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a b s t r a c t

Objectives: Arterial pressure induced vein graft injury can result in endothelial loss, accelerated
atherosclerosis and vein graft failure. Inflammation, including complement activation, is assumed to
play a pivotal role herein. Here, we analyzed the effects of C1-esterase inhibitor (C1inh) on early vein
graft remodeling.
Methods: Human saphenous vein graft segments (n = 8) were perfused in vitro with autologous blood
either supplemented or not with purified human C1inh at arterial pressure for 6 h. The vein segments
and perfusion blood were analyzed for cell damage and complement activation. In addition, the effect
of purified C1inh on vein graft remodeling was analyzed in vivo in atherosclerotic C57Bl6/ApoE3 Leiden
mice, wherein donor caval veins were interpositioned in the common carotid artery.
Results: Application of C1inh in the in vitro perfusion model resulted in significantly higher blood levels
and significantly more depositions of C1inh in the vein wall. This coincided with a significant reduction in
endothelial loss and deposition of C3d and C4d in the vein wall, especially in the circular layer, compared
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to vein segments perfused without supplemented C1inh. Administration of purified C1inh significantly
inhibited vein graft intimal thickening in vivo in atherosclerotic C57Bl6/ApoE3 Leiden mice, wherein
donor caval veins were interpositioned in the common carotid artery.
Conclusion: C1inh significantly protects against early vein graft remodeling, including loss of endothelium
and intimal thickening. These data suggest that it may be worth considering its use in patients undergoing

aftin
coronary artery bypass gr

. Introduction

Vein graft failure remains a major clinical problem. As many as
0% of coronary artery vein grafts fail within 10 years after coro-

ary artery bypass grafting (CABG). The main inducer of vein graft
amage is presumed to be the exposure of the vein grafts to arte-
ial blood pressure, inducing endothelial injury. Vein graft failure
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then develops through accelerated atherosclerosis, characterized
by foam cell formation, influx of inflammatory cells and migra-
tion of vascular smooth muscle cells to the intima of the vein graft.
Inflammation is assumed to play a pivotal role in propagating vein
graft failure [1].

The complement system is a large family of effector and reg-
ulatory proteins that forms a prominent component of the innate
immune system. The involvement of complement in cardiovascu-
lar disease is well accepted, including atherosclerosis of arteries
and aortic valves [2,3]. Furthermore, a role for complement in

vein graft failure is acknowledged. In patients undergoing CABG
the complement system is activated. This can occur as a result of,
amongst others, the surgical trauma, contact of the blood with
non-endothelial surfaces during extracorporeal circulation and
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schemia-reperfusion injury [4–6]. This activation of the comple-
ent system in CABG patients is characterized by the plasmatic

elease of potent vasoactive anaphylatoxins C3a, C4a and C5a and
he membrane attack complex C5b-9 [7]. On a tissue level, expres-
ion of complement factors C1q, C3, and C9 was found in failing
enous grafts in mice [8], indicating direct involvement of comple-
ent activation in venous graft failure. Indeed, complement factor

3 inhibition via Crry-Ig-antibody treatment reduced vein graft
therosclerosis in mice [8] and antibody-based inhibition of C5a
pexiluzimab) or the serine protease inhibitor C1-esterase inhibitor
C1inh) resulted in better short term clinical outcomes, such as
ecreased mortality and improved cardiac function, in patients
ndergoing CABG [9–12]. Although, of these latter two, their effect
n the venous graft itself remains to be established.

C1inh is a natural occurring protease inhibitor of the serpin
amily [13]. C1inh inactivates a variety of proteases such as the com-
lement proteases C1r and C1s, thereby inhibiting the alternative
athway of complement [14]. In addition, the contact system pro-
eases factor XII and plasma kallikrein and the coagulation protease
actor XI are inactivated by C1inh [13]. As such, C1inh treatment
as shown to exert favorable, anti-inflammatory effects in sep-

is patients [15] and animal sepsis models [16], to protect against
PS-mediated increased vascular permeability and endothelial cell
njury in vitro [17] and to inhibit atherosclerotic lesion develop-

ent after arterial injury in mice [18]. These data suggest that C1inh
reatment may be beneficial in CABG and protect the venous graft
gainst acute injury to the endothelium and against atherosclerotic
esion development. In this study therefore, the effects of C1inh on
cute vein graft injury were analyzed in perfused human saphe-
ous veins and on early vein graft atherosclerosis development in
venous bypass model in mice.

. Materials and methods

.1. Human vein graft tissue

Surplus segments of harvested saphenous veins of patients who
nderwent coronary artery bypass grafting (CABG) (n = 8) were
sed with the patients consent. These vein segments were collected

n the operating room under sterile conditions for histopatholog-
cal examination. Part of these vein graft segments were fixed in
% (m/v) buffered formaldehyde immediately after harvesting. The
emaining part was cut in half. One half was perfused with autol-
gous heparinised blood of the same patient and the other half
as perfused with this blood supplemented with purified human
1inh (4 U/mL). The veins were perfused in an experimental set-up
t arterial pressure (60 mmHg) for 6 h [19] and fixed in 4% (m/v)
uffered formaldehyde thereafter. The vein sections were then
mbedded in paraffin for immunohistochemical analysis. Samples
±0.5 mL) of the perfusion blood were taken every hour. The perfu-
ion blood was centrifuged at 1300 × g for 10 min and the obtained
lasma was stored at −80 ◦C until analysis. Our study was approved
y the ethics committee of the VU Medical Centre and the OLVG,
msterdam.

.2. Antibodies

The following antibodies were used: mAb mouse-anti-
uman C1inh (RII; Sanquin Research at CLB, Amsterdam, The
etherlands; 10 �g/mL), mAb mouse-anti-human CD34 (Dako,
lostrup, Denmark; 1:25 dilution), mAb (mouse) against Bcl-2
Dako; 1:150 dilution), pAb rabbit-anti-active caspase-3 (Promega,
adison, WI, USA; 1:250 dilution), pAb rabbit-anti-human C3d

Dako; 1:1000 dilution), mAb mouse-anti-human C4d (Serotec,
üsseldorf, Germany, 1:200 dilution), pAb rabbit-anti-human
rosis 220 (2012) 86–92 87

Myeloperoxidase (MPO) (Dako; 1:500 dilution), pAb rabbit-anti-
mouse macrophage (Accurate Chemical, Westbury, NY, USA:
1:3000 dilution) for the detection of macrophage derived foam cells
within the thickened vessel wall and mAb mouse-anti-rat smooth
muscle �-actin (SMA) (cross-reacts with mouse; Roche, Almere,
The Netherlands: 1:750 dilution).

2.3. (Immuno)histochemistry

Paraffin embedded human- or mouse vein graft cross sections
(4 �m thick) were deparaffinised for 10 min in xylene and dehy-
drated with ethanol. Endogenous peroxidase activity was blocked
by incubation in 0.3% (v/v) H2O2 in methanol for 30 min. The anti-
gen retrieval step for CD34, C1inh, C3d, C4d, macrophages and
MPO staining was boiling in 10 mmol/L sodium citrate buffer, pH
6, for 10 min. For caspase-3 and Bcl-2 staining the antigen retrieval
step was boiling for 10 min in buffer prepared by dissolution of
Tris and EDTA. For the SMA staining no antigen retrieval was
used. All antibodies and normal sera were diluted in PBS contain-
ing 1% (w/v) bovine serum albumin (BSA). After pre-incubation
with normal swine serum (for C3d and active caspase-3) (Dako;
1:10 dilution) or normal rabbit serum (CD34, C1inh and Bcl-2)
(Dako; 1:50 dilution) for 10 min, slides were incubated with the
primary antibodies for 1 h. After a wash in PBS the slides were incu-
bated for 30 min with Envision (Dako) for C4d and MPO; with a
biotin-conjugated swine-anti-rabbit antibody (Dako; 1:300 dilu-
tion) for C3d and active caspase-3; or with a biotin-conjugated
rabbit-anti-mouse (Dako; 1:500 dilution) for CD34, C1inh and Bcl-
2 For SMA, rabbit anti mouse HRP (Dako 1:300 dilution), and
for macrophages biotin-conjugated donkey-anti-rabbit (GE Health-
care 1:300 dilution) were used. After washing in PBS, the slides
that were incubated with a biotin-conjugated secondary anti-
body, were incubated with streptavidin–biotin complex (Dako;
sABC; 1:200 dilution) for 1 h. All slides were visualized with 3,
3′-diaminobenzidine (DAB; 0.1 mg/mL, 0.02% H2O2). Slides were
counterstained with hematoxylin, covered and scored.

2.4. Immunoscoring

In human vein grafts, the percentage of residual endothelium
was determined by dividing the measured part of the lumen surface
area that was still covered with CD34-positive endothelial cells by
the total lumen surface area × 100%. The area positive for C1inh,
C4d, C3d, Bcl-2, MPO and active caspase-3 staining in each vein
cross section was measured by computer-assisted morphometry
(Image-Pro Plus, version 4.5) and then expressed as the percentage
of the total vein graft cross section surface area.

In mouse vein grafts, for morphometric analysis the cross sec-
tions were stained with hematoxylin–phloxine–saffron (HPS) and
then analyzed using image analysis software (Qwin, Leica, Wetzlar,
Germany). Since the media in murine veins consists only of a few
layers of cells, there is no morphological border between neointima
and media. Therefore, to define vein graft thickening, the region
between lumen and adventitia was used as the lesion area. For each
mouse six equally spaced cross-sections were used to determine
vessel wall thickening. Quantification of the different subsets of
cells was performed by computer assisted analysis (Qwin) as posi-
tive stained area in the graft and expressed as a percentage of total
vein graft cross section surface area.

2.5. Measurement of functional C1inh in serum
Functional human C1inh in the blood was measured accord-
ing to a previous study [20]. In short, microtiter plates, coated
with the mAb against C1inh (2 �g/mL in PBS overnight at 4 ◦C),
were washed with PBS containing 0.02% (w/v) Tween20, and
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Fig. 1. C1inh levels in the perfusion blood. C1inh levels in un-supplemented per-
fusion blood (n = 5; white bars) and in C1inh-supplemented perfusion blood (n = 5;
black bars), measured in samples taken prior to (t = 0) and after 1, 2, 3, 4, 5 and 6 h

and after perfusion. Of each patient part of the vein was fixed before
perfusion, part was perfused with autologous blood and part was
perfused with autologous blood supplemented with C1inh. Early
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Fig. 2. Quantitative analysis of the residual endothelium in perfused human veins.
The percentage of residual endothelium was determined before (non-perfused;
n = 8) and after 6 h of perfusion with either un-supplemented blood (−C1inh; n = 8) or
blood supplemented with C1inh (+C1inh; n = 8). The percentage of residual endothe-
8 P.A.J. Krijnen et al. / Athe

ncubated with plasma samples diluted in PBS, 0.1% (w/v) Tween20,
.2% (w/v) gelatine (PTG) for 90 min at 4 ◦C. The plates were
ashed and incubated with biotinylated C1s (1 �g/mL in PTG),
nal volume 100 �L, for 60 min. After a wash the plates were

ncubated with 0.001% (w/v) HRP-labeled streptavidin (Amersham
nternational plc, Amersham, UK) for 30 min, washed and incu-
ated with 0.1 mg/mL 3,5,3′,5′-tetramethylbenzidin (TMB) (Merck,
armstadt, Germany) in 0.1 M sodium acetate containing 0.003%

v/v) H2O2, pH 5.5. Serial dilutions (in PTG) of pooled normal
uman plasma containing 230 �g/mL active C1inh were used as a
tandard.

.6. Mouse experiments

All animal experiments were approved by the TNO Animal
elfare Committee and conform to the Guide for the Care and

se of Laboratory Animals (published by the US National Insti-
ute of Health, No 85-23, revised 1996). For all experiments male
57Bl6/ApoE3Leiden mice, age between 16 and 20 weeks, were
sed. Mice were fed a mild cholesterol-enriched diet (contain-

ng, e.g. 0.5% cholesterol, 0.05% cholate) [18] ad libitum, aiming at
lasma cholesterol levels of 10–15 mmol/L. Serum cholesterol lev-
ls were determined (Boehringer Mannheim GmbH, kit 236691) at
ime of surgery and sacrifice.

Vein graft surgery was performed as previously described [21].
n summary, caval veins were harvested from genetically iden-
ical donor mice and placed as an interposition in the common
arotid artery of ApoE3Leiden recipients. Therefore, the artery was
issected free from its surroundings and ligated. After clamping
he vessel, a plastic cuff was sleeved over both ends; the artery
as everted over the cuff and ligated with an 8.0 Silk ligature.

ubsequently, the caval veins were sleeved over the cuffs and lig-
ted, thereby creating a venous interposition. After clamp removal,
urbulent flow through the vein graft confirmed successful engraft-

ent. Before injection, C1inh was dissolved in sterile NaCl 0.9%
w/v) in H2O. Mice received intravenous injections (150 �L) of the
issolved C1inh according to the following scheme: 30 min before
urgery 18.5 U; t = 3 days 12.5 U; t = 7 days 12.5 U, t = 14 days 12.5 U
nd t = 21 days 12.5 U. Animals in the control group received intra-
enous injections with vehicle (sterile NaCl 0.9% (w/v) in H2O),
ithin the same scheme. At time of sacrifice, 5 min of in vivo
erfusion-fixation at 100 mmHg with 4% (m/v) buffered formalde-
yde was followed by harvesting of the vein graft. The vein grafts
ere then embedded in paraffin for (immuno)histochemical anal-

sis.

.7. Statistical analysis

Data analysis was performed with GraphPad and SPSS 17.0. The
ata were normally distributed and to evaluate whether observed
ifferences were significant, One-way ANOVA analysis combined
ith Bonferroni’s multiple comparison test or the non-parametric
ruskal–Wallis test were used. A p-value (two sided) of less than
.05 was considered to be significant.

. Results

.1. C1inh levels in the perfusion blood

The saphenous vein graft segments of patients were perfused
ith autologous blood either or not supplemented with purified
uman C1inh (4 U/mL). The perfusion blood was analyzed for the

oncentration of active C1inh before perfusion and at 1 h intervals
ntil 6 h after perfusion.

In the blood supplemented with C1inh, the concentration of
ctive C1inh was 2854 ± 1248 �g/mL prior to perfusion, compared
of perfusion. Data represent mean ± S.D. *p < 0.001 compared to un-supplemented
blood t = 0; #p < 0.001 compared to C1inh-supplemented blood after 1 h of perfusion;
†p < 0.01 compared to un-supplemented blood at that time point.

to 146 ± 56 �g/mL in the un-supplemented blood (p < 0.001; Fig. 1).
After 1 h of perfusion, the C1inh concentration in the supplemented
blood decreased significantly to 1273 ± 468 �g/mL (p < 0.001).
Thereafter, the levels of C1inh in the supplemented blood did not
change significantly anymore. In the un-supplemented blood the
levels of C1inh did not change significantly between the different
time points. At all time points the concentration of active C1inh
was significantly higher in the supplemented blood versus the un-
supplemented blood (p < 0.01).

3.2. C1inh protects against acute perfusion-induced endothelium
loss

Saphenous vein graft segments of patients were analyzed before
lium was determined on vein cross sections, immunohistochemically stained for
CD34, by dividing the measured part of the lumen surface area that was still cov-
ered with CD34-positive endothelial cells by the total lumen surface area × 100%.
Data represent mean ± S.E. *p < 0.001 compared to −C1inh; †p < 0.001 compared to
−C1inh.
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Fig. 3. Quantitative analysis of C1inh in perfused human veins. (A) The percent-
age of the surface area positive for C1inh was determined in non-perfused veins
(white bars; n = 8), veins perfused with un-supplemented blood (crosshatched bars;
n = 8) and veins perfused with C1inh-supplemented blood (black bars; n = 8). C1inh
was scored in both the longitudinal and circular layer. Data represent mean ± S.E.
*p < 0.001 compared to the respective layers in non-perfused veins; †p < 0.001
compared to the longitudinal layer of veins perfused with un-supplemented
blood; #p < 0.001 compared to the respective layers in veins perfused with un-
supplemented blood; ‡p < 0.001 compared to the longitudinal layer of veins perfused
with C1inh-supplemented blood. (B) Example of C1inh in the vein wall. This vein
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Fig. 4. Quantitative analysis of C3d and C4d in perfused human veins. The percent-
ages of the surface area positive for C3d (white bars) and for C4d (black bars) were
determined in non-perfused veins (n = 8), veins perfused with un-supplemented
blood (−C1inh; n = 8) and veins perfused with C1inh-supplemented blood (+C1inh;
as perfused with C1inh-supplemented blood for 6 h. Shown are the longitudinal
nd circular layer. Arrow I shows residual endothelial cells; arrow II shows C1inh in
he circular layer (magnification 250×).

hanges in veins perfused at arterial pressure include substantial
oss of endothelial cells and cell damage in the media [19]. There-
ore, the putative protective effects of C1inh on endothelial loss,
ellular apoptosis and infiltration of granulocytes were analyzed
sing immunohistochemistry.

In non-perfused veins, the percentage of residual endothelium
as 83 ± 8% (Fig. 2). After 6 h of perfusion with un-supplemented

lood the percentage of residual endothelium was 25 ± 14%, which
as significantly lower than in non-perfused veins (p < 0.001).

upplementation of C1inh to the perfusion blood resulted in a sig-
ificant increase in residual endothelium to 47 ± 17% (p < 0.001),

ndicating that C1inh protects against endothelial loss in vein grafts
nder arterial pressure.
.3. C1inh in the vein graft wall

The amount deposited C1inh in the vein wall was subsequently
nalyzed, whereby we differentiated between the longitudinal and
n = 8). Data represent mean ± S.E. *p < 0.001 compared to C3d in non-perfused veins;
†p < 0.001 compared to C4d in non-perfused veins; ‡p < 0.001 compared to C3d in
−C1inh; #p < 0.001 compared to C4d in −C1inh.

circular layers of the media. In non-perfused veins the percentages
of C1inh-positive area were low with 1.7 ± 0.7% in the longitudinal
layer and 2.5 ± 0.7% in the circular layer (Fig. 3). These percentages
did not differ significantly. Perfusion with un-supplemented blood
induced a significant increase in C1inh deposition to 6.8 ± 1.9% in
the longitudinal layer (p < 0.001) and 16.5 ± 4.1% in the circular
layer (p < 0.001). Notably, the C1inh-positive area in the circu-
lar layer was significantly larger than in the longitudinal layer
(p < 0.001). In veins perfused with C1inh-supplemented blood, the
C1inh-positive area was 14.3 ± 1.8% in the longitudinal layer and
20.4 ± 1.4% in the circular layer, which was significantly larger
than in non-perfused veins (p < 0.001) and veins perfused with
un-supplemented blood (p < 0.001). Furthermore, also here the
C1inh-positive area was significantly larger in the circular layer
than in the longitudinal layer (p < 0.001). Thus, C1inh supplemen-
tation resulted in an increase in C1inh deposition in the media of
the vein wall.

3.4. C1inh reduced complement deposition in the vein wall

The effect of C1inh supplementation on complement deposi-
tion (factors C3d and C4d) in the vein wall was also analyzed as a
marker for cell damage in the media. In non-perfused veins the
C3d-positive area was 0.5 ± 0.2%, whereas no C4d was detected
(Fig. 4). After 6 h of perfusion with un-supplemented blood the
percentage C3d-positive area increased significantly to 5.5 ± 1.8%
(p < 0.001) as did the percentage of C4d-positive area to 7.9 ± 0.9%
(p < 0.001). These complement depositions were found not only in
the media but also on residual endothelial cells. Supplementation
of C1inh to the perfusion blood resulted in a significant decrease in
the C3d-positive area 0.5 ± 0.2% (p < 0.001) and the C4d-positive
area to 2.4 ± 0.3% (p < 0.001), which did not differ significantly
compared to non-perfused veins. C1inh thus led to reduced com-
plement depositions in the vein wall, indicating an inhibitory effect
on complement.

3.5. Neutrophilic granulocytes in the vein graft wall

Complement activation can lead to chemo-attraction of neu-
trophilic granulocytes. Therefore, the infiltration of MPO-positive
granulocytes was quantified. In non-perfused veins no neutrophilic

granulocytes were found (not shown). Perfusion, both with or
without supplemented C1inh, resulted in a minor, not significant
increase in MPO-positive cells (1.3 ± 3.5% for un-supplemented;
1.4 ± 3.9% for C1inh-supplemented).
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.6. Apoptosis in the vein graft wall

It has been shown that C1inh can prevent cellular apopto-
is directly via an effect on the Bcl-2/Bax ratio [22]. Therefore,
he effect of C1inh on apoptosis in perfused veins was ana-
yzed via immunohistochemical detection of activated caspase-3
nd Bcl-2. However, neither in non-perfused veins, nor in veins
erfused, with or without supplemented C1inh, staining of acti-
ated caspase-3 or the anti apoptotic Bcl-2 was found (not
hown).

.7. Mouse vein perfusion

We show here in perfused human saphenous veins that
1inh protects against acute vein graft injury. Subsequently, the
ffects of C1inh treatment on vein graft atherosclerosis develop-
ent were studied in a venous bypass model in APOE*3-Leiden
ice. Intravenous administration of C1inh resulted in a signifi-

ant decrease in vein graft thickening 28 days after engraftment,
rom 0.39 ± 0.05 mm2 in the vehicle group to 0.27 ± 0.03 mm2 in
he C1inh group (Fig. 5A–C; p = 0.04). The vessel wall circumfer-
nce, a measure for in- or outward remodeling, also decreased
ignificantly upon C1inh treatment from 0.78 ± 0.04 mm2 (vehi-
le group) to 0.64 ± 0.03 mm2 (C1inh group) (Fig. 5D; p = 0.03),
hereas the luminal surface was not different between the groups

0.38 ± 0.05 mm2 in the vehicle group and 0.36 ± 0.03 mm2 C1inh
roup (p = 0.4)).

In the C1inh treated group thickened vein grafts displayed equal
mounts of smooth muscle cells when corrected for total ves-
el wall area (vehicle: 18.1 ± 3.5%, C1inh: 27.1 ± 2.6%, p = 0.120;
xample Fig. 5F–G). Also no difference in relative foam cell
ontribution was seen (control: 12.6 ± 41.4%, C1inh: 10.8 ± 1.8%,
= 1.000; example Fig. 5H–I). Serum cholesterol did not differ
etween the vehicle- and C1inh groups (not shown). Thus, also on
he long term, administration of C1inh shows a protective effect on
ein grafts.

. Discussion

Bypass graft surgery using venous grafts is one of the most
requently used therapies in cardiovascular surgery to treat
therosclerotic occlusive disease of coronary arteries [23]. How-
ver, vein grafts frequently fail because of acute damage or through
ccelerated development of atherosclerosis. Here we found that
1inh treatment protected vein grafts under arterial pressure
gainst acute endothelial loss and against atherosclerosis devel-
pment.

We have shown before that perfusing human saphenous veins
t arterial pressure induced acute damage characterized by the loss
f virtually all endothelium and considerable ultra-structural dam-
ge in smooth muscle cells of the media [19]. Shear stress as a
esult of over-distension of the thin-walled vein grafts under arte-
ial pressure appears to be the main inducer of early vein graft
emodeling. Indeed, in animal vein graft models peri-venous sup-
ort to counteract vein distension significantly reduced neointima
ormation and intimal hyperplasia [24,25]. And in the perfusion

odel used also in the present study, peri-venous support almost
ompletely attenuated endothelial loss [19,26]. Here we show in
his model that C1inh supplementation to the perfusion blood
educed endothelial loss by approximately 50%, indicating that
he mechanisms underlying shear stress-induced acute endothe-

ial loss include inflammatory mechanisms inhibited by C1inh. An
mportant inflammatory system inhibited by C1inh is the comple-

ent system. It is possible that C1inh protects the endothelium via
his inhibitory ability as complement activation products, including
rosis 220 (2012) 86–92 91

C5a, have been shown to induce apoptosis in different cells and
tissues, including endothelial cells [27,28]. Indeed, in our study
complement depositions were found on residual endothelial cells,
indicating a possible involvement of complement in vein graft
endothelial cell death. On the other hand C1inh has been shown
to inhibit apoptosis independent of complement in cardiomy-
ocytes [22] and we cannot exclude C1inh exerting this effect in
our perfusion model. However, we found no staining of activated
caspase-3 or the apoptotic regulator Bcl-2, indicating the absence
of apoptosis in the perfused veins. It has to be noticed that the
loss of endothelial cells in this perfusion model was seen ear-
lier to occur mainly within the first hour of perfusion [19], which
may explain the lack of apoptosis detection after 6 h of perfu-
sion.

In the media, earlier studies using this perfusion model
showed ultra-structural changes, such as vacuolization of smooth
muscle cells and collagen fragmentation. Interestingly, these ultra-
structural changes predominantly occurred in the circular layer
of the media, the layer experiencing the highest blood pressure
[19,26]. These early changes apparently do not lead to apoptosis of
smooth muscle cells within 6 h of perfusion, as suggested by the
absence of active caspase-3. Furthermore, only small depositions
of complement were found in the media of perfused veins, coin-
ciding with a very limited non-significant increase in neutrophil
infiltration, indicating limited cell death of smooth muscle cells
this early after perfusion. Remarkably though, we found consid-
erably more extensive depositions of C1inh in the media, also in
veins perfused without supplemented C1inh. Interestingly, most
of the C1inh deposited in the circular layer. It is therefore plau-
sible that endogenous mechanisms play an important role in the
induction of local C1inh deposition in the vessel wall. So far
we do not know whether it originates from the perfusion blood
or is produced locally in the media. The fact that significantly
more C1inh deposits there in veins perfused with blood supple-
mented with C1inh suggests that at least part of it originates
from the perfusion blood. Therefore, most C1inh deposits in the
circular layer coinciding with most ultra-structural cellular dam-
age [19,26] in the perfused human vein, suggesting that C1inh
may protect the media. Indeed, in the vein graft model in mice
we found that infusion of C1inh in the circulation significantly
protected the whole vein, both intima and media, against arte-
rial pressure induced vein graft remodeling. It has been shown
before that C1inh can protect against neointimal plaque forma-
tion after arterial injury in mice [18]. Now we show similar
effects of C1inh on early atherosclerotic changes in vein grafts in
mice.

In conclusion, it is known that loss of vein graft endothelium
leads to a high risk of vein graft failure [29] and that strate-
gies to accelerate re-endothelialization of the graft via infusion
of endothelial cells reduces early vein graft remodeling [30,31].
In this study we show that C1inh significantly reduced endothe-
lial loss in perfused human saphenous veins and protected vein
grafts against early atherosclerotic changes in mice. It may there-
fore be worth considering its use in CABG patients, especially since
C1inh has already been used in patients for the treatment of hered-
itary angioedema, sepsis and myocardial infarction [32]. Herein, a
therapeutic strategy of C1inh administration during surgery and
intermittent in the first 3 weeks after surgery would, according
to our data, protect the graft and would be practicable for the
patients.
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