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Abstract

We give counterexamples to the following conjecture of Auslander: given a finitely

generated module M over an Artin algebra L; there exists a positive integer nM such that for

all finitely generated L-modules N; if ExtiLðM;NÞ ¼ 0 for all ic0; then ExtiLðM;NÞ ¼ 0
for all iXnM : Some of our examples moreover yield homologically defined classes of
commutative local rings strictly between the class of local complete intersections and the class

of local Gorenstein rings.
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0. Introduction

In this paper we give examples on the vanishing of Ext and Tor which
simultaneously disprove a conjecture of Auslander and identify new classes of

ARTICLE IN PRESS

$This work was done while the first author was a member and the second author was a postdoctoral

fellow at the Mathematical Sciences Research Institute, Berkeley, CA USA. They are both grateful to

MSRI for its generous support.
�Corresponding author.

E-mail address: djorgens@math.uta.edu (D.A. Jorgensen).
1Current address: Department of Mathematics, Michigan State University, East Lansing, MI 48824,

USA.

0001-8708/$ - see front matter r 2003 Elsevier Inc. All rights reserved.

doi:10.1016/j.aim.2003.11.003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82366283?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


commutative local (meaning also Noetherian) rings lying between the class of local
complete intersections and the class of local Gorenstein rings.
The following conjecture of Auslander appears in [1, p. 795] and [11]: let L be an

Artin algebra. For every finitely generated L-module M there exists an integer nM such

that for all finitely generated L-modules N; if ExtiLðM;NÞ ¼ 0 for all ic0; then

ExtiLðM;NÞ ¼ 0 for all iXnM :
Auslander’s conjecture is known to hold, for example, when L is a group ring of a

finite group over a field, by [8, 2.4], or when L is a local complete intersection (see the
discussion later in the introduction). Part (1) of our main theorem below gives a
counterexample to Auslander’s Conjecture over a commutative self-injective Koszul
k-algebra. Part (2) is relevant in the context of recent research on refinements of the
Gorenstein condition, as we shall explain shortly.

Theorem. Let k be a field which is not algebraic over a finite field. Then there exist

commutative finite dimensional self-injective Koszul k-algebras A with Hilbert seriesP
ðrankk AiÞti ¼ 1þ 5t þ 5t2 þ t3 and finitely generated graded A-modules M with

linear resolution and
P

ðrankk MiÞti ¼ 2t þ 8t2 þ 2t3 such that the following hold:

(1) For each positive integer q there exists a finitely generated graded A-module Nq

with linear resolution and
P

ðrankkðNqÞiÞti ¼ 1þ t satisfying

ExtiAðM;NqÞa0 if and only if i ¼ 0; q � 1; q:

(2) There exists a finitely generated graded A-module V with linear resolution andP
ðrankk ViÞti ¼ 2þ 2t satisfying

TorAi ðM;VÞ ¼ 0 for all i40 and ExtiAðM;VÞa0 for all i40:

It is easy to see that Auslander’s Conjecture holds when L is a commutative local
ring with maximal ideal m satisfying m2 ¼ 0: We show in a corollary of our main
theorem (Corollary 3.3(2)) that the conjecture already fails for a commutative local

ring ðB;mÞ with m3 ¼ 0:
The rings A in our main theorem and the rings B in the corollary are constructed

by Gasharov and Peeva in [10] to give a counterexample to an unrelated conjecture
of Eisenbud. We turned to these rings since they admit modules of infinite
complete intersection dimension (see [6] for the definition), which is a necessary
property of any module yielding a counterexample to Auslander’s Conjecture
(cf. [7]).
Recall that a local complete intersection is a local ring R whose completion

with respect to the maximal ideal m is a quotient of a regular local ring by a
regular sequence. Let CI denote the class of all such rings. Let GOR represent
the class of local Gorenstein rings, and TE the class of commutative local rings R

which have the following property: TorRi ðM;NÞ ¼ 0 for all ic0 implies

ExtiRðM;NÞ ¼ 0 for all ic0; for all finitely generated R-modules M and N: One
of the main theorems of Avramov and Buchweitz [3] gives the first inclusion in
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the chain

CIDTEDGOR:

(The second inclusion is clear: just takeN ¼ R in the definition of the classTE:) In [3],
the authors remark that 40 years of research in commutative algebra have not
produced a class of local rings intermediate between CI and GOR; and ask whether
either inclusion above is strict. In a recent paper, Huneke and Jorgensen [14] prove that
the first inclusion is strict. Part (2) of our main theorem shows that so is the second.
In [14] an AB ring is defined to be a local Gorenstein ring R with the property that

ExtiRðM;NÞ ¼ 0 for all ic0 implies ExtiRðM;NÞ ¼ 0 for all i4dimR; for all finitely
generated R-modulesM and N: LetAB denote the class of all AB rings. It is shown
in [3] (cf. also [14]) that CIDAB; and subsequently in [14] (cf. also [21]) it is shown
that this inclusion is strict. Note that the condition defining AB rings is a
strengthening of Auslander’s Conjecture. Therefore, part (1) of our main theorem
also shows that AB lies properly between CI and GOR:
The paper is organized as follows. In Section 1, we give some positive results on

Auslander’s Conjecture for commutative non-Gorenstein rings. In particular, we
prove that Golod rings, and commutative local rings which are ‘‘small’’ in various
senses satisfy (a strong form of) Auslander’s Conjecture.
The rings A and B and the corresponding modules are defined in Section 2. Here

we also explain our method for computing homology and cohomology.
The main theorem above is an immediate consequence of Corollary 3.3(1) and

Proposition 3.9 proved in Section 3. We also give there the corresponding statements
for the ring B; and compare these with the results of Section 1, noting that our
examples involving the ring B are ‘‘smallest’’ in various senses where one can expect
Auslander’s Conjecture to fail.
In Section 4, we discuss classes of homologically defined local Gorenstein rings,

including the ones described above. We give local Gorenstein rings which are known
to satisfy Auslander’s Conjecture, and we compare these rings to our examples from
Section 3.

1. Some commutative rings for which Auslander’s Conjecture holds

In this section, R denotes a commutative local ring, with maximal ideal m and
residue field k:
As is evidenced by results of [3,14], Auslander’s Conjecture is relevant and

interesting in the context of commutative local rings (of possibly nonzero Krull
dimension). It turns out that all the commutative local rings for which Auslander’s
Conjecture is known to hold actually satisfy a stronger condition, which we call the
uniform Auslander condition (uac):

(uac) There exists an integer n such that for all finitely generated R-modules M and N;

if ExtiRðM;NÞ ¼ 0 for all ic0 then ExtiRðM;NÞ ¼ 0 for all iXn:
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In this section, we prove that (uac) holds for certain rings which are small in
various senses. Let edimR denote the minimal number of generators of m and lðRÞ
denote the length of R:

1.1. Proposition. The local ring ðR;mÞ satisfies (uac) if any one of the following

conditions holds.

(1) m2 ¼ 0:
(2) edimR � dimRp2:
(3) m3 ¼ 0 and edimR ¼ 3:
(4) m3 ¼ 0 and lðRÞp7:

Recall that the Poincaré series of M over R is the formal power series

PR
MðtÞ ¼

XN
i¼0

biðMÞtiAZ½½t��;

where biðMÞ ¼ rankk Tor
R
i ðM; kÞ are the Betti numbers of M:

Since some of the results existing in the literature are stated in terms of Tor rather
than Ext, we remind the reader of the following:

1.2. Assume that R is artinian and let E denote the injective hull of k: For an
R-moduleM we setM3 ¼ HomRðM;EÞ: By Matlis duality, for all finitely generated
R-modules M and N and all i we have:

TorRi ðM;N3ÞDExtiRðM;NÞ3:

In some cases one can actually prove a property much stronger than (uac). We call
it trivial vanishing (tv) and it states:

(tv) For any pair ðM;NÞ of finitely generated R-modules, if ExtiRðM;NÞ ¼ 0 for all

ic0; then either M has finite projective dimension or N has finite injective

dimension.

Proof of Proposition 1.1. Let M and N be finitely generated R-modules such that

ExtiRðM;NÞ ¼ 0 for all ic0 and assume that M is not free.

(1) The first syzygy Syz1ðMÞ in a minimal free resolution ofM is annihilated bym;

hence it is a finite sum of copies of k: Since ExtiRðM;NÞ ¼ 0 for some i41 implies
Exti�1R ðSyz1ðMÞ;NÞ ¼ 0; we conclude that N has finite injective dimension. The ring

therefore satisfies (tv), and hence (uac).
(2) By Scheja [22], R is either a complete intersection or a Golod ring (see 1.3). If it

is a complete intersection, apply [3, 4.7] (cf. also the last section). If it is Golod, then
apply Proposition 1.4 below.

(3) If N is injective, then ExtiRðM;NÞ ¼ 0 for all i40: Therefore assume that N is

not injective, hence N3 is nonfree. From 1.2 we have TorRi ðM;N3Þ ¼ 0 for all ic0:
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By taking syzygies, we may assume that there exist finitely generated nonzero R-

modules X and Y such that TorRi ðX ;YÞ ¼ 0 for all i40 and m2X ¼ m2Y ¼ 0: We
conclude from [15, 2.5] that there exist positive integers u; v such that u þ v ¼ 3 and
biþ1ðX Þ ¼ ubiðX Þ; biþ1ðYÞ ¼ vbiðY Þ for all iX0: It follows that one of the modules X

or Y has constant Betti numbers (because either u ¼ 1 or v ¼ 1), hence one of the
modulesM or N3 has eventually constant Betti numbers. Using a result of Avramov
[2, 1.6] we conclude that one of the modules Syz1ðMÞ; Syz1ðN3Þ has a periodic
resolution of period 2. The hypothesis then implies TorRi ðM;N3Þ ¼ 0 for all i41;
hence ExtiRðM;NÞ ¼ 0 for all i41:
(4) By (3), we may assume that edimRX4: The ring R then satisfies the condition

in the hypothesis of [15, 3.1], hence, in view also of 1.2, it satisfies (tv). &

1.3. Serre proved a coefficientwise inequality

PR
k ðtÞ%

ð1þ tÞedim R

1�
P

N

j¼1 rank HjðKRÞt jþ1

of formal power series, where KR denotes the Koszul complex on a minimal set of
generators of m: If equality holds, then R is said to be a Golod ring.

1.4. Proposition. If R is a Golod ring, then it satisfies (tv), and hence (uac).

For the proof we need some considerations on complexes. We refer to
[3, Appendix A] for the basic notions. The Poincaré series of a complex is
the extension of the corresponding notion for modules, cf. [3, Section 7], for
example.
Vanishing of homology over Golod rings was studied by Jorgensen [17, 3.1]. His

result was extended in [4, 8.3] to complexes with finite homology as follows:

1.5. Let R be a Golod ring and M and N complexes with finite homology.

If TorRi ðM;NÞ ¼ 0 for all ic0; then PR
MðtÞ or PR

NðtÞ is a Laurent polynomial.

1.6. A complex of R-modules D is said to be dualizing if it has finite homology and

there is an integer d such that ExtdRðk;DÞDk and ExtiRðk;DÞ ¼ 0 for iad: (By [12, V,
3.4], this definition agrees with the one given by Hartshorne in [12].)
Any quotient of a local Gorenstein ring has a dualizing complex. In particular, a

complete local ring has a dualizing complex.

1.6.1. For a complex G we set Gw ¼ RHomRðG;DÞ: As noted in [12, V, Section 2], if
G has finite homology, then so does Gw:

Proof of Proposition 1.4. We may assume that R is complete, hence it has a dualizing

complex D: LetM and N be finitely generated R-modules such that ExtiRðM;NÞ ¼ 0
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for all ic0: By [12, V, 2.6(b)] we have:

RHomRðM;NÞwCM#L
RNw:

By hypothesis, RHomRðM;NÞ has finite homology, and by 1.6.1 so does
M#L

RNw: This means that TorRi ðM;NwÞ ¼ 0 for all ic0; hence PR
MðtÞ or PR

NwðtÞ is a
Laurent polynomial, from 1.5. It follows thatM has finite projective dimension or N

has finite injective dimension (see [12, V, 2.6(a)]). &

Several classes of local Gorenstein rings are known to satisfy (uac). They will be
discussed in Section 4.

2. Constructions

Let k be a field and let aAk be a nonzero element. In this section we describe the
rings Aa and Ba constructed in [10] by Gasharov and Peeva, we define the moduleM

of our main theorem, and we discuss our method for computing homology and
cohomology.

The ring A ¼ Aa: Consider the polynomial ring k½X1;X2;X3;X4;X5� in five
(commuting) variables and set A ¼ k½X1;X2;X3;X4;X5�=Ia; where Ia is the ideal
generated by the following quadric relations:

aX1X3 þ X2X3; X1X4 þ X2X4; X 2
3 þ aX1X5 � X2X5;

X 2
4 þ X1X5 � X2X5; X 2

1 ; X 2
2 ; X3X4; X3X5; X4X5; X 2

5 :

By [10], Aa is a local Gorenstein ring with Hilbert series HilbAaðtÞ ¼ 1þ 5t þ 5t2 þ t3:
As a k-vector space, it has a basis consisting of the 12 elements

1; x1; x2; x3; x4; x5; x1x2; x1x3; x1x4; x1x5; x2x5; x1x2x5;

where xi denotes the residue class of Xi modulo Ia:
The ring B ¼ Ba: Set Ba ¼ Aa=ðx5Þ: As noted in [10], Ba is a local ring with Hilbert

series HilbBaðtÞ ¼ 1þ 4t þ 3t2: As a k-vector space, it has a basis formed by the
images in Ba of the following 8 elements in Aa:

1; x1; x2; x3 x4; x1x2; x1x3; x1x4:

When there is no danger of confusion we will suppress a from the notation and
simply write A or B for Aa or Ba:

2.1. One may check that the set of generators of Ia listed above is itself a Gröbner
basis for Ia with respect to the reverse lexicographic term order. Since all of these
generators are quadrics, by [9, Section 4] we have that A ¼ Aa is Koszul. Similarly,
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the generators

ax1x3 þ x2x3; x1x4 þ x2x4; x23; x24; x21; x22; x3x4

of the ideal defining Ba form a Gröbner basis of their ideal with respect to the reverse
lexicographic term order, and so B ¼ Ba is also Koszul.

Modules with nonperiodic (or periodic of period a2) minimal resolutions having
constant Betti numbers equal to 2 were given in [10] over the rings Aa and Ba with
aa71: We wanted a module with nonperiodic resolution and constant Betti
numbers, but we found that the modules in [10] did not provide counterexamples
using our technique.

The modules M and L: Let M be the image of the map d0 :A
2-A2 given in the

standard basis of A2 as a free A-module by the matrix

x1 x3

x4 x2

� �
:

Set L ¼ M#AB:
For any ring R we let �� denote the R-module HomRð�;RÞ:

2.2. Lemma. Consider the sequence of homomorphisms

C :?-A2 �!diþ1
A2 !di

A2 �!di�1
A2-?;

where each map di is given in the standard basis of A2 over A by the matrix

x1 aix3

x4 x2

� �
:

Then C is an exact complex. Moreover, the complexes C�; C#AB; and C�#AB are

also exact.

Note that C�#AB and HomBðC#AB;BÞ are isomorphic complexes. We use the
subscript of the differential to keep track of degrees within our complexes.

2.3. Remark. Let W be a finitely generated module over a Noetherian ring R:
A complete resolution of W is a complex T of finite projective R-modules such that
HiðTÞ ¼ HiðT�Þ ¼ 0 for all iAZ; and TXr ¼ PXr for some projective resolution P of
W and some r:
If Wa0; then its G-dimension is the shortest length of a resolution by modules G

with GDG�� and ExtiðG;RÞ ¼ ExtiRðG�;RÞ ¼ 0 for all i40; it is denoted G-dimR W :
By a basic result of Auslander and Bridger [5], the ring R is Gorenstein if and only if
every finite R-module W has G-dimR WoN:
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By [3, 4.4.4], W has a complete resolution if and only if G-dimR WoN: Lemma
2.2 shows that C is a complete resolution of the A-module M and C#AB is a
complete resolution of the B-module L: In particular, L has finite G-dimension.
(Since G-dimension is bounded by the dimension of the ring, we actually have
G-dimBL ¼ 0:)

Proof of Lemma 2.2. It is immediate to check from the defining equations of A that
didiþ1 ¼ 0:
As a k-vector space, A2 is 24 dimensional. We let ða; bÞ denote an element of A2

written in the standard basis of A2 as a free A-module. It is easy to see that for each i;
the following elements in Im di are linearly independent over k:

dið1; 0Þ ¼ ðx1; x4Þ; diðx5; 0Þ ¼ ðx1x5; 0Þ;
dið0; 1Þ ¼ ðaix3; x2Þ; dið0; x1Þ ¼ ðaix1x3; x1x2Þ;
diðx1; 0Þ ¼ ð0; x1x4Þ; dið0; x3Þ ¼ ð0;�ax1x3Þ;
diðx2; 0Þ ¼ ðx1x2;�x1x4Þ; dið0; x5Þ ¼ ð0; x2x5Þ;
diðx3; 0Þ ¼ ðx1x3; 0Þ; diðx2x5; 0Þ ¼ ðx1x2x5; 0Þ;
diðx4; 0Þ ¼ ðx1x4; x2x5 � x1x5Þ; dið0; x1x5Þ ¼ ð0; x1x2x5Þ:

As a consequence, rankkðIm diÞX12 for each i: On the other hand, we have

rankkðKer diÞ ¼ rankkðA2Þ � rankkðIm diÞp12

for each i: It follows that rankkðIm diþ1Þ ¼ rankkðKer diÞ ¼ 12 for each i; hence the
complex C is exact. Since A is self-injective, the complex C� is exact as well.
Similar computations over the ring B show that the complexes C#AB and

C�#AB are exact. &

2.4. The proof of the lemma shows that

HilbMðtÞ ¼ HilbM� ðtÞ ¼ 2t þ 8t2 þ 2t3

and one may verify that

HilbLðtÞ ¼ HilbL� ðtÞ ¼ 2t þ 6t2:

Every finitely generated graded module W over a standard graded local ring R

with R0 ¼ k has a minimal graded free resolution. Consequently, the modules

TorRi ðW ; kÞ inherit a structure of graded R-modules. The bigraded Poincaré series of

W is the formal power series in two variables:

PR
W ðt; zÞ ¼

X
i; j

rankk Tor
R
i ðW ; kÞj tiz j;

where j is the index of degree. The usual Poincaré series is obtained by letting z ¼ 1:
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The moduleW is said to have a linear resolution if all its minimal generators are in
the same degree p and W has a minimal graded free resolution in which all the
entries of the matrices defining the differentials have degree 1: This is equivalent to
ToriðW ; kÞj ¼ 0 for all jai þ p:

By definition, the k-algebra R is Koszul if the R-module k has a linear resolution.
In this case, it is known that

PR
k ðt; zÞ ¼ 1

HilbRð�tzÞ:

2.5. It is clear from Lemma 2.2 that the A-modules M and M�; as well as the B-
modules N and N�; have a linear resolution, and

PA
Mðt; zÞ ¼ PA

M� ðt; zÞ ¼ PB
Lðt; zÞ ¼ PB

L� ðt; zÞ ¼ 2z

1� tz
:

Note that all the syzygies of these modules have the same Poincaré series. Since the
rings A and B are Koszul, the Poincaré series of k over A and B are

PA
k ðt; zÞ ¼ 1

1� 5tz þ 5t2z2 � t3z3
and PB

k ðt; zÞ ¼ 1

1� 4tz þ 3t2z2:

Next, we describe our approach to calculating (co)homology over the rings A;
respectively, B when one of the modules is M; respectively, L:

2.6. Computing Ext and Tor. We set F ¼ CX0 and G ¼ Co0: Lemma 2.2 shows that
F is a minimal free resolution ofM over A and F#AB is a minimal free resolution of
L over B: Also, G� is a minimal free resolution of M� over A and G�#AB is a
minimal free resolution of L� over B:
Let N be a finitely generated A-module and let P be a finitely generated B-module.

2.6.1. The module TorAi ðM;NÞ is the ith homology of the complex

F#AN : ?-N2 ���!di#AN
N2 ����!di�1#AN

N2-?-N2 ���!d1#AN
N2-0;

that is,

TorAi ðM;NÞ ¼ Kerðdi#ANÞ=Imðdiþ1#ANÞ:

Similarly, TorBi ðL;PÞ is the ith homology of the complex ðF#ABÞ#BP ¼ F#AP:

2.6.2. The module ExtiAðM;NÞ is the ð�iÞth homology of the complex HomAðF;NÞ
and this complex can be identified with

F�#AN : 0-N2 ���!d�
1
#AN

N2-?-N2 ���!d�
i #AN

N2 ����!d�
iþ1#AN

N2-?;
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where F� ¼ HomAðF;AÞ; and for each i the map d�
i is given in the standard basis of

A2 by the transpose of the matrix corresponding to di: Thus

ExtiAðM;NÞ ¼ Kerðd�
iþ1#ANÞ=Imðd�

i #ANÞ:

Similarly, ExtiBðL;PÞ is the ð�iÞth homology of the complex F�#AP:

2.6.3. The module ExtiAðN;MÞ is isomorphic to TorAi ðM�;NÞ�; and TorAi ðM�;NÞ is
the ith homology of the complex

G�#AN :?-N2 ����!d�
�i#AN

N2 �����!d�
�iþ1#AN

N2-?-N2 ����!d�
�1#AN

N2-0:

Thus

ExtiAðN;MÞ ¼ ðKerðd�
�i#ANÞ=Imðd�

�i�1#ANÞÞ�:

Similarly, TorBi ðL�;PÞ is the ith homology of the complex G�#AP:

3. Results on vanishing

In this section, we prove the main results stated in the introduction. Our method
and constructions were inspired by the paper [13] of Heitmann.
We fix aAk and use the notation introduced in Section 2.
For each integer q we set Tq ¼ A=Jq; where Jq is the ideal of A ¼ Aa generated by

the linear relations

x1 � x2; x1 � aqx3; x1 � x4; x5:

Note that Tq is also a B-module.

We let oðaÞ denote the order of a in the group of units of k; and set

s ¼
0 if oðaÞ ¼ N;

oðaÞ otherwise:

�

Note that a 
 bmod ð0Þ if and only if a ¼ b:

3.1. Proposition. The following hold for every integer q and every i40:

(a) TorAi ðM;TqÞa0 if and only if i 
 q � 1; qmod ðsÞ:
(b) ExtiAðM;TqÞa0 if and only if i 
 q � 1; qmod ðsÞ:
(c) ExtiAðTq;MÞa0 if and only if i 
 �q;�q � 1 mod ðsÞ:

3.2. Proposition. The following hold for every integer q and every i40:

(a) TorBi ðL;TqÞa0 if and only if i 
 q � 1; qmod ðsÞ:
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(b) ExtiBðL;TqÞa0 if and only if i 
 q � 1; qmod ðsÞ:
(c) TorBi ðL�;TqÞa0 if and only if i 
 �q;�q � 1 mod ðsÞ:

3.3. Corollary. If oðaÞ ¼ N; then the following hold for any integer q40:

(1) ExtiAðM;TqÞa0 if and only if i ¼ 0; q � 1; q:

(2) ExtiBðL;TqÞa0 if and only if i ¼ 0; q � 1; q:

3.4. Remark. The corollary shows that, when oðaÞ ¼ N; the rings A ¼ Aa and B ¼
Ba provide counterexamples to Auslander’s Conjecture. In view also of 3.8 below,
the first part gives part (1) of the main theorem in the introduction.

3.5. Let m denote the maximal ideal of B: The expression for HilbBðtÞ given above
indicates that m3 ¼ 0; edim B ¼ 4 and lðBÞ ¼ 8: Comparing these numerical data
with the results stated in Proposition 1.1, we see that our examples are minimal
primarily with respect to the invariant inffn jmn ¼ 0g and secondarily with respect
to the invariants edim and length.

3.6. Remark. Let R be a Noetherian ring and let W and N be finitely generated R-
modules. Assume that W has a complete resolution T; as defined in 2.3. For each i

the Tate (co)homology groups are defined by

dExtExtiRðW ;NÞ ¼ H�i HomðT;NÞ and dTorTorRi ðW ;NÞ ¼ HiðT#RNÞ:

If r is as in 2.3, then it is clear that for all i4r one has

dExtExtiRðW ;NÞDExtiRðW ;NÞ and dTorTorRi ðW ;NÞDTorRi ðW ;NÞ:

Also, when G-dimR W ¼ 0; one has

dExtExt�i�1
R ðW ;NÞDdTorTorRi ðW �;NÞ:

In terms of Tate (co)homology, the propositions above can be formulated as follows.
Let q be an integer. Then for all i we have:

(1) dExtExtiAðM;TqÞa0 if and only if i 
 q � 1; qmod ðsÞ:
(2) dTorTorAi ðM;TqÞa0 if and only if i 
 q � 1; qmod ðsÞ:
(3) dExtExtiBðL;TqÞa0 if and only if i 
 q � 1; qmod ðsÞ:
(4) dTorTorBi ðL;TqÞa0 if and only if i 
 q � 1; qmod ðsÞ:

3.7. Remark. It is now clear that, using the modules in the propositions, one can
obtain a wide variety of distributions of nonzero (co)homology. In particular, when
s ¼ 0 one can construct arbitrarily large intervals of either vanishing or nonvanishing
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(co)homology: for integers a; b satisfying 0paob there exist finitely generated A-
modules Na;b and Za;b such that

(1) ExtiAðM;Na;bÞa0 if and only if apipb (and i ¼ 0), and
(2) ExtiAðM;Za;bÞ ¼ 0 for all aoiob and ExtiAðM;Za;bÞa0 for i ¼ a; b (and i ¼ 0).

Indeed, one may take Na;b ¼ "b
q¼aþ1 Tq and Za;b ¼ Ta " Tbþ1:

When s is positive, we obtain recurring intervals of vanishing/nonvanishing
cohomology. For example, assume that s ¼ 4 and set T ¼ T0: We have then

ExtiAðM;TÞ ¼ 0 for all i 
 1; 2 mod ð4Þ;

ExtiAðM;TÞa0 for all i 
 0; 3 mod ð4Þ:

We give only the proof of Proposition 3.1. The proof of Proposition 3.2 is similar.

Proof of Proposition 3.1. We let overbars denote residue classes modulo Jq and we

perform computations of Ext and Tor as explained in 2.6. We only give the proof of
(1); the other arguments are similar.

(1) The differential %di ¼ di#ATq of the complex F#ATq is given in the standard

basis of T2q over Tq by the matrix

%x1 ai�q %x1

%x1 %x1

� �
:

As a k-vector space Tq has a basis consisting of 1; %x1; and for each iX0

rankkðIm %diÞ ¼
1 if i 
 qmod ðsÞ;
2 otherwise:

�

Since dimkðKer %diÞ ¼ dimkðT2q Þ � dimkðIm %diÞ; we then have

rankkðKer %diÞ ¼
3 if i 
 qmod ðsÞ;
2 otherwise:

�

By 2.6.1 we have TorAi ðM;TqÞ ¼ HiðF#ATqÞ and the conclusion follows from the
above computations. &

3.8. For each q the module Tq has Hilbert series

HilbTq
ðtÞ ¼ 1þ t:

Assume that oðaÞ ¼ N: By Propositions 3.1 and 2.5 there exists an A-module W

with PA
W ðt; zÞ ¼ 2zð1� tzÞ�1 such that TorAi ðW ;TqÞ ¼ 0 for all i40 and W#RTq is

isomorphic to a sum of 2 copies of k each generated in degree 1. Indeed, if qp0 then
takeW to be a first syzygy ofM; and if q40 then takeW to be a first syzygy ofM�;
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and use for example [15, 1.4(2)] to see that W#RTq is annihilated by the maximal

ideal of A:
The bigraded version of a usual computation, cf. [19, 1.1] for example, gives

PA
W#ATq

ðt; zÞ ¼ PA
W ðt; zÞPA

Tq
ðt; zÞ:

Since W#RTq is a sum of copies of k; we may use the formula for PA
k ðt; zÞ given in

2.5 to conclude that

PA
Tq
ðt; zÞ ¼ 1

1� 4tz þ t2z2
:

The expansion of this fraction as a power series shows that the A-module Tq has a

linear resolution. Similar computations show that Tq has a linear resolution as a B-

module as well.

Now let U be the cokernel of the map A6-A2 given in the standard bases of A6;

respectively, A2 over A by the matrix

x3 0 x1 x4 x2 0

�x2 x3 �x4 0 0 x1

� �

and set V ¼ U#AA=ðm2; x5Þ: Note that V is also a B-module.
The next proposition gives part (2) of the main theorem in the introduction. (See

also 3.12 below.)

3.9. Proposition. With the notation above, the following hold:

(a) TorAi ðM;VÞ ¼ 0 for all i40:
(b) ExtiAðM;VÞa0 for all i40:

3.10. Remark. We can obtain an example of vanishing Exts and nonvanishing Tors
just by replacing V with V �: (Since A is zero-dimensional and Gorenstein, one has

�� ¼ �3: Recall then from 1.2 that TorAi ðM;V�ÞDExtiAðM;VÞ� and

ExtiAðM;V�ÞDTorAi ðM;VÞ�:)
One can replace A with B and M with L in the statement of Proposition 3.9. The

proof is similar.

Proof of Proposition 3.9. (1) Recall from 2.6.1 that TorAi ðM;VÞ is the ith homology

of the complex F#AV ; where the differential di :A
2-A2 of F is given in the

standard basis of A2 by the matrix

x1 aix3

x4 x2

� �
:
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The module V is the quotient of A2 by ðm2;x5ÞA2 and the relations ðx3;�x2Þ;
ð0; x3Þ; ðx1;�x4Þ; ðx4; 0Þ; ðx2; 0Þ; ð0; x1Þ:We let cls a denote the residue class in V of

aAA2: As a k-vector space, V has a basis formed by the 4 elements

v1 :¼ clsð1; 0Þ; v2 :¼ clsð0; 1Þ; v3 :¼ clsðx1; 0Þ; v4 :¼ clsð0; x2Þ:

Given this basis for V ; we then make the obvious choice for a basis of V 2:

We set di ¼ di#AV :V2-V 2: For each i; the following elements in ImðdiÞ can be
easily seen to be linearly independent over k:

diðv1; 0Þ ¼ ðv3; 0Þ;

diðv2; 0Þ ¼ ð0; v3Þ;

dið0; v1Þ ¼ aiðv4; 0Þ;

dið0; v2Þ ¼ ð0; v4Þ:

As a consequence, rankkðIm diÞX4: On the other hand,

rankkðKer diÞ ¼ rankkðV2Þ � rankkðIm diÞp8� 4 ¼ 4:

It follows that KerðdiÞ ¼ Imðdiþ1Þ for each i40; hence HiðF#AVÞ ¼ 0:
(2) Recall from 2.6.2 that ExtAi ðM;VÞ is the ð�iÞth homology of the complex

F�#AV ; where the differential d�
i :A

2-A2 of F� is given in the standard basis of A2

by the matrix

x1 x4

aix3 x2

� �
:

Set d�i ¼ d�
i #AV : Similar computations as above show that only two elements of the

basis of V2 over k are not in Kerðd�i Þ: Their images are
d�i ðv1; 0Þ ¼ ðv3; aiv4Þ;

d�i ð0; v2Þ ¼ ðv3; v4Þ

We conclude

rankkðIm diÞp2 and rankkðKer diÞX8� 2 ¼ 6 for all i:

We thus have HiðF�#AVÞa0 for all i40: &

3.11. Remark. Formulated in terms of Tate (co)homology, the proof of Proposition
3.9 shows that

(a) dTorTorAi ðM;VÞ ¼ 0 for all i:

(b) dExtExtiAðM;VÞa0 for all i:
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3.12. The proof of the proposition shows that the module V has

HilbV ðtÞ ¼ 2þ 2t:

Similar computations as in 3.8 show that V has a linear resolution, both as an A-
module, and as a B-module.

For each finitely generated A-module N we set

cðNÞ ¼ rankkðNÞ � rankkðSocleNÞ:

The next proposition shows that when oðaÞ ¼ N; M is rather rigid.

3.13. Proposition. When oðaÞ ¼ N the following hold for any finitely generated A-
module N:

(1) If TorAj ðM;NÞ ¼ 0 for some j40; then TorAi ðM;NÞa0 for at most 2cðNÞ values

of i40:
(2) If Ext

j
AðM;NÞ ¼ 0 for some j40; then ExtiAðM;NÞa0 for at most 2cðNÞ values

of i40:
(3) If Ext

j
AðN;MÞ ¼ 0 for some j40 then ExtiAðN;MÞa0 for at most 2cðNÞ values of

i40:
(4) ExtiAðM;NÞ ¼ 0 for all ic0 if and only if ExtiAðN;MÞ ¼ 0 for all ic0:

3.14. Remark. Statements (1) and (2) remain valid, with similar proofs, when
replacing A by B; and M by L:

Proof. We will show that if HjðC�#ANÞ ¼ 0 for some j; then HiðC�#ANÞa0 for
at most 2cðNÞ values of i: In view of 2.6.2 and 2.6.3, this proves (2), (3) and (4). The
proof of (1) is along similar lines, using the complex F#AN and 2.6.1, and it is
omitted.
For every i set

ui ¼ rankkðImðd�
iþ1#ANÞÞ and vi ¼ rankkðKerðd�

i #ANÞÞ:

Since C�#AN is a complex, we have uipvi for all i; with equality if and only if
HiðC�#ANÞ ¼ 0:
Assume that uj ¼ vj for some jAZ:We need to show that uiavi for at most 2cðNÞ

values of iAZ: Set

r ¼ maxfui j iAZg:

Since ui þ viþ1 ¼ 2 rankk N and uipvi for all i; we conclude that ui þ
ui�1p2 rankk N; with equality if and only if ui ¼ vi: Taking i ¼ j we obtain that
uj þ uj�1 ¼ 2 rankk N: Since uipr for all i; we have rankk Npr:
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Claim. uiar for at most cðNÞ values of iAZ:

Assuming the claim for the moment, we finish the proof.
As noted above, we need to show that ui þ ui�1a2 rankk N for at most 2cðNÞ

values of iAZ: We have

fiAZ j ui þ ui�1a2 rankk Ng ¼ fiAZ j uiarg,fiAZ j ui�1arg;

and the claim shows that this set has at most 2cðNÞ elements.

Proof of claim. Let E be a basis of N over k and set e ¼ rankk N: Let wi be the e � e

matrix which represents in the basis E the map N-N given by multiplication by xi;
for i ¼ 1;y; 4:

With the obvious choice for the basis of N2 over k; the map di#AN :N2-N2 is
represented by the 2e � 2e matrix

Oi ¼
w1 aiw3
w4 w2

� �
:

Let k½y� be the polynomial ring over k in a single variable y: We consider the
following 2e � 2e matrix with elements in k½y�:

OðyÞ ¼
w1 yw3
w4 w2

� �
:

Since r is the maximum of frankOigiAZ; there exists a nonzero r � r minor Dc of Oc

for some c: Let DðyÞ denote the r � r minor of OðyÞ corresponding to Dc: Then DðyÞ
is a polynomial in y: Since DðacÞ ¼ Dc is nonzero, DðyÞ is a nonzero polynomial.
Note that it has degree at most cðNÞ; and therefore it has at most cðNÞ roots in k: In

conclusion, the r � r minor Di ¼ DðaiÞ of Oi is zero for at most cðNÞ values of i: &

3.15. Remark. Formulated in terms of Tate (co)homology, cf. 3.6, the proofs of
parts (1) and (2) of Proposition 3.13 actually show the following:

(1) If dTorTorAj ðM;NÞ ¼ 0 for some j; then dTorTorAi ðM;NÞa0 for at most 2cðNÞ values
of i:

(2) IfdExtExt j
AðM;NÞ ¼ 0 for some j; thendExtExtiAðM;NÞa0 for at most 2cðNÞ values of i:

Similar statements can be given for the ring B and the module L:

4. Classes of Gorenstein rings

In this section we discuss homologically defined classes of local Gorenstein rings,
introduced in [3,14], and show using the examples in the previous section that these
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classes of local rings lie properly between the class of local complete intersections and
the class of local Gorenstein rings.
Throughout this section R is a local ring with maximal ideal m: Let (ci) denote

the condition that R is a local complete intersection, and (gor) the condition
that R is a local Gorenstein ring. We further consider the following properties
(cf. [3, 6.3]):

(te) TorRi ðM;NÞ ¼ 0 for all ic0 implies ExtiRðM;NÞ ¼ 0 for all ic0;
(et) ExtiRðM;NÞ ¼ 0 for all ic0 implies TorRi ðM;NÞ ¼ 0 for all ic0;
(ee) ExtiRðM;NÞ ¼ 0 for all ic0 implies ExtiRðN;MÞ ¼ 0 for all ic0;

where M and N range over all finitely generated R-modules.

4.1. Note that by taking N ¼ R; the property (te) implies R is Gorenstein; by taking
M ¼ R; the property (ee) implies R is Gorenstein.

4.2. Avramov and Buchweitz prove in [3, 6.1] that if R is a local complete
intersection, then it satisfies both (et) and (te). This gives implication (1)
in the following diagram, reproduced from [3, 6.3]; the remaining implications
are clear.

In [3, 6.4] the question is raised whether any of these implications can be reversed.
We first note that (2) is reversible:

4.3. Proposition. The following statements are equivalent:

(1) R satisfies (te).
(2) R is Gorenstein and satisfies (et).

Proof. We give only the proof of ð1Þ ) ð2Þ: The reverse implication can be proved
similarly.
Assume that R satisfies (te). By 4.1, the ring R is Gorenstein. By taking syzygies, it

suffices to prove that (et) holds for maximal Cohen–Macaulay R-modulesM and N:
Note that such modules are in particular reflexive, that is they are isomorphic to their
double dual.
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LetM and N be maximal Cohen–Macaulay R-modules such that ExtiRðM;NÞ ¼ 0
for all ic0: By [14, 2.1] we have then TorRi ðM;N�Þ ¼ 0 for all ic0: Since (te) holds,

this implies ExtiRðM;N�Þ ¼ 0 for all ic0: Using again [14, 2.1] we conclude that

TorRi ðM;NÞ ¼ 0 for all ic0: &

In [14], R is said to be an AB ring whenever it satisfies the following condition:

(ab) R is Gorenstein and there exists an integer n such that for all pairs ðM;NÞ of

finitely generated R-modules

ExtiRðM;NÞ ¼ 0 for all ic0 implies ExtiRðM;NÞ ¼ 0 for all i4n:

It is shown in [14] that if R is an AB ring, then the integer n above can be
taken to be dimR; but not less. Note that the condition (ab) is the uniform
Auslander condition (uac) from Section 1 together with the requirement that R is
Gorenstein.
Another property of a local Gorenstein ring R is defined in [14]. We say that

ExtRðM;NÞ has a gap of length g if there exists an n40 such that ExtiRðM;NÞa0 for
i ¼ n � 1 and i ¼ n þ g and ExtiRðM;NÞ ¼ 0 for all npipn þ g � 1: Set

Ext-gapðRÞ :¼ supfg jExtRðM;NÞ has a gap of length gg;

where M and N range over all finitely generated R-modules. Similarly, one can
define the notion of Tor-gap. It is proved in [14, 3.3(2)] that over a Gorenstein ring
Ext-gap is finite if and only if Tor-gap is finite.
We define the property finite gap as follows:

(gap) R is Gorenstein and Ext-gapðRÞ is finite.

4.4. The following implications are known to hold:

ðciÞ)
ð3Þ

ðgapÞ )
ð4Þ

ðabÞ )
ð5Þ

ðeeÞ

Implication (3) is proved in [20, 1.6], cf. also [16, 2.3] for a more precise version.
Implication (4) is given by [14, 3.3(3)] and (5) by [14, 4.1].

In [14], it is also proved that implication (3) above and (1) in 4.2 are not reversible.
The details of this are as follows.
Every local Gorenstein ring R (which is not a complete intersection) has

multiplicity at least edimR � dimR þ 2: A local Gorenstein ring R is said to
have minimal multiplicity if its multiplicity is equal to edimR � dimR þ 2: When
R is artinian, minimal multiplicity just means m3 ¼ 0: A local Gorenstein ring
R of minimal multiplicity is not a complete intersection precisely when
edimR � dimRX3:
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4.5. Let R be a local Gorenstein ring of minimal multiplicity. By [14, 3.6] and
[14, 3.2(3)], R satisfies (gap), and hence (ab).
By [14, 3.6], if R is a Gorenstein ring of minimal multiplicity, but not a complete

intersection, then R satisfies the property (tv) introduced in Section 1. Thus all
Gorenstein rings of minimal multiplicity also satisfy (te).

The main theorem stated in the introduction and proved in the previous section,
shows that:

(a) there exist local Gorenstein rings which are not AB rings.
(b) there exist local Gorenstein rings which do not satisfy (te).

4.6. The facts discussed above are summarized in the following refinement of the
diagrams in 4.2 and 4.4.

In conclusion, the following classes of local rings lie strictly between the class of
the local complete intersections and that of local Gorenstein rings:

(a) the local rings satisfying (te).
(b) the AB rings.
(c) the local rings satisfying (gap).

4.7. Our examples in the previous section are local Gorenstein rings R with

m4 ¼ 0; edimR ¼ 5; and lðRÞ ¼ 12 which satisfy neither (ab) nor (te). By 4.5,
these examples are minimal with respect to the invariant inffn jmn ¼ 0g: Other
aspects of the minimality of these examples can be deduced from [21] as we
now describe.
Let R be a Gorenstein local ring. By [21, 3.4] and 4.2(1), if edimR � dimRp4;

then R satisfies (ab). Our examples of Gorenstein rings not satisfying (ab) are thus
minimal with respect to embedding dimension.

If R is standard graded with lðRÞo12; then it follows that m3 ¼ 0 or edimRp4;
hence 4.5 or the above considerations apply. In particular, any such ring satisfies
(ab), and so in the standard graded case our examples of rings not satisfying (ab) are
minimal with respect to length.
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4.8. There is a question remaining:

Are there further implications between the properties displayed in 4.6? That is, are
any of the implications (4), (5), or (6) reversible?
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