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w xWe generalize 12, 1.1 and 1.2 to the following situation.

Theorem 1. Let A be a connected graded noetherian algebra of injectï e dimension d
such that e¨ery nonsimple graded prime factor ring of A contains a homogeneous
normal element of positï e degree. Then:

Ž .1 A is Auslander]Gorenstein and Cohen]Macaulay.
Ž .2 A has a quasi-Frobenius quotient ring.
Ž .3 E¨ery minimal prime ideal P is graded and GKdim ArP s d.
Ž .4 If , moreo¨er, A has finite global dimension, then A is a domain and a

maximal order in its quotient dï ision ring.

To prove the above we need the following result, which is a generalization of
w Ž .x3, 2.46 ii .

Theorem 2. Let A be a connected graded noetherian AS-Gorenstein algebra of
injectï e dimension d. Then:

Ž .1 The last term of the minimal injectï e resolution of A is isomorphic to aA
shift of A*.

Ž . dŽ .2 For e¨ery noetherian graded A-module M, Ext M, A is finite dimensional
o¨er k. Q 1997 Academic Press

0. INTRODUCTION

Let k be a field. A k-algebra A is called connected if A s [ A ,iiG 0
A A ; A , and A s k. In this paper we will only consider connectedi j iqj 0
left and right noetherian algebras and graded modules except for the proof

* Research supported by an NSF Postdoctoral Fellowship. E-mail: zhang@math.washing-
ton.edu.

390

0021-8693r97 $25.00
Copyright Q 1997 by Academic Press
All rights of reproduction in any form reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82366206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


GRADED GORENSTEIN RINGS 391

Ž .of Theorem 3.2. If M s [ M is a noetherian left andror rightiig Z

A-module, we simply say M is finite. For every integer n, M denotes theG n
submodule [ M . Let m be the unique maximal graded ideal A ofi G1iG n
A. The trï ial A-bimodule Arm is denoted by k because it is isomorphic to

Ž .k as a vector space. Given a graded module M, the degree shift s M is
Ž . lŽ . Ž .defined by s M s M and s M is denoted by M l for all l g Z. An nq1

Žgraded module M s [ M is called left bounded respectively rightii
. Ž .bounded if M s 0 for all i < 0 respectively i 4 0 . We say M is locallyi

finite if dim M - ` for all i, where dim is the dimension of a vector space.i
Every finite graded A-module is left bounded and locally finite.

Ž . dŽ .If M and N are two left or right A-modules, we use Hom M, N to
denote the set of all A-module homomorphisms h: M ª N such that
Ž . Ž . dŽ .h M ; N . We set Hom M, N s [ Hom M, N and denote thei iqd d g ZiŽ .corresponding derived functors by Ext M, N . Given any A-module M,

the j-number of M is defined by

i � 4j M s min i ¬ Ext M , A / 0 g N j ` .Ž . Ž .� 4
Ž .In particular, if M s 0, then j M s `. If A is a noetherian ring with

finite left and right injective dimension and M is a nonzero left or right
Ž . w xA-module, then j M - `. By 16, Lemma A , if A has finite left and right

injective dimension, then the left injective dimension is equal to the
right injective dimension. We will write this common integer as injdim A.

Ž .Note that if M is a finite graded right respectively left A-module,
iŽ . Ž .then Ext M, A is a finite graded left respectively right A-module for

each i. An algebra A is called Auslander]Gorenstein if A has finite left
and right injective dimension and, for every finite graded A-module M

iŽ . Ž .and for every graded A-submodule N ; Ext M, A , j N G i; A is called
Ž .Cohen]Macaulay if, for every finite graded A-module M, j M q

GKdim M s GKdim A - `, where GKdim is the Gelfand]Kirillov di-
Žmension. A connected algebra A is called AS-Gorenstein Artin]Schelter

.Gorenstein if A has finite injective dimension d and

i dExt k , A s 0 for i / d and Ext k , A ( k e for some e g Z,Ž . Ž . Ž .
E1Ž .

where k is viewed as a either left or right A-module. If A is Auslan-
w x Ž .der]Gorenstein, then A is AS-Gorenstein 7, 6.3 . By induction and E1 ,

dŽ .if F is a finite dimensional left or right A-module, then Ext F, A (
Ž .F* e as graded k-vector spaces, where F* is the graded k-linear dual

Ž .[ Hom F , k . For more information about the above definitions andk ynn
w x w x w xrelated results see 3 , 7 , and 12 .
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ŽStafford and the author proved the following result for PI polynomial
. w xidentity rings 12, 1.1 and 1.2 . As usual clKdim denotes the classical Krull

Ž .dimension and Kdim denotes the Krull Rentschler]Gabriel dimension.

w xTHEOREM 0.1 12 . Let A be a connected noetherian PI algebra of
injectï e dimension d. Then:

Ž .1 A is Auslander]Gorenstein and Cohen]Macaulay.
Ž .2 GKdim A s Kdim A s clKdim A s injdim A.
Ž .3 If , moreo¨er, A has finite global dimension, then A is a domain

and a maximal order in its quotient dï ision ring.

Recent studies on quantum groups and deformations of commutative
algebras suggest that we should generalize the above result to non-PI

w xquantized algebras. As we saw from 5 and other papers on quantum
groups, many quantized algebras are not PI, but satisfy the property
defined next. If, for every nonsimple graded prime factor ring ArP, there

Ž .is a nonzero homogeneous normal element in ArP , then we say AG1
has enough normal elements. If A has a sequence of normal elements
� 4 w Ž .x , . . . , x ; A namely, the image of x in Ar x , . . . , x is normal1 n G1 i 1 iy1

x Ž .for all i such that Ar x , . . . , x is finite dimensional, then A has1 n
enough normal elements. The prime spectrum Spec A is called normally
separated if, for any pair of primes P n Q, QrP contains a nonzero normal

w xelement of ArP 5, 1.5 . The prime spectrum of a PI ring is normally
w xseparated 8, 13.6.4 . Many quantized algebras are non-PI, but their

w xspectra are normally separated 5 . By definition, if Spec A is normally
iŽ .separated, then A has enough normal elements. If Ext k , M is finiteA

dimensional over k for all i G 0 and for all finite graded right A-modules
w xM, we say A satisfies x 4, Definition 3.7 . The condition x is equivalent

Žto the AS-Gorenstein condition when A has finite injective dimension see
w x . w Ž .x15, 4.3 and Theorem 0.3 . By 4, 8.12 2 , connected algebras with enough
normal elements satisfy the condition x . If, moreover, A has finite global

w xdimension, then A is a domain 12, p. 1024 . The main result of this paper
is the following.

THEOREM 0.2. Let A be a connected noetherian algebra of injectï e
dimension d. Suppose that A has enough normal elements. Then:

Ž .1 A is Auslander]Gorenstein and Cohen]Macaulay.
Ž .2 A has a quasi-Frobenius ungraded quotient ring.
Ž .3 For e¨ery finite graded left or right A-module M, GKdim M s

Kdim M - `; for e¨ery two-sided graded ideal I ; A, GKdim ArI s
clKdim ArI.
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Ž .4 E¨ery minimal prime ideal P is graded and GKdim ArP s d.
Ž .5 If , moreo¨er, A has finite global dimension, then A is a domain

and a maximal order in its quotient dï ision ring.

Ž .The key step is to prove Theorem 0.2 1 and our basic idea is to modify
w xthe proof of 12, 3.10 . The difficulty here is to show that if A is an

AS-Gorenstein algebra, then

i i sExt M , A ( Ext M , A E2Ž . Ž . Ž .

as graded k-vector spaces for all finite ArP-modules M and for graded
Ž .algebra automorphisms s g Aut ArP , where P is an ideal of A. Note

Ž .that if s is a graded algebra automorphism of A, then E2 holds for any
w Ž .xgraded algebra A Lemma 2.1 1 . Given a right A-module M and x g M,

x is called m-torsion if xm n s 0 for some n. The set of torsion elements
of M forms a submodule, which is denoted by t M. A graded module M is

Ž . Žcalled m-torsion respectively m-torsion-free if t M s M respectively t M
.s 0 . If M is finite, then t M is the largest finite dimensional submodule

w x w x w xof M. By using the recent results in 4 , 14 , and 15 we can show the
following.

THEOREM 0.3. Let A be a connected noetherian algebra of injectï e
iŽ . iŽ .dimension d. Suppose that Ext k , A and Ext k, A are finite dimen-A A

sional for all i. Then

Ž . iŽ . iŽ .1 A is AS-Gorenstein, i.e., Ext k , A s Ext k, A s 0 for i / dA A
dŽ . dŽ . Ž .and Ext k , A ( Ext k, A ( k e for some integer e.A A

Ž .2 A satisfies x .
Ž . Ž .3 The last term of the minimal injectï e resolution of A or AA A
Ž .is A* e .
Ž . dŽ .4 Ext M, A is finite dimensional for all finite graded left and right

dŽ . dŽ . Ž . Ž .A-modules M and Ext M, A ( Ext t M, A ( t M * e as graded k-̈ ec-
tor spaces.

Ž . w x w xTheorem 0.3 1 was also proved in 12, 3.8 and 6, 3.5 . By using
w x w xTheorem 0.3, the local cohomology introduced in 14 and 4, Sect. 7 , and

w x Ž .the Serre duality 15 , we can prove E2 .

1. PROOF OF THEOREM 0.3

LEMMA 1.1. Let A be a connected algebra with finite injectï e dimension.
Suppose that F are nonzero finite dimensional graded right A-modules. Theni

iŽ . Ž .Ext F , A s 0 for all i F p respectï ely for all i G p if and only ifi
iŽ . Ž .Ext k , A s 0 for all i F p respectï ely for all i G p .A
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iŽ .Proof. By using a long exact sequence we see that if Ext k , A s 0,A
iŽ . iŽ .then Ext F , A s 0 for each i. Conversely, we suppose Ext F , A s 0 fori i

iŽ .all i F p. If Ext k , A / 0 for some i F p, we may assume i is minimalA
amongst such values. Since F is finite dimensional, we have a short exacti
sequence

0 ª K ª F ª k l ª 0Ž .i A

for some l and some submodule K ; F . The short exact sequence abovei
yields an exact sequence

iy1 i iª Ext K , A ª Ext k l , A ª Ext F ª .Ž . Ž . Ž .Ž .A i

iy1Ž .The left term is zero because Ext k , A s 0 and the right term is zeroA
by the hypothesis. Hence the middle term is zero, a contradiction. There-

iŽ .fore Ext k , A s 0 for all i F p. The proof of the other case is similar.A

In the proof of Theorem 0.3 below and in the next section we will use
w xthe notion of noncommutative projective scheme introduced in 4 . Let

Gr A be the category of graded right A-modules. Let Tor A be the
subcategory of Gr A consisting of m-torsion right A-modules and let
QGr A denote the quotient category Gr ArTor A. The canonical functor
from Gr A to QGr A is denoted by p . The functor p has a right adjoint

Ž w .xfunctor G: QGr A ª Gr A in 4, 2.2.2 the right adjoint functor of p was
w x .v and then in 4, Sect. 4 it was proved that G ( v . We use script letter MM

Ž . Ž .for the object p M . The triple QGr A, AA, s is called the projectï e
Ž .scheme of A and is denoted by Proj A, where AA s p A and s is theA

automorphism of QGr A defined by the degree shift. For more details
w xabout Proj A, see 4 , and for basic properties about quotient category,

w xsee 9 .

Ž . iŽ . iŽ .Proof of Theorem 0.3. 1 In this proof E M denotes Ext M, A for
Ž . Ž .any left or right A-module M. Since both j k and j k are finite, thereA A

Ž . iŽ . jŽ .are i and j maybe the same such that E k / 0 and E k / 0. WeA A
iŽ . iŽ .claim that E k s E k s 0 except for one i. If not, there are twoA A

lŽ . rŽ .distinct integers l and r such that E k / 0 and E k / 0. WithoutA A
� iŽ .loss of generality, we may assume that l - r and that l s min i ¬ E k /A

4 � iŽ . 4 lŽ rŽ ..0 and r s max i ¬ E k / 0 . By Lemma 1.1, we have E E k / 0. ByA A
w Ž .x12, 3.8.1 there is a convergent spectral sequence

p qp , q pyqE [ Ext Ext M , A , A « H M , E3Ž . Ž . Ž .Ž .2

pyqŽ . 0Ž .where H M s 0 if p / q and H M s M. The bidegree of the r th
Ž . Ž . Ž .differential of E3 is r, r y 1 . Let M s k in E3 . We have a table of
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E p,q terms,2

0 ??? 0 0 ??? 0
. . . . . .. . . . . .. . . . . .
0 ??? 0 0 ??? 0

l , r d , r E4Ž .0 ??? 0 E k ??? E k ,Ž . Ž .
. . . . .i , j. . . . E k .Ž .. . . . .

l , 0 d , 00 ??? 0 E k ??? E kŽ . Ž .

p, qŽ . pŽ qŽ . . Ž .where E k denotes Ext Ext k , A , A . From E4 we see that everyA
l, rŽ . l, rŽ .boundary map passing through E k is zero, whence E k is the term

El, r. Since l - r, this is zero, a contradiction. Therefore we have proved`
pŽ . pŽ .our claim that there is an integer p F d such that E k / 0, E k / 0,A A

iŽ . iŽ .and E k s E k s 0 for all i / p. Let F be the finite dimensionalA A
pŽ . Ž . pŽ .left A-module E k . By E3 , E F ( k . For every finite dimen-A A A

pŽ .sional left A-module F9, we can prove by induction that dim E F9 s
pŽ . iŽ .dim E k dim F9 because E k s 0 for all i / p. HenceA A

dim E p k dim F s dim E p F s dim k s 1.Ž . Ž . AA

Ž . pŽ . Ž .Therefore dim F s 1 and F ( k e , i.e., E k ( k e for some e. SoA A A
we have

E p k ( E p k e e ( E p F e ( k e .Ž . Ž . Ž . Ž . Ž .Ž . Ž . AA A

Next we will prove that p s d. Since A is a noetherian ring with finite
Ž . Ž .injective dimension, the complex A satisfies the conditions i and ii in

w x14, 3.3 . Since A is projective as either left or right A-module, the
w Ž .xcomplex A satisfies the condition 14, 3.3 iii and hence A is a dualizing

iŽ . pŽ .complex. We have proved above that E k s 0 for all i / p and E k s
Ž . Ž .w x w Ž .xk e , whence the complex A ye p satisfies the condition 14, 4.4 i .

?w x ? wHere in general M n denotes the shift of a complex M by n. By 14, 4.5
x Ž .w x wand p. 61 , A ye p is a prebalanced dualizing complex. By 14, 4.10 and

x Ž .w x4.13 , A has a balanced dualizing complex A f, ye p for some graded
Ž w x Ž .w x.algebra automorphism f see 14, p. 48 for the definition of A f, ye p .

w x w Ž .xBy 14, 4.18 , the local duality theorem holds. By 14, 4.17 or equivalently
w x15, 4.2.1 , we have graded k-vector space isomorphisms

pyq yq qw xExt M , A * e ( Ext M , A ye p * ( H M , E5Ž . Ž . Ž . Ž . Ž .Ž . m

q Ž . qŽ n . Ž .where H M s lim Ext Arm , M . Letting q - 0 in E5 , we ob-m nª`
pyqŽ .tain Ext M, A s 0. Hence the injective dimension of A is at most p

and thus p s d.
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Ž . Ž . w x2 Follows from 1 and 15, 4.3 .
Ž . w x Ž .w x3 By 15, 4.2 and 4.3 , AA ye d y 1 is a dualizing complex for

w xX [ Proj A and X is classical Cohen]Macaulay 15, Definition 2.4 . In
particular,

Ž .i iy dy1 w xExt MM , AA ye ( Ext MM , AA ye d y 1Ž . Ž .Ž . Ž .

( H Ždy1.y i X , MM * s 0Ž .

Ž . Ž .for all i ) d y 1. Hence the injective dimension of AA ye and of AA is at
most d y 1. Suppose the minimal injective resolution of A isA

0 ª A ª I 0 ª ??? ª I d ª 0.

w xBy 4, p. 234 the functor p : Gr A ª QGr A is exact and the right adjoint
functor G is left exact. Hence the minimal injective resolution of AA is

0 ª AA ª II 0 ª ??? ª II d ª 0,

i Ž i. w xwhere II s p I . We refer to 4, Sect. 4.5 for some basic facts about
quotient category and injective object. Since the injective dimension of AA

is at most d y 1, II d s 0. Equivalently, I d is an m-torsion injective and
d w Ž .x dŽ .consequently I is a direct sum of shifts of A*. By 4, 7.7 1 , Ext k, A (

Ž . d Ž . Ž . w Ž .xk e implies I ( A* e and we have proved 3 . Further, by 4, 7.7 1 ,
iŽ . iExt k, A s 0 implies that I is m-torsion-free for all i - d and hence AA

has injective dimension d y 1.
Ž . Ž . Ž .w x4 By the proof of 1 , A f, ye d is a balanced dualizing complex

Ž .over A for some graded algebra automorphism f. Letting q s 0 in E5
Ž .and taking k-linear dual of E5 , we have

d nExt M , A ( lim Hom Arm , M * e ( t M * eŽ . Ž . Ž . Ž . Ž .
nª`

dŽ .as graded k-vector spaces. Hence Ext M, A is finite dimensional for all
dŽ . Ž . Ž .finite graded modules M. Similarly, Ext t M, A ( t M * e . Therefore

d dŽ . Ž .Ext M, A ( Ext t M, A .

COROLLARY 1.2. Let A be a connected noetherian algebra with finite
iŽ . lŽ . Ž .injectï e dimension. If Ext k , A s 0 for all i / l and Ext k , A ( k e ,A A

then A is AS-Gorenstein and l is the injectï e dimension of A.
pŽ qŽ . .Proof. By the hypotheses, we have Ext Ext k , A , A s 0 for allA

Ž . pŽ lŽ . .q / l. By E3 , we have Ext Ext k , A , A s 0 for all p / l andA
lŽ lŽ . . lŽ . Ž . iŽ .Ext Ext k , A , A s k . Since Ext k , A s k e , Ext k, A s 0 forA A A A A

lŽ . Ž .all i / l and Ext k, A s k e . Therefore the hypotheses of TheoremA A
Ž .0.3 hold and the statement follows from Theorem 0.3 1 .
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COROLLARY 1.3. Let A be a connected noetherian AS-Gorenstein algebra
Ž .of injectï e dimension d and e as in E1 . Let M be a finite graded right

Ž .A-module and MM s p M . Then:

Ž . iŽ . iŽ .1 Ext M, A ( Ext MM, AA for all i F d y 2.
Ž .2 There is an exact sequence of graded k-̈ ector spaces

dy1 dy10 ª Ext M , A ª Ext MM , AA ª M* e ª t M * e ª 0.Ž . Ž . Ž . Ž . Ž .

Ž . w Ž .xProof. For the proof of 1 , see 4, 8.1 5 .
Ž . ?Ž .2 Applying Ext ], A to the short exact sequence

0 ª M ª M ª MrM ª 0G n G n

dy1Ž .and using the fact Ext MrM , A s 0, we obtain an exact sequenceG n

dy1 dy10 ª Ext M , A ª Ext M , AŽ . Ž .G n

d d dª Ext MrM , A ª Ext M , A ª Ext M , A ª 0. E6Ž . Ž . Ž . Ž .G n G n

Ž . dŽ . Ž . Ž .By Theorem 0.3 4 , Ext M , A s t M * e s 0 for all n 4 0,G n G n
dŽ . Ž . Ž . dŽ . Ž . Ž .Ext M, A s t M * e , and Ext MrM , A s MrM * e . Let nG n G n

Ž . dy1Ž .go to the infinity. Then the second term in E6 becomes Ext MM, AA

Ž . Ž .and the third term becomes M* e . Hence 2 follows.

2. SIMILAR MODULES

Ž .Let M and N be two graded left or right A-modules. We say M is
similar to N and write M ; N if

Ž .S1 M ( N as graded k-vector spaces and
Ž . iŽ . iŽ .S2 Ext M, A ( Ext N, A as graded k-vector spaces for all i.

Recall that the Hilbert series of a graded, left bounded, locally finite
module M s [ M is defined to be the formal power seriesiig Z

H t s dim M t i.Ž . ÝM i
i

Ž . Ž . Ž . Ž .The condition S1 is equivalent to H t s H t and S2 is equi-M N
i Ž . i Ž .valent to H t s H t . If A is a connected noetherianExt ŽM , A. Ext ŽN, A.

Ž .algebra with finite global dimension, then H t is determined byM
Ž . i i Ž . w x Ž . Ž .Ý y1 H t 13, 2.3 . Hence in this case S2 implies S1 . It isi Ext ŽM , A.

Ž . Ž .unclear if S2 implies S1 in general. It is easy to construct two finite
Ž . Ž .A-modules M and N such that S1 holds and S2 fails. If M has a proper
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˜ ˜ Ž .graded submodule M ; M such that M is similar to M yl for some
l ) 0, then we say M has a proper similar submodule. If for every m-tor-
sion-free module, M, there is a submodule N ; M such that N has a
proper similar submodule, then we say A satisfies the similar submodule

Ž .condition or SSC for short . Graded PI algebras satisfy SSC as we now
prove. Let A be a connected noetherian PI algebra and M be a finite
graded right A-module. Then there is a nonzero submodule N ; M such
that N is isomorphic to a uniform right ideal of ArP for some graded

w xprime ideal P 12, 2.1 . Thus there exists a proper submodule of N
Ž .isomorphic and hence similar to a shift of N. Therefore A satisfies SSC.

In the same way we can prove that graded FBN rings satisfy SSC.
Let s be a graded algebra automorphism of A. For every graded right

A-module M, we define an A-module structure on the twisted module M s

Ž . sby m ? a s ms a . Then M ¬ M defines an invertible functor from
Gr A to itself. Since every graded projective module is free, As is free and
hence As ( A as graded right A-modules.

Ž .LEMMA 2.1. 1 Let A be a graded noetherian algebra and s a graded
algebra automorphism of A. Then M ; M s.
Ž .2 Let A be an AS-Gorenstein noetherian algebra with finite injectï e

dimension and let M and N be finite dimensional graded right A-modules.
Then M ; N if and only if M ( N as graded k-̈ ector spaces.

Ž . sProof. 1 By definition, M ( M as graded k-vector spaces. For every
i,

i i y1 is sExt M , A ( Ext M , A ( Ext M , A .Ž . Ž .Ž .

Hence M s ; M.
Ž .2 If M ( N as graded k-vector spaces, M* ( N* as graded k-vector

Ž .spaces. Let d be the injective dimension of A. By Theorem 0.3 4 ,
dŽ . dŽ . iŽ . iŽ .Ext M, A ( Ext N, A . For every i / d, Ext M, A s Ext N, A s 0.

Hence M ; N.

If A satisfies SSC, then we can use induction on modules effectively.
First we prove some good properties of GK-dimension. Let A be a
connected noetherian algebra and M a finite graded A-module. Let

Ž .f n s dim M for all n. The GK-dimension of M is equal toM n

GKdim M s lim log f i . E7Ž . Ž .Ýn Mž /
nª` iFn

Ž . Ž .Since dim ] is additive, E7 implies that GKdim is exact, i.e.,

� 4GKdim M s max GKdim N , GKdim NrN
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Ž .for all N ; M. Let f n be a function from Z to N. If there exist an integer
Ž . Ž . w x Ž . Ž .t and polynomial functions p n , . . . , p n g Q n such that f n s p n1 t s

Ž . Ž .for all n ' s mod t , then f n is called a multi-polynomial function.
Define

deg f n s max deg p n ¬ s s 1, . . . , t .� 4Ž . Ž .s

LEMMA 2.2. Let A be a connected noetherian algebra satisfying SSC and
M be a finite graded A-module. Then:

Ž . Ž .1 f n is a multi-polynomial of n for n 4 0 and GKdim M sM
Ž .deg f n q 1 - `.M

Ž .2 Kdim M G GKdim M.
Suppose N is isomorphic to M as graded k-̈ ector spaces and the sequence

0 ª K ª N yl ª M ª L ª K ª 0Ž .1 2

is exact, for some l ) 0. Then
Ž .3 GKdim M F GKdim L q 1. If moreo¨er K s K s 0, then1 2

GKdim M s GKdim L q 1.

w xRemark. This lemma is similar to 12, 6.1 . Note that there is a gap in
w x12, p. 1022, 1.16 for the inequality Kdim M F GKdim M. However, that

w x Ž w x.does not affect 12, 6.2 and hence other theorems in 12 because
Kdim M F GKdim M holds for Auslander]Gorenstein and Cohen]

w Ž .xMacaulay rings see the proof of Theorem 3.1 2 .

Ž . Ž . w xProof. 1 and 2 : We modify the proof of 12, 6.1 . If Kdim M s 0,
then M is finite dimensional and the statements are obvious. Now suppose
the statements hold for all modules of Kdim - a for some a ) 0. Let
Kdim M s a for a finite graded A-module M and we will prove the
statements for M. By the noetherian property and the exactness of GKdim

Ž . Ž .and Kdim, it suffices to show 1 and 2 for a nonzero submodule of M.
Since A satisfies SSC, we may assume that M is Kdim-critical and has a

˜proper similar submodule, i.e., there is a finite graded A-module M such
˜ ˜Ž .that M ; M and M yl ; M for some l ) 0. Then we have an exact

sequence
˜0 ª M yl ª M ª M ª 0,Ž .

˜Ž .where M ( MrM yl . Since M is Kdim-critical, Kdim M - Kdim M s a .
Ž .By induction hypothesis, f n is a multi-polynomial function for n 4 0.M

˜ Ž . Ž . Ž . Ž . Ž .Since M ; M, f n s f n and hence f n s f n y f n y l . Thus˜M M M M M
Ž .f n is a multi-polynomial function for n 4 0 with degree equal toM

Ž . Ž . Ž . Ž . Ž .deg f n q 1. By E7 , GKdim M s deg f n q 1. Since deg f n sM M M
Ž .deg f n q 1, GKdim M s GKdim M q 1. As a consequence of thisM

equality and the induction hypothesis,

Kdim M G Kdim M q 1 G GKdim M q 1 s GKdim M .
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Ž .3 By the additivity of vector space dimension we have

f n y f n y l s f n y f n y l s f n y f n y f nŽ . Ž . Ž . Ž . Ž . Ž . Ž .M M M N L K K1 2

F f n .Ž .L

Ž . Ž . Ž .Hence deg f n F deg f n q 1 and by 1 , GKdim M F GKdim L q 1.M L
Ž . Ž . Ž . Ž . Ž .If K s K s 0, f n y f n y l s f n . Hence deg f n s deg f n1 2 M M L M L

Ž .q 1 and by 1 , GKdim M s GKdim L q 1.

Next we will show that AS-Gorenstein algebras with enough normal
elements satisfy SSC. Let P be a graded ideal of A and x be a regular

Ž .normal element in ArP . Then x induces a graded algebra automor-G1
Ž .phism s by xa s s a x. Let M be a graded ArP-module. The twisted

s Ž . smodule M is defined by m ? a s ms a . Then M ¬ M defines an
invertible functor from Gr ArP to itself. It induces an invertible functor

s Ž .sMM ¬ MM from QGr ArP to QGr ArP. It is easy to see that p ArP (
Ž . Ž .sp ArP because ArP ( ArP.

Ž .PROPOSITION 2.3. 1 Suppose that A is a connected noetherian AS-
Gorenstein algebra of injectï e dimension d. Let P be an ideal of A, s be a
graded algebra automorphism of ArP, and M be a finite right ArP-module.
Then M s is similar to M.
Ž .2 Let A be a connected noetherian algebra of injectï e dimension d.

Suppose that A has enough normal elements. Then A is AS-Gorenstein and
satisfies SSC.

Ž . w x Ž .Proof. 1 By 15, 4.3 , AA ye is the dualizing sheaf for X s Proj A and
iŽ Ž .. Ž dy1yiŽ ..X is classical Cohen]Macaulay, i.e., Ext MM, AA ye ( H X, MM *

for all i and MM. Let Y be the projective scheme Proj ArP. Since M is an
w Ž .x dy1yiŽ . dy1yiŽ .ArP-module, by 4, 8.3 3 , H X, MM ( H Y, MM . Hence we

have graded k-vector space isomorphisms

i dy1yi dy1yiExt MM , AA ( H X , MM ye * ( H Y , MM ye *.Ž . Ž . Ž .Ž . Ž .

iŽ s . dy1yiŽ s Ž ..Similarly, Ext MM , AA ( H Y, MM ye *. Since s is an auto-
Ž .sy1 Ž .morphism of ArP, we have p ArP ( p ArP and hence

dy1yiŽ Ž .. dy1yiŽ s Ž .. Ž .H Y, MM ye ( H Y, MM ye . By Corollary 1.3 1 and above,
we have graded k-vector space isomorphisms

i i dy1yiExt M , A ( Ext MM , AA ( H Y , MM ye *Ž . Ž . Ž .Ž .
idy1yi s s( H Y , MM ye * ( Ext M , AŽ . Ž .Ž .
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dy1Ž . dy1Ž s .for i F d y 2. If i s d y 1, we still have Ext MM, AA ( Ext MM , A .
Ž s . Ž . Ž . Ž s . Ž . Ž . Ž .It is easy to see that M * e ( M* e and t M * e ( t M * e . By

Ž . dy1Ž . dy1Ž s .Corollary 1.3 2 , we have Ext M, A ( Ext M , A . By Theorem
Ž . dŽ . dŽ s . s0.3 4 , Ext M, A ( Ext M , A . Therefore M ; M .
Ž . w Ž .x op iŽ .2 By 4, 8.12 2 , A and A satisfy x and hence Ext k , A andA

iŽ . Ž .Ext k, A are finite dimensional. By Theorem 0.3 1 , A is AS-Goren-A
stein. Let N be a finite torsion-free graded A-module. There is a Kdim-

Ž . Ž .critical submodule M ; N such that i ann M s P is a prime ideal of AA
Ž .and ii M is a fully faithful ArP-module. By the hypothesis, there is a

Ž .nonzero normal element x g ArP . Hence Mx is a proper submoduleG1
s Ž . Ž . Ž .of M and Mx ( M yl , where l s deg x and xa s s a x. By 1 ,

s Ž . Ž . Ž .Mx ( M yl ; M yl and 2 follows.

It is not difficult to construct a connected noetherian algebra A and a
finite graded right A-module M such that Kdim M - GKdim M. By

Ž .Lemma 2.2 2 , such a graded ring does not satisfy SSC. On the other hand,
some connected algebras without enough normal elements satisfy SSC.
The following can be proved by using the structure of algebras and the

w x w xproof is omitted. For details on AS-regular algebras, see 2 and 3 , and on
w xthe Sklyanin algebra, see 10 .

PROPOSITION 2.4. Connected AS-regular algebras of dimension three and
the Sklyanin algebra of dimension four satisfy SSC.

3. PROOF OF THEOREM 0.2

THEOREM 3.1. Let A be a connected noetherian AS-Gorenstein algebra of
injectï e dimension d. Suppose that A satisfies SSC. Then:

Ž .1 A is Auslander]Gorenstein and Cohen]Macaulay and GKdim A
s injdim A.

Ž .2 For e¨ery finite graded A-module M, GKdim M s Kdim M - `.

Ž . w xProof. 1 We will use the proof of 12, 3.10 with some modifications.
First we replace Kdim by GKdim and second we use only graded modules

w x w xas in 12, 6.2 . As in the proof of 12, 3.10 , it suffices to prove that the
following properties hold for all finite graded left and right A-modules M.

Ž . Ž .a j M q GKdim M s d;
Ž . jŽ . Ž .b GKdim Ext M, A s GKdim M, where j s j M ;
Ž . Ž . iŽ .c For all j M F i F d, GKdim Ext N, A F d y i for all finite

graded modules N.

Ž . iŽ .The inequality in c is equivalent to GKdim Ext N , A F
� 4 iŽ .min GKdim N, d y i because Ext N, A s 0 when GKdim N - d y i
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w Ž .xsee a . We induce on GKdim M. If GKdim M s 0, then M is finite
Ž . Ž . Ž . Ž .dimensional. a and b are obvious and c holds by Theorem 0.3 4 .

Ž . Ž . Ž .Suppose a , b , and c hold for all modules with GKdim - i. We now
Ž .consider a finite module M with GKdim M s i. By using the same

w x Ž . Ž .arguments as in the proof of 12, 3.10 we see that if a and b can be
proved for the modules M and M with GKdim F i, and 0 ª M ª1 2 1

Ž . Ž .M ª M ª 0 is exact, then a and b also hold for M. By the noetherian2
Ž . Ž .property and the fact above, to prove that a and b hold for a noetherian

Ž . Ž .module M it suffices to show a and b hold for some nonzero submodule
of M. By the SSC hypothesis, we may assume that M has a proper similar
submodule, i.e., there is an exact sequence

˜0 ª M yl ª M ª M ª 0 E8Ž . Ž .
˜ ˜Ž .for some M similar to M and for some l ) 0, where M s MrM yl . By

?Ž . Ž . Ž .Lemma 2.2 3 , GKdim M s GKdim M y 1. Applying Ext ], A to E8
we have an exact sequence

j j j jq1˜ªExt M , A ªExt M , A ªExt M yl , A ªExt M , A ª .Ž . Ž . Ž . Ž .Ž .
E9Ž .

Ž . Ž .If j - d y i, by induction hypothesis a , the left and right terms of E9
˜ j j ˜Ž . Ž .are zero. Since M ; M, Ext M, A ( Ext M, A as graded k-vector

jŽ . Ž . jŽ .spaces. Since Ext M, A is left bounded, E9 implies that Ext M, A s 0.
Ž . dy iŽ .Thus j M G d y i. If GKdim Ext M, A - i, then, by induction hy-
Ž . sŽ .pothesis c , GHdim Ext M, A - i for all s. Applying induction hypothe-

Ž . Ž . sŽ .ses a and c to the modules Ext M, A for all s, we obtain that the
pŽ qŽ . .GK-dimension of Ext Ext M, A , A is less than i for all p, q. Then the

Ž .spectral sequence E3 implies that GKdim M - i, a contradiction. Hence
dy iŽ . Ž .GKdim Ext M, A s i and, consequently, j M s d y i. Thus we have

Ž . Ž . Ž .proved a and b . It remains to prove c . By the noetherian property and
?Ž .the long exact sequence on Ext ], A and the SSC hypothesis, we may

assume that N has a proper similar submodule and that there is a short
Ž .exact sequence similar to E8 for N. Letting j s d y i and M s N in

Ž .E9 , we obtain an exact sequence
dy i dyi dyiq1˜ª Ext N , A ª Ext N yl , A ª Ext N , A ª . E10Ž . Ž . Ž . Ž .Ž .

dy iq1 ˜Ž . Ž .By induction hypothesis c , GKdim Ext N, A F i y 1. Since N ; N
i i ˜Ž . Ž .as chosen, Ext N, A ( Ext N, A as graded k-vector spaces. Applying

Ž . Ž . dy iŽ . Ž .Lemma 2.2 3 to E10 we have GKdim Ext N, A F i. Therefore c
Ž .follows and we have finished our proof of 1 .

Ž . Ž . Ž . Ž . w x2 By 1 , GKdim M s d y j M \ d M , and by 7, 4.5 , GKdim is
w x w xfinitely partitive in the sense of 8, 8.3.17 . Hence by 8, 8.3.18 , GKdim M

Ž . Ž .G Kdim M. Combining this inequality with Lemma 2.2 2 , 2 follows.
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Ž . Ž . w x1 and 2 of the following theorem were also proved in 1 under some
Ž . w xweaker hypotheses and a part of 1 was proved in 7, 5.3 . Recall that

a ring is called quasi-Frobenius if it is left and right artinian and self-
injective.

THEOREM 3.2. Let A be a connected noetherian, Auslander]Gorenstein,
and Cohen]Macaulay algebra of injectï e dimension d. Then:

Ž .1 A has a quasi-Frobenius ungraded quotient ring.
Ž .2 For e¨ery minimal prime ideal P, GKdim ArP s d.
Ž .3 If , moreo¨er, A has finite global dimension, then A is a domain

and a maximal order in its quotient dï ision ring.

Ž . Ž . w xProof. 1 and 2 . By 7, 3.1 and 5.8 , A is Auslander]Gorenstein and
Cohen]Macaulay as an ungraded algebra, i.e., the Auslander]Gorenstein
and the Cohen]Macaulay conditions hold for finite ungraded A-modules.

Ž .Let N [ N A be the intersection of all prime ideals of A, which is called
w xthe prime radical of A. By 8, 8.3.14 , N is left and right invariant with

w xrespect to GKdim in the sense of 8, 6.8.13 . In particular N is left and
Ž wright weakly invariant with respect to GKdim for definition, see 8,

x.6.8.13 . By the Cohen]Macaulay condition, GKdim M s GKdim A for all
nonzero submodules M ; A, i.e., A is homogeneous with respect to

w x w xGKdim in the sense of 8, 6.8.8 . By 8, 6.8.15 , A has a left and right
Ž .artinian quotient ring Q. Let I be an ideal of a ring R and let CC I

wdenote the set of elements in R which are regular in RrI. By 8, 4.1.3 and
x Ž . Ž .4.1.4 , we obtain CC 0 s CC N , QN is the prime radical of Q, and

Ž . Ž .QrQN ( Q ArN , where Q ArN is the quotient ring of the semiprime
noetherian ring ArN. Let P be a minimal prime ideal of A. Since N is

Ž .nilpotent, PrN is a minimal prime of ArN. Suppose that GKdim ArP
w Ž . x Ž .- d. By 8, 6.8.14 ii and 6.8.15 , there is a regular element c g CC 0 s

Ž . Ž .CC N such that c g P. Thus ArP m Q ArN s 0 and then
Ž .Hom ArP, ArN s 0. This contradicts the fact that PrN is a minimal

Ž .prime of ArN. Therefore GKdim ArP s d and by the Cohen]Macaulay
Ž .property, Hom ArP, A / 0.

It remains to show that Q is self-injective. Since Q is a localization of
A, n [ injdim Q F injdim A. Assume on the contrary that n ) 0. Since

Ž .QrQN ( Q ArN , there is a one-to-one correspondence between mini-
mal prime ideals of A and prime ideals of Q via P l PQ. Since Q is
artinian, every simple Q-module M has a finite direct sum isomorphic to
QrPQ for some minimal prime ideal P ; A. Hence, for some l,

Hom M[ l , Q ( Hom QrPQ, Q ( Hom ArP m Q, A m Q / 0Ž . Ž .Ž .
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Ž . Ž .because Hom ArP, A / 0. Consequently, Hom M, Q / 0. Therefore
Ž .Hom L, Q / 0 for every nonzero finite Q-module L. By the spectral

Ž . w x 0, nsequence E3 , which holds for ungraded rings 7, 2.2 , E [2
Ž nŽ . . nŽ .Hom Ext L, Q , Q s 0. This implies that Ext L, Q s 0 for all finite

modules L. Hence the injective dimension of Q is less than n, a contradic-
tion. Therefore n s 0 and Q is self-injective.
Ž . w x3 Follows from 11, 2.10 .

Now we are ready to finish our proof of Theorem 0.2.

Proof of Theorem 0.2. If A has enough normal elements, then, by
Proposition 2.3, A is AS-Gorenstein and satisfies SSC. Hence most of
Theorem 0.2 follows from Theorems 3.1 and 3.2. It remains to show that
GKdim ArI s clKdim ArI for all graded ideals I ; A and that every
minimal prime ideal of a connected algebra is graded.

We prove the second statement first. It is easy to see that graded prime
is prime and that for every nonnilpotent element x, there is a graded
prime ideal P such that x n f P for all n. Hence the intersection of all
graded minimal prime ideals is the prime radical N. However, every
Ž .ungraded minimal prime ideal must appear in the intersection. Therefore
every minimal prime ideal is graded.

w x Ž .By 8, 6.4.5 and Theorem 3.1 2 , clKdim ArI F Kdim ArI s
GKdim ArI. We show next that clKdim ArI G GKdim ArI for all graded
ideals I. Since A is noetherian and every minimal prime ideal of ArI is
graded as proved in the last paragraph, we only need to prove the
inequality when I is a graded prime ideal. Pick a nonzero normal and

Ž .regular element x g ArI . By induction we haveG1

clKdim ArI G clKdim Ar I q x q 1 G GKdim Ar I q x q 1Ž . Ž .
s GKdim ArI.

Therefore clKdim ArI s GKdim ArI.

w xSeveral families of quantum algebras listed in 5 can be constructed by
localizing some special normal elements in connected noetherian algebras
with enough normal elements. The base connected algebras have also

Ž .finite global dimension or finite injective dimension . Hence by Theorem
0.2 these algebras are Auslander]Gorenstein and Cohen]Macaulay. By
w x1 , the Auslander]Gorenstein and Cohen]Macaulay properties are pre-
served under localization. If, in addition, the prime spectra of these

w xalgebras are normally separated, then 5, 1.6 implies that these algebras
are catenary in the sense that, for any two prime ideals P ; Q of A, all
saturated chains of prime ideals between P and Q has the same length. In

w xparticular the following is a consequence of 5, 1.6 and Theorem 0.2.
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COROLLARY 3.3. Let A be a connected noetherian algebra with finite
injectï e dimension. Suppose that Spec A is normally separated. Then A is
catenary.
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