimal Gröbner–Shirshov
basis in k[X]⊗k〈Y 〉, then S ′ = {δ⊗1(us) | s ∈ S, u ∈ U (s̄X )}∪ S1 is a Gröbner–Shirshov basis in k〈X〉⊗k〈Y 〉,
where S1 = {hij = xi x j − x j xi | i > j}.

Proof. We will show that all the possible compositions of elements in S ′ are trivial.
For s1, s2 ∈ S , let f = δ ⊗ 1(us1), g = δ ⊗ 1(vs2), hij = xi x j − x j xi ∈ S ′ and L = lcm(s̄X

1 , s̄X
2 ).

1. f ∧ g
In this case, all the possible compositions are related to the ambiguities w ’s (in the following,

a,b ∈ X∗ , c,d ∈ Y ∗).
1.1. X-inclusion only

w X = δ
(
us̄1

X) = aδ
(

vs̄X
2

)
b, wY = s̄Y

1 cs̄Y
2 or wY = s̄Y

2 cs̄Y
1 .

1.2. Y -inclusion only

w X = δ
(
us̄X

1

)
aδ

(
vs̄X

2

)
or w X = δ

(
vs̄X

2

)
aδ

(
us̄X

1

)
, wY = s̄Y

1 = cs̄Y
2 d.
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1.3. X, Y -inclusion

w = δ ⊗ 1(us̄1) = acδ ⊗ 1(vs̄2)bd.

1.4. X, Y -skew-inclusion

w X = δ(us̄X
1 ) = aδ(vs̄X

2 )b, wY = s̄Y
2 = cs̄Y

1 d.

2.1. X-intersection only

w X = δ
(
us̄X

1

)
a = bδ

(
vs̄X

2

)
, wY = s̄Y

1 cs̄Y
2 or wY = s̄Y

2 cs̄Y
1 .

2.2. Y -intersection only

w X = δ
(
us̄X

1

)
aδ

(
vs̄X

2

)
or w X = δ(us̄X

2 )aδ(vs̄X
1 ), wY = s̄Y

1 c = ds̄Y
2 .

2.3. X, Y -intersection

w X = δ(us̄X
1 )a = bδ(vs̄X

2 ), wY = s̄Y
1 c = ds̄Y

2 .

2.4. X, Y -skew-intersection

w X = δ
(
us̄X

1

)
a = bδ

(
vs̄X

2

)
, wY = cs̄Y

1 = s̄Y
2 d.

3.1. X-inclusion and Y -intersection

w X = δ
(
us̄X

1

) = aδ
(

vs̄X
2

)
b, wY = s̄Y

1 c = ds̄Y
2 or wY = cs̄Y

1 = s̄Y
2 d.

3.2. X-intersection and Y -inclusion

w X = δ
(
us̄X

1

)
a = bδ

(
vs̄X

2

)
, wY = s̄Y

1 = cs̄Y
2 d or wY = s̄Y

2 = cs̄Y
1 d.

We only check the cases 1.1, 1.2 and 1.3. Other cases are similarly checked.
1.1. X-inclusion only
Suppose that w X = δ(us̄X

1 ) = aδ(vs̄X
2 )b, a,b ∈ X∗ and s̄Y

1 , s̄Y
2 are disjoint. There are two cases to

consider: wY = s̄Y
1 cs̄Y

2 and wY = s̄Y
2 cs̄Y

1 , where c ∈ Y ∗ . We will only prove the first case and the
second one are similar.

If s1 and s2 have no composition in k[X] ⊗ k〈Y 〉, i.e., lcm(s̄1, s̄2) = s̄1 s̄2, then u = u′ s̄X
2 , γ (ab)v =

u′ s̄X
1 for some u′ ∈ [X]. By the proof of Theorem 4.5, we have

( f , g)w = δ ⊗ 1(us1)cs̄Y
2 − s̄Y

1 caδ ⊗ 1(vs2)b

≡ δ ⊗ 1
(
us1γ

(
cs̄Y

2

)) − δ ⊗ 1
(
γ

(
s̄Y

1 c
)
γ (ab)vs2

)
≡ δ ⊗ 1

(
u′ s̄X

2 s1cs̄Y
2

) − δ ⊗ 1
(
s̄Y

1 cu′ s̄X
1 s2

)
≡ δ ⊗ 1

(
u′s1cs̄2

) − δ ⊗ 1
(
u′ s̄1cs2

)
≡ δ ⊗ 1

(
u′(s1 − s̄1)cs2

) − δ ⊗ 1
(
u′s1c(s2 − s̄2)

)
≡ 0 mod

(
S ′, w

)
.



L.A. Bokut et al. / Journal of Algebra 323 (2010) 2520–2537 2535
If s1 and s2 have composition of external (the elements of S have no composition of inclusion
because S is minimal and s1 and s2 have no composition of overlap because sY

1 and sY
2 are dis-

joint) in k[X] ⊗ k〈Y 〉, i.e., C3(s1, s2, c)w ′ = L
s̄X

1
s1γ (cs̄Y

2 ) − L
s̄X

2
γ (s̄Y

1 c)s2 = t2s1γ (cs̄Y
2 ) − t1γ (s̄Y

1 c)s2 where

gcd(s̄X
1 , s̄X

2 ) = t �= 1, s̄X
1 = tt1, s̄X

2 = tt2 and L = tt1t2, w ′ = Lγ (s̄Y
1 cs̄Y

2 ), then w ′ is a subword of
γ (w). Therefore, we have w = δ ⊗ 1(mw ′) and u = mt2, γ (ab)v = mt1 since ut1 = γ (ab)vt2 and
gcd(t1, t2) = 1. Then

( f , g)w = δ ⊗ 1(us1)cs̄Y
2 − s̄Y

1 caδ ⊗ 1(vs2)b

≡ δ ⊗ 1
(
us1γ

(
cs̄Y

2

)) − δ ⊗ 1
(
γ

(
s̄Y

1 c
)
γ (ab)vs2

)
≡ δ ⊗ 1

(
mt2s1γ

(
cs̄Y

2

)) − δ ⊗ 1
(
mt1γ

(
s̄Y

1 c
)
s2

)
≡ δ ⊗ 1

(
mC3(s1, s2, c)w ′

)
≡ 0 mod

(
S ′, w

)

since mC3(s1, s2, c)w ′ < mw ′ = γ (w).
1.2. Y -inclusion only
Suppose that wY = s̄Y

1 = cs̄Y
2 d, c,d ∈ Y ∗ and δ(us̄X

1 ), δ(vs̄X
2 ) are disjoint. Then there are two com-

positions according to w X = δ(us̄X
1 )aδ(vs̄X

2 ) and w X = δ(vs̄X
2 )aδ(us̄X

1 ) for a ∈ X∗ . We only prove the
first.

( f , g)w = δ ⊗ 1(us1)aδ
(

vs̄X
2

) − δ
(
us̄X

1

)
acδ ⊗ 1(vs2)d

≡ δ ⊗ 1
(
us1γ (a)vs̄X

2 − us̄X
1 γ (a)vγ (c)s2γ (d)

)
≡ δ ⊗ 1

(
uγ (a)v

(
s1 s̄X

2 − s̄X
1 γ (c)s2γ (d)

))
≡ δ ⊗ 1

(
uγ (a)vC1

(
s1, s2, γ (c)

)
w ′

)
≡ 0 mod

(
S ′, w

)

where w ′ = s̄X
1 s̄X

2 s̄Y
1 = s̄X

1 s̄X
2 γ (c)s̄Y

2 γ (d) and uγ (a)vC1(s1, s2, γ (c))w ′ < uγ (a)v w ′ = γ (w).
1.3. X, Y -inclusion
We may assume that ḡ is a subword of f̄ , i.e., w = δ ⊗1(us̄1) = acδ⊗1(vs̄2)bd, a,b ∈ X∗ , c,d ∈ Y ∗ .

Then us̄X
1 = γ (ab)vs̄X

2 = mL for some m ∈ [X], us̄Y
1 = γ (c)s̄Y

2 γ (d)

( f , g)w = δ ⊗ 1(us1) − acδ ⊗ 1(vs2)bd

≡ δ ⊗ 1
(
us1 − γ (ac)vs2γ (bd)

)

≡ δ ⊗ 1

(
m

L

s̄X
1

s1 − m
L

s̄X
2

γ (c)s2γ (d)

)

≡ δ ⊗ 1
(
mC1

(
s1, s2, γ (c)

)
w ′

)
≡ 0 mod

(
S ′, w

)

where w ′ = Lγ (c)s̄Y
2 γ (d) and mC1(s1, s2, c)w ′ < mw ′ = γ (w).

2. f ∧ hij
Similar to the proof of Theorem 4.5, they only have compositions of X-intersection. Suppose that

s̄X
1 = xi1 · · · xir xi (i1 � i2 � · · · � ir � i). Then f̄ = δ ⊗ 1(us̄1) = xi1 vxi s̄Y

1 for some v ∈ k〈X〉, and v =
δγ (v) and w = δ ⊗ 1(us̄1)x j s̄Y

1 .
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If j � i1, then

( f ,hij)w = δ ⊗ 1(us1)x j − xi1 vs̄Y
1 (xi x j − x jxi)

= δ ⊗ 1
(
u(s1 − s̄1)

)
x j + xi1 vx jxi s̄

Y
1

≡ x jδ ⊗ 1
(
u(s1 − s̄1)

) + x jxi1 vxi s̄
Y
1

≡ x j
(
δ ⊗ 1

(
u(s1 − s̄1)

) + δ ⊗ 1(us̄1)
)

≡ x jδ ⊗ 1(us1)

≡ 0 mod
(

S ′, w
)
.

If j > i1, then ux j ∈ U (s̄1) and

( f ,hij)w = δ ⊗ 1(us1)x j − xi1 vs̄Y
1 (xi x j − x jxi)

= δ ⊗ 1
(
u(s1 − s̄1)

)
x j + xi1 vx jxi s̄

Y
1

≡ δ ⊗ 1
(
ux j(s1 − s̄1)

) + δ ⊗ 1
(
xi1 vxi x j s̄

Y
1

)
≡ δ ⊗ 1

(
ux j(s1 − s̄1)

) + δ ⊗ 1(ux j s̄1)

≡ δ ⊗ 1(ux j s1)

≡ 0 mod
(

S ′, w
)
.

This completes the proof. �
As an application of the above result, we have now constructed a Gröbner–Shirshov basis for the

tensor product k〈X〉⊗k〈Y 〉 by lifting a given Gröbner–Shirshov basis in the tensor product k[X]⊗k〈Y 〉.
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