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The dileptonic decays of doubly-charged Higgs bosons H±± are investigated in the minimal type-II
seesaw model with one Higgs triplet � and one heavy Majorana neutrino N1 at the TeV scale. We
show that the branching ratios B(H±± → l±α l±β ) depend not only on the mass and mixing parameters
of three light neutrinos νi (for i = 1,2,3), but also on those of N1. Assuming the mass of N1 to lie in the
range 200 GeV–1 TeV, we figure out the generous interference bands for the contributions of νi and N1
to B(H±± → l±α l±β ):

√| sin θi4 sin θ j4| ∼ 10−8–10−5, where θi4 and θ j4 measure the strength of charged-
current interactions of N1. We illustrate some salient features of the interference bands by considering
three typical mass patterns of νi , and stress that it is very difficult to distinguish the type-II seesaw
model from the triplet seesaw model in such a parameter region at the Large Hadron Collider.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The effort to build neutrino mass models at the TeV scale has recently revived [1], simply because this new energy frontier will soon
be explored by the Large Hadron Collider (LHC). A naive but reasonable argument is that possible new physics, if it exists at the TeV scale
and is responsible for the electroweak symmetry breaking, might also be responsible for the origin of neutrino masses. The latter is a kind
of new physics which has been conceivably established by a number of neutrino oscillation experiments in the past decade [2].

Among many possibilities of generating tiny neutrino masses, a natural one is to extend the standard model by introducing a few
heavy right-handed Majorana neutrinos [3] and (or) one Higgs triplet [4]. The gauge-invariant neutrino mass terms can then be written as

−Lmass = lLYν H̃ NR + 1

2
Nc

RMRNR + 1

2
lLY��iσ2lcL + h.c., (1)

where MR is the mass matrix of right-handed Majorana neutrinos, and

� ≡
(

H− −√
2H0√

2H−− −H−
)

(2)

denotes the Higgs triplet. After the spontaneous gauge symmetry breaking, one obtains the neutrino mass matrices MD = Yν v/
√

2 and
ML = Y�v� , where 〈H〉 ≡ v/

√
2 and 〈�〉 ≡ v� correspond to the vacuum expectation values of the neutral components of H and �. To

minimize the degrees of freedom associated with ML, MD and MR, we may assume that there is only a single heavy Majorana neutrino
(denoted as N1) in the model. This assumption implies that MR and MD become 1 × 1 and 3 × 1, respectively, but ML remains to be 3 × 3.
Such a simple seesaw scenario is phenomenologically viable and can be referred to as the minimal type-II seesaw model [5]. Its simplicity
makes it interesting and instructive to reveal the salient features of the type-II seesaw mechanism. Therefore, we shall concentrate on this
model in the present Letter.

Our purpose is to investigate the dileptonic decays of doubly-charged Higgs bosons H±± in the minimal type-II seesaw model. Such
decays can naturally happen because � is allowed to couple to the Standard Model Higgs doublet H and thus the lepton number is
violated by two units [4]. If the mass scale of � is of O(1) TeV, then H±± can be produced at the LHC via the Drell–Yan process
qq̄ → γ ∗, Z∗ → H++H−− or through the charged-current process qq̄′ → W ∗ → H±±H∓ . Note that the masses of H±± and H± are
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expected to be nearly degenerate in a class of seesaw models [4,6,7], so only H±± → l±α l±β (for α,β = e,μ, τ ) and H±± → W ±W ± modes

are kinematically open. Note also that the dileptonic channels H±± → l±α l±β become dominant when v� < 1 MeV is taken [7]. Therefore,
we focus our interest on the same-sign dilepton events of H±± , which signify the lepton number violation and serve for a clean collider
signature of new physics beyond the standard model [8]. The rates of H±± → l±α l±β decays are given by

Γ
(

H±± → l±α l±β
) = 1

4π(1 + δαβ)

∣∣(Y�)αβ

∣∣2
MH±± , (3)

from which one obtains the branching ratios [7]

B
(

H±± → l±α l±β
) ≡ Γ (H±± → l±α l±β )∑

ρ,σ Γ (H±± → l±ρ l±σ )
= 2

(1 + δαβ)

|(ML)αβ |2∑
ρ,σ |(ML)ρσ |2 , (4)

where the Greek subscripts run over e, μ and τ . It becomes obvious that the magnitudes of B(H±± → l±α l±β ) are only relevant to the
matrix elements of ML.

We find that the branching ratios B(H±± → l±α l±β ) depend not only on the masses (m1,m2,m3), flavor mixing angles (θ12, θ13, θ23) and
CP-violating phases (δ12, δ13, δ23) of three light neutrinos ν1, ν2 and ν3, but also on the mass (M1) and mixing parameters (θ14, θ24, θ34 and
δ14, δ24, δ34) of the heavy Majorana neutrino N1. When the former contribution is negligibly small, we can reproduce the case discussed in
Ref. [6]; but when the contribution of N1 is negligibly small, our results for B(H±± → l±α l±β ) can simply reproduce those obtained in the
triplet seesaw model [9,10]. The new and most interesting case, which has not been analyzed before, is the competition or interference
between the contributions of light and heavy Majorana neutrinos. Typically assuming M1 ∼ 200 GeV–1 TeV and taking three possible mass
patterns of νi as allowed by current neutrino oscillation data, we figure out the generous interference bands of νi and N1 contributions
to B(H±± → l±α l±β ):

√| sin θi4 sin θ j4| ∼ 10−8–10−5 (for i, j = 1,2,3). We stress that both constructive and destructive interference effects
are possible in this parameter region, in which it is very difficult to distinguish the type-II seesaw model from the triplet seesaw model
at the LHC. We present some detailed numerical calculations of B(H±± → l±α l±β ) in the interference bands. Although our numerical results
are subject to the minimal type-II seesaw model, they can serve as a good example to illustrate the interplay between light and heavy
Majorana neutrinos in a generic type-II seesaw scenario.

2. Interference bands

After the spontaneous electroweak symmetry breaking, we rewrite Eq. (1) as

−L′
mass = 1

2

(
νLNc

R

)(
ML MD

MT
D MR

)(
νc

L
NR

)
+ h.c. (5)

We assume the existence of only a single heavy Majorana neutrino N1 in the type-II seesaw scenario. The 4 × 4 neutrino mass matrix in
Eq. (5) is symmetric and can be diagonalized by the following unitary transformation:(

V R
S U

)† (
ML MD
MT

D MR

)(
V R
S U

)∗
=

(
M̂ν 0
0 M1

)
, (6)

where M̂ν = Diag{m1,m2,m3} with mi being the masses of three light neutrinos νi , and M1 denotes the mass of N1. After this diagonal-
ization, the flavor states of three light neutrinos να (for α = e,μ, τ ) can be expressed in terms of the masses states of both three light
Majorana neutrinos νi (for i = 1,2,3) and the heavy Majorana neutrino N1; namely, να = Vαiνi + Rα1N1. Then it is straightforward to
write out the standard charged-current interactions between να and α in the basis of mass states:

−Lcc = g√
2

[
(eμτ)L V γ μ

(
ν1
ν2
ν3

)
L

W −
μ + (eμτ)L Rγ μN1LW −

μ

]
+ h.c. (7)

We see that V describes the flavor mixing of three light neutrinos and three charged leptons, while R determines how strong the heavy
Majorana neutrino interacts with three charged leptons. In other words, V and R are responsible for neutrino oscillations of νi and collider
signatures of N1, respectively. Note that V itself is not unitary, because V V † + R R† = 1 holds as a consequence of unitarity of the 4 × 4
transformation matrix in Eq. (6). The correlation between V and R can be parametrized as [11]

V =
⎛
⎝ c14 0 0

−ŝ14 ŝ∗
24 c24 0

−ŝ14c24 ŝ∗
34 −ŝ24 ŝ∗

34 c34

⎞
⎠

⎛
⎝ c12c13 ŝ∗

12c13 ŝ∗
13

−ŝ12c23 − c12 ŝ13 ŝ∗
23 c12c23 − ŝ∗

12 ŝ13 ŝ∗
23 c13 ŝ∗

23

ŝ12 ŝ23 − c12 ŝ13c23 −c12 ŝ23 − ŝ∗
12 ŝ13c23 c13c23

⎞
⎠ ,

R =
⎛
⎝ ŝ∗

14

c14 ŝ∗
24

c14c24 ŝ∗
34

⎞
⎠ , (8)

where ci j ≡ θi j , si j ≡ sin θi j and ŝi j ≡ eiδi j si j with θi j and δi j (for 1 � i < j � 4) being the rotation angles and phase angles, respectively. If
the heavy Majorana neutrino N1 is decoupled (i.e., θ14 = θ24 = θ34 = 0), V will become a unitary matrix and take the standard form as
advocated in Refs. [2,12]. Hence non-vanishing R measures the non-unitarity of V .

Now we make use of Eqs. (6) and (8) to reconstruct ML, which determines the branching ratios of H±± → l±α l±β decay modes. We
obtain

ML = V M̂ν V T + M1 R RT . (9)
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Then the explicit expressions of (ML)αβ can be given in terms of the relevant neutrino masses, mixing angles and CP-violating phases. In
view of current experimental constraints s13 < 0.16 [13] and si4 � 0.1 (for i = 1,2,3) [14], we may simplify the exact results of (ML)αβ by
taking c13 ≈ ci4 ≈ 1. This good approximation allows us to arrive at

(ML)ee = m1c2
12 + m2 ŝ∗2

12 + m3 ŝ∗2
13 + M1 ŝ∗2

14 ,

(ML)μμ = m1 ŝ2
12c2

23 + m2c2
12c2

23 + m3 ŝ∗2
23 + M1 ŝ∗2

24,

(ML)ττ = m1 ŝ2
12 ŝ2

23 + m2c2
12 ŝ2

23 + m3c2
23 + M1 ŝ∗2

34;
(ML)eμ = −m1c12 ŝ12c23 + m2c12 ŝ∗

12c23 + m3 ŝ∗
13 ŝ∗

23 + M1 ŝ∗
14 ŝ∗

24,

(ML)eτ = m1c12 ŝ12 ŝ23 − m2c12 ŝ∗
12 ŝ23 + m3 ŝ∗

13c23 + M1 ŝ∗
14 ŝ∗

34,

(ML)μτ = −m1 ŝ2
12c23 ŝ23 − m2c2

12c23 ŝ23 + m3c23 ŝ∗
23 + M1 ŝ∗

24 ŝ∗
34. (10)

As a consequence,∑
ρ,σ

∣∣(ML)ρσ

∣∣2 = (
m2

1 + m2
2 + m2

3

) + M2
1

(
s2

14 + s2
24 + s2

34

)2 + 2m1M1 Re
[
(c12 ŝ14 − ŝ12c23 ŝ24 + ŝ12 ŝ23 ŝ34)

2]
+ 2m2M1 Re

[
(ŝ∗

12 ŝ14 + c12c23 ŝ24 − c12 ŝ23 ŝ34)
2] + 2m3M1 Re

[
(ŝ∗

13 ŝ14 + ŝ∗
23 ŝ24 + c23 ŝ34)

2]. (11)

By combining Eqs. (10) and (11) with Eq. (4), we are then able to calculate the branching ratios B(H±± → l±α l±β ). There are two extreme
cases.

(1) If the heavy Majorana neutrino N1 is essentially decoupled (i.e., θi4 ≈ 0 for i = 1,2,3), the unitarity of V will be restored. In this
case, the results of B(H±± → l±α l±β ) are the same as those obtained in the triplet seesaw model [9,10].

(2) If the contribution of N1 to (ML)αβ is dominant, one may simplify Eqs. (10) and (11) by neglecting the terms proportional to mi
(for i = 1,2,3). In this case,

B
(

H±± → e±e±) ≈ s4
14

(s2
14 + s2

24 + s2
34)

2
,

B
(

H±± → μ±μ±) ≈ s4
24

(s2
14 + s2

24 + s2
34)

2
,

B
(

H±± → τ±τ±) ≈ s4
34

(s2
14 + s2

24 + s2
34)

2
;

B
(

H±± → e±μ±) ≈ 2s2
14s2

24

(s2
14 + s2

24 + s2
34)

2
,

B
(

H±± → e±τ±) ≈ 2s2
14s2

34

(s2
14 + s2

24 + s2
34)

2
,

B
(

H±± → μ±τ±) ≈ 2s2
24s2

34

(s2
14 + s2

24 + s2
34)

2
, (12)

which only rely on the mixing angles θi4 (for i = 1,2,3). Given s14 ≈ 0, possible signatures of H±± → μ±μ± , μ±τ± and τ±τ± modes at
the LHC have been analyzed in Ref. [6].

Here let us explore the third interesting case, in which the contributions of νi and N1 to (ML)αβ are comparable in magnitude and may
give rise to significant interference effects on the branching ratios of H±± → l±α l±β decays. To be explicit, we take �m2

21 ∼ 8.0 × 10−5 eV2

and |�m2
32| ∼ 2.5 × 10−3 eV2 [13] as the typical inputs and assume M1 to lie in the range 200 GeV—1 TeV. There are three possible

patterns of the light neutrino mass spectrum: (1) the normal hierarchy: m3 ∼ 5.1 × 10−2 eV, m2 ∼ 8.9 × 10−3 eV, and m1 is much smaller
than m2; (2) the inverted hierarchy: m2 ∼ 5.0 × 10−2 eV, m1 ∼ 4.9 × 10−2 eV, and m3 is much smaller than m1; (3) the near degeneracy:
m1 ∼ m2 ∼ m3 ∼ 0.1 eV to 0.2 eV, which is consistent with the cosmological upper bound m1 + m2 + m3 < 0.61 eV [13]. In each case,
the contributions of νi and N1 to (ML)αβ in Eq. (10) will be of the comparable magnitude if the mixing angles θi4 satisfy the following
condition1:

si4s j4 ∼ max{m1,m2,m3}
M1

∼ 10−14 · · ·10−12, (13)

where i, j = 1,2,3. In view of this rough estimate, which is essentially compatible with a more careful numerical analysis, we can
generously set

√
si4s j4 ∼ 10−8–10−5 as the interference bands of B(H±± → l±α l±β ) for M1 ∼ 200 GeV–1 TeV. Because the CP-violating

phases δi4 are completely unrestricted, they may cause either constructive or destructive effects in the interference bands. We shall
numerically calculate B(H±± → l±α l±β ) in the subsequent section to illustrate the interference effects for different patterns of the light
neutrino mass hierarchy.

If M1 � O(1) TeV and the values of si4 lie in the interference bands obtained above, it will be impossible to produce and observe N1
at the LHC. The reason is simply that the interaction of N1 with three charged leptons is too weak to be detected in this parameter space.
Given the integrated luminosity to be 100 fb−1, for example, the resonant signature of N1 in the channel pp̄ → μ±N1 with N1 → μ±W ∓

1 Here we have taken account of θ12 ∼ 34◦ , θ13 < 10◦ and θ23 ∼ 45◦ given by a global analysis of current neutrino oscillation data in the unitary limit of V [13].
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at the LHC has been analyzed and the sensitivity of the cross section σ(pp̄ → μ±μ±W ∓) ≈ σ(pp̄ → μ±N1)B(N1 → μ±W ∓) to the
effective mixing parameter Sμμ ≈ s4

24/(s2
14 + s2

24 + s2
34) has been examined in Ref. [15]. It is found that Sμμ � 7.2 × 10−4 (or equivalently,

s2
24 � 2.1 × 10−3 for s14 ∼ s24 ∼ s34) is required in order to get a signature at the 2σ level for M1 � 200 GeV. This result illustrates that

there will be no chance to probe the existence of N1 in the interference bands at the LHC.
Nevertheless, it is possible to produce H±± at the LHC provided MH±± �O(1) TeV, and it is also possible to observe the signatures of

H±± → l±α l±β decays [6,7,9,10]. In this case, however, the measurements of B(H±± → l±α l±β ) themselves are very difficult to tell whether
the existence of H±± is due to a pure triplet seesaw model or due to a (minimal) type-II seesaw model.

3. Numerical examples

For the sake of simplicity, here we take θ12 = arctan(1/
√

2) ≈ 35.3◦ , θ13 = 0◦ and θ23 = 45◦ , implying that V takes the well-known
tri-bimaximal mixing pattern [16] in its unitary limit (i.e., θi4 = 0). In addition, we switch off the CP-violating phases δ12, δ13 and δ23 so
as to clearly examine the role of new CP-violating phases δi4 in B(H±± → l±α l±β ). We fix �m2

21 = 8.0 × 10−5 eV2, |�m2
32| = 2.5 × 10−3 eV2

and M1 = 500 GeV in our numerical calculations. To further reduce the number of free parameters, we shall consider two special cases
for the mixing angles θi4: (a) θ14 = θ24 = θ34 and (b) θ14 = 0 and θ24 = θ34; and two special cases for the CP-violating phases δi4:
(a) δ14 = δ24 = δ34 = 0 and (b) δ14 = δ24 = δ34 = π/2. Our discussions can be classified into three parts according to three possible
patterns of the light neutrino mass hierarchy.

3.1. Normal hierarchy

We simply take m1 = 0, such that m2 ≈ 8.9 × 10−3 eV and m3 ≈ 5.1 × 10−2 eV can be extracted from the given values of �m2
21 and

|�m2
32|. For chosen values of θ12, θ13, θ23 and δ12, δ13, δ23, Eqs. (10) and (11) can now be simplified to

(ML)ee = 1

3
m2 + M1 ŝ∗2

14 ,

(ML)μμ = 1

3
m2 + 1

2
m3 + M1 ŝ∗2

24,

(ML)ττ = 1

3
m2 + 1

2
m3 + M1 ŝ∗2

34;

(ML)eμ = 1

3
m2 + M1 ŝ∗

14 ŝ∗
24,

(ML)eτ = −1

3
m2 + M1 ŝ∗

14 ŝ∗
34,

(ML)μτ = −1

3
m2 + 1

2
m3 + M1 ŝ∗

24 ŝ∗
34, (14)

and ∑
ρ,σ

∣∣(ML)ρσ

∣∣2 = (
m2

2 + m2
3

) + M2
1

(
s2

14 + s2
24 + s2

34

)2 + 2

3
m2M1 Re

[
(ŝ14 + ŝ24 − ŝ34)

2] + m3M1 Re
[
(ŝ24 + ŝ34)

2]. (15)

Our numerical results for the branching ratios B(H±± → l±α l±β ) are shown in Fig. 1. Some comments and discussions are in order.
Fig. 1(a) is obtained by taking θ14 = θ24 = θ34 ≡ θ and δ14 = δ24 = δ34 = 0. We see that B(H±± → e±μ±) and B(H±± → e±τ±) are

approximately equal beyond the interference band (3 × 10−7 � θ � 2 × 10−6), but their near degeneracy is lifted in the interference band.
In contrast, B(H±± → μ±μ±) = B(H±± → τ±τ±) holds in the whole parameter space.

Fig. 1(b) is obtained by taking θ14 = θ24 = θ34 ≡ θ and δ14 = δ24 = δ34 = π/2. One can see more obvious interference effects for
θ changing from 10−7 to 10−6. In particular, B(H±± → e±τ±) is strongly enhanced, while B(H±± → μ±μ±), B(H±± → μ±τ±) and
B(H±± → τ±τ±) are strongly suppressed at θ ∼ 2 × 10−7.

Fig. 1(c) is obtained by taking θ14 = 0, θ24 = θ34 ≡ θ and δ24 = δ34 = 0. In this case, there is little interference between the contributions
of νi and N1 to B(H±± → l±α l±β ). It is straightforward to observe that B(H±± → e±e±), B(H±± → e±μ±) and B(H±± → e±τ±) are
considerably suppressed due to the vanishing of θ14.

Fig. 1(d) is obtained by taking θ14 = 0, θ24 = θ34 ≡ θ and δ24 = δ34 = π/2. In this case, all the decay modes involve significant inter-
ference effects around θ ∼ 2 × 10−7. Note that B(H±± → μ±τ±) undergoes both a minimum and a maximum, which result from the
minimums of its numerator and denominator, respectively. So do B(H±± → μ±μ±) and B(H±± → τ±τ±). In comparison, the branching
ratio of H±± → e±e± , e±μ± or e±τ± only undergoes a maximum, because its numerator does not have an appreciable minimum in the
interference band.

3.2. Inverted hierarchy

We simply take m3 = 0, such that m1 ≈ 4.9 × 10−2 eV and m2 ≈ 5.0 × 10−2 eV can be extracted from the given values of �m2
21 and

|�m2
32|. For chosen values of θ12, θ13, θ23 and δ12, δ13, δ23, Eqs. (10) and (11) can now be simplified to

(ML)ee = 2

3
m1 + 1

3
m2 + M1 ŝ∗2

14 ,

(ML)μμ = 1
m1 + 1

m2 + M1 ŝ∗2
24,
6 3
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Fig. 1. Branching ratios of H±± → l±α l±β decays for the normal hierarchy of mi with m1 = 0: (a) θ14 = θ24 = θ34 ≡ θ and δ14 = δ24 = δ34 = 0; (b) θ14 = θ24 = θ34 ≡ θ and
δ14 = δ24 = δ34 = π/2; (c) θ14 = 0, θ24 = θ34 ≡ θ and δ24 = δ34 = 0; (d) θ14 = 0, θ24 = θ34 ≡ θ and δ24 = δ34 = π/2.

(ML)ττ = 1

6
m1 + 1

3
m2 + M1 ŝ∗2

34;

(ML)eμ = 1

3
(m2 − m1) + M1 ŝ∗

14 ŝ∗
24,

(ML)eτ = 1

3
(m1 − m2) + M1 ŝ∗

14 ŝ∗
34,

(ML)μτ = −1

6
m1 − 1

3
m2 + M1 ŝ∗

24 ŝ∗
34, (16)

and ∑
ρ,σ

∣∣(ML)ρσ

∣∣2 = (
m2

1 + m2
2

) + M2
1

(
s2

14 + s2
24 + s2

34

)2 + 1

3
m1M1 Re

[
(2ŝ14 − ŝ24 + ŝ34)

2] + 2

3
m2M1 Re

[
(ŝ14 + ŝ24 − ŝ34)

2]. (17)

As a consequence of m1 ≈ m2, the contributions of ν1 and ν2 are approximately canceled in (ML)eμ and (ML)eτ . Our numerical results for
the branching ratios B(H±± → l±α l±β ) are shown in Fig. 2. Some comments and discussions are in order.

Fig. 2(a) is obtained by taking θ14 = θ24 = θ34 ≡ θ and δ14 = δ24 = δ34 = 0. We see that B(H±± → e±μ±) and B(H±± → e±τ±) are
essentially degenerate in the whole parameter space, so are B(H±± → μ±μ±) and B(H±± → τ±τ±). Different from other branching
ratios, B(H±± → μ±τ±) undergoes a minimum just because of the minimum of |(ML)μτ | at θ ∼ 2 × 10−7.

Fig. 2(b) is obtained by taking θ14 = θ24 = θ34 ≡ θ and δ14 = δ24 = δ34 = π/2. In this case, the contribution of N1 to B(H±± → l±α l±β )

flips the sign such that B(H±± → μ±τ±) undergoes a maximum because of the minimum in its denominator. Due to the appearance of a
minimum in its numerator, the branching ratio of H±± → e±e± , μ±μ± or τ±τ± undergoes a minimum when θ varies in the interference
band.
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Fig. 2. Branching ratios of H±± → l±α l±β decays for the inverted hierarchy of mi with m3 = 0: (a) θ14 = θ24 = θ34 ≡ θ and δ14 = δ24 = δ34 = 0; (b) θ14 = θ24 = θ34 ≡ θ and
δ14 = δ24 = δ34 = π/2; (c) θ14 = 0, θ24 = θ34 ≡ θ and δ24 = δ34 = 0; (d) θ14 = 0, θ24 = θ34 ≡ θ and δ24 = δ34 = π/2.

Fig. 2(c) is obtained by taking θ14 = 0, θ24 = θ34 ≡ θ and δ24 = δ34 = 0. In this case, the contributions of N1 to B(H±± → e±e±),
B(H±± → e±μ±) and B(H±± → e±τ±) are vanishing as a consequence of θ14 = 0. Hence B(H±± → e±μ±) and B(H±± → e±τ±) are
strongly suppressed in the whole parameter space, so is B(H±± → e±e±) for θ > 10−6.

Fig. 2(d) is obtained by taking θ14 = 0, θ24 = θ34 ≡ θ and δ24 = δ34 = π/2. We see that the results of B(H±± → e±e±), B(H±± →
e±μ±) and B(H±± → e±τ±) in this case are essentially the same as those in Fig. 2(c). Because the contribution of N1 flips the sign, now
B(H±± → μ±μ±) = B(H±± → τ±τ±) undergoes a minimum while B(H±± → μ±τ±) undergoes a maximum in the interference band.

3.3. Near degeneracy

We assume m1 ≈ m2 ≈ m3 ≈ 0.1 eV. Then m2 −m1 ≈ 4.0×10−4 eV and m3 −m2 ≈ ±1.25×10−2 eV can be extracted from given values
of �m2

21 and |�m2
32|, respectively. For chosen values of θ12, θ13, θ23 and δ12, δ13, δ23, Eqs. (10) and (11) can now be simplified to

(ML)ee ≈ m1 + M1 ŝ∗2
14 ,

(ML)μμ ≈ m1 + 1

2
(m3 − m2) + M1 ŝ∗2

24,

(ML)ττ ≈ m1 + 1

2
(m3 − m2) + M1 ŝ∗2

34;

(ML)eμ ≈ 1

3
(m2 − m1) + M1 ŝ∗

14 ŝ∗
24,

(ML)eτ ≈ 1
(m1 − m2) + M1 ŝ∗

14 ŝ∗
34,
3
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Fig. 3. Branching ratios of H±± → l±α l±β decays for the near degeneracy of mi with m3 > m2: (a) θ14 = θ24 = θ34 ≡ θ and δ14 = δ24 = δ34 = 0; (b) θ14 = θ24 = θ34 ≡ θ and
δ14 = δ24 = δ34 = π/2; (c) θ14 = 0, θ24 = θ34 ≡ θ and δ24 = δ34 = 0; (d) θ14 = 0, θ24 = θ34 ≡ θ and δ24 = δ34 = π/2.

(ML)μτ ≈ 1

2
(m3 − m2) + M1 ŝ∗

24 ŝ∗
34, (18)

where we have neglected the small terms proportional to m2 − m1 in (ML)ee , (ML)μμ , (ML)μτ and (ML)ττ . In addition,

∑
ρ,σ

∣∣(ML)ρσ

∣∣2 ≈ 3m2
1 + M2

1

(
s2

14 + s2
24 + s2

34

)2 + 1

3
m1M1 Re

[
(2ŝ14 − ŝ24 + ŝ34)

2 + 2(ŝ14 + ŝ24 − ŝ34)
2 + 3(ŝ24 + ŝ34)

2], (19)

where we have omitted the small mass differences of νi . We fix m3 > m2 in our numerical calculations. The results for the branching
ratios B(H±± → l±α l±β ) are shown in Fig. 3. Some comments and discussions are in order.

Fig. 3(a) is obtained by taking θ14 = θ24 = θ34 ≡ θ and δ14 = δ24 = δ34 = 0. In this case, the near degeneracy of B(H±± → e±μ±),
B(H±± → e±τ±) and B(H±± → μ±τ±) is just because of the smallness of m2 −m1 and m3 −m2. A small discrepancy between B(H±± →
e±e±) and B(H±± → μ±μ±) = B(H±± → τ±τ±) for θ < 7 × 10−7 is due to the small terms proportional to m3 − m2 in (ML)μμ and
(ML)ττ .

Fig. 3(b) is obtained by taking θ14 = θ24 = θ34 ≡ θ and δ14 = δ24 = δ34 = π/2. We see some mild interference effects in all the decay
channels. Among them, the branching ratio of H±± → e±μ± , e±τ± or μ±τ± undergoes a maximum, while the branching ratio of H±± →
e±e± , μ±μ± or τ±τ± undergoes a minimum.

Fig. 3(c) is obtained by taking θ14 = 0, θ24 = θ34 ≡ θ and δ24 = δ34 = 0. In this case, B(H±± → e±μ±) and B(H±± → e±τ±) are
strongly suppressed in the whole parameter space. We see no obvious interference in other decay modes.

Fig. 3(d) is obtained by taking θ14 = 0, θ24 = θ34 ≡ θ and δ24 = δ34 = π/2. One can see that B(H±± → e±e±) undergoes a maximum
in the interference band, so does B(H±± → μ±τ±). In comparison, B(H±± → μ±μ±) = B(H±± → τ±τ±) undergoes a minimum. The
interference effects in this case are more significant than those in Fig. 3(b).
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4. Summary

We have studied the dileptonic decays of doubly-charged Higgs bosons H±± in the minimal type-II seesaw model with only one heavy
Majorana neutrino and one Higgs triplet. Their branching ratios B(H±± → l±α l±β ) depend not only on the masses, flavor mixing angles
and CP-violating phases of three light neutrinos νi (for i = 1,2,3), but also on the mass (M1) and mixing parameters (θi4 and δi4) of the
heavy Majorana neutrino N1. We have focused our attention on the interference bands of B(H±± → l±α l±β ), in which the contributions
of νi and N1 are comparable in magnitude. Assuming M1 ∼ 200 GeV–1 TeV and taking three possible mass patterns of νi as allowed by
current neutrino oscillation data, we have figured out the generous interference bands

√| sin θi4 sin θ j4| ∼ 10−8–10−5 (for i, j = 1,2,3) and
presented a detailed numerical analysis of B(H±± → l±α l±β ).

We stress that both constructive and destructive interference effects are possible in the interference bands of B(H±± → l±α l±β ), and thus
it is very difficult to distinguish the (minimal) type-II seesaw model from the triplet seesaw model in this parameter space. Although our
numerical results are subject to a simplified type-II seesaw scenario, they can serve as a good example to illustrate the interplay between
light and heavy Majorana neutrinos in a generic type-II seesaw framework. The latter involves more free parameters, so the corresponding
interference bands of B(H±± → l±α l±β ) will be in a mess.

It is worth pointing out that the lepton-number-violating decays of singly-charged Higgs bosons H± are also important for testing
the gauge triplet nature of the Higgs field. For example, the observation of H+ → l+α ν̄α and H− → l−α να (for α = e,μ, τ ) decays will be
particularly useful to determine the mass spectrum of three light Majorana neutrinos [10] because these processes are independent of the
unknown Majorana phases in the triplet seesaw model. A similar study of the lepton-number-violating H± decays can be done in the
type-II seesaw model, where heavy Majorana neutrinos exist, although the interference bands of B(H+ → l+α ν̄α) and B(H− → l−α να) are
expected to be different from those of B(H±± → l±α l±β ). We shall carry out a systematic analysis of both H±± decays and H± decays in
the minimal type-II seesaw scenario elsewhere [17].

It is certainly a big challenge to identify the unique or correct seesaw mechanism of neutrino mass generation, if such a mechanism
really exists, at the upcoming LHC and the future International Linear Collider. In particular, the collider signatures of both the Higgs triplet
and heavy Majorana neutrinos will have to be experimentally established before a claim of having verified the type-II seesaw mechanism
can be made. While the running of the LHC itself might be very difficult to help us pin down the true flavor dynamics of leptons and
quarks, we hope that it would at least shed light on what this dynamics looks like at the TeV energy scale.
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