
http://www.elsevier.com/locate/aim

Advances in Mathematics 181 (2004) 396–416

Obstruction theory in model categories

J. Daniel Christensen,a,�,1 William G. Dwyer,b

and Daniel C. Isaksenb,2

aDepartment of Mathematics, University of Western Ontario, London, Ont., Canada N6A 5B7
bDepartment of Mathematics, University of Notre Dame, South Bend, IN 46556, USA

Received 8 April 2002; accepted 19 November 2002

Communicated by Mark Hovey

Abstract

Many examples of obstruction theory can be formulated as the study of when a lift

exists in a commutative square. Typically, one of the maps is a cofibration of some sort

and the opposite map is a fibration, and there is a functorial obstruction class that

determines whether a lift exists. Working in an arbitrary pointed proper model category,

we classify the cofibrations that have such an obstruction theory with respect to all

fibrations. Up to weak equivalence, retract, and cobase change, they are the cofibrations

with weakly contractible target. Equivalently, they are the retracts of principal

cofibrations. Without properness, the same classification holds for cofibrations with

cofibrant source. Our results dualize to give a classification of fibrations that have an

obstruction theory.
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1. Introduction

The following extension-lifting problem is ubiquitous in modern homotopy
theory. Consider a commutative square

in which i is a cofibration (or less technically, some kind of monomorphism) while p

is a fibration (or some kind of epimorphism). When does a map B-X exist making
both triangles commute?

Classical obstruction theory [14,15] gives a detection principle for existence (and
uniqueness) of lifts in the category of spaces in terms of homotopy theory.

In this paper, we show how some aspects of classical obstruction theory are
entirely abstract, working the same for any model category. In addition to providing
tools for lifting in non-topological contexts, this approach enlightens classical
obstruction theory by showing that much of it does not depend on specific properties
of topological spaces.

We start with a pointed model category C: Examples include pointed topological
spaces, pointed simplicial sets, spectra, and chain complexes of modules over a ring.
Fix a cofibration i:We say that i has an obstruction theory if there exists some object
W in C such that for every commutative square as above, there is a well-defined
weak homotopy class from W to the fibre of p (called the obstruction), such that a
lift exists in the square if and only if the map from W to the fibre is weakly null-
homotopic. We also require that the obstruction class be functorial in the fibration p

(see Definition 4.1).
Starting from this very general framework, we prove a theorem precisely

classifying the cofibrations that have obstruction theories. Assuming that C is both
left and right proper, the class of cofibrations having obstruction theories is the
smallest class of cofibrations containing all cofibrations with weakly contractible
target and closed under retract, weak equivalence, and cobase change. In other
words, they are the retracts of principal cofibrations. Although W is not uniquely
determined by the definitions, when i is a principal cofibration, W can be taken to be
a desuspension of the cofibre (see Remark 7.3). Moreover, the category of
obstruction theories is contractible (see Section 4.2).

Our theorem explains why some kind of hypotheses are needed in classical
obstruction theory. It is not possible to give an obstruction theory for topological
spaces without some kind of restriction to principal cofibrations or fibrations.

We obtain slightly weaker results when C is not proper. Without left properness,
we must assume that the source of the cofibration is cofibrant. Without right
properness, we must assume that the targets of the fibrations are fibrant. Here the
notion of a fibrant obstruction theory becomes useful. The essential reason that
fibrancy and cofibrancy assumptions take the place of properness is that base
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changes along fibrations preserve weak equivalences between fibrant objects and
cobase changes along cofibrations preserve weak equivalences between cofibrant
objects. The point is that some result about base changes and cobase changes of
weak equivalences is necessary; this result either comes by assumption from
properness or from having enough cofibrancy and fibrancy.

Obstruction theories in the sense of this paper have been used for simplicial sets
with its usual model structure in [6,10]. The obstruction for lifting a standard
generating cofibration with respect to a fibration is an element of a homotopy group
of a fibre. See Section 8.1 for more details. This paper grew out of understanding
precisely how this special case works.

In a stable model category (see Section 8.3) we show that every cofibration has an
obstruction theory. In the special case of the model category of unbounded chain
complexes of objects in an abelian category, the results of the present paper provide a
conceptual explanation for results such as [3, Lemma 2.3]. For spectra, obstruction
theory for the standard generating cofibrations is used in [12]. See Section 8.3 for
more details. In addition, in the stable model category of pro-spectra, the results of
this paper produce new tools for handling lifting problems, tools which were used in
early versions of [4].

We work exclusively on the question of when cofibrations have obstruction
theories, but everything dualizes to the study of fibrations that have co-obstruction
theories. A fibration p has a co-obstruction theory if there exists some object W in C
such that for every commutative square as above, there is a well-defined weak
homotopy class from the cofibre of i to W (called the obstruction), such that a lift
exists in the square if and only if the map from the cofibre to W is weakly null-
homotopic. We also require that the obstruction class be functorial in the cofibration
i: Co-obstruction theory is a key technique of [11]. Also, this notion of co-
obstruction theory is precisely what appears in [14, Section 8.2] for the special case of
a principal fibration of topological spaces whose fibre is an Eilenberg–MacLane
space Kðp; n � 1Þ: In this case, W is the delooping Kðp; nÞ of the fibre, and the
obstruction lies in ½B=A;Kðp; nÞ� ¼ HnðB;A; pÞ; where the cofibration is A-B: We
do not discuss the iterative procedure that occurs when lifting against a tower of
fibrations.

We are curious how many other examples of obstruction theory can be viewed as
special cases of our theory, but have not yet investigated this in detail.

A summary of the contents of the paper follows. We begin in Section 2 by
introducing the category of arrows ArC of a pointed model category C and
describing two useful model structures on ArC: Then in Section 3 we establish some
technical lifting results. In Section 4 we give the definitions of obstruction theory,
fibrant obstruction theory, and cofibrant fibrant obstruction theory and describe
their elementary properties. Sections 4.1 and 4.2 discuss a rigidification of the notion
of obstruction theory and the uniqueness of obstruction theories for a given
cofibration.

In Sections 5 and 6 we exhibit several ways of producing cofibrations that have
obstruction theories. First, cofibrations with weakly contractible target have
obstruction theories. Second, retracts and cobase changes preserve cofibrations that
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have obstruction theories. Third, and most difficult, weak equivalences preserve
cofibrations that have obstruction theories. This allows us to prove the main
classification theorem in Section 7.

Section 8 contains some applications. We explain how to apply our notions of
obstruction theory to the unpointed category of simplicial sets or of topological
spaces. We also show that every cofibration in a stable model category has an
obstruction theory.

We assume that the reader is familiar with model categories. The original reference
is [13], but see [7], [8], or [5] for more modern treatments. We follow the notation and
conventions of [7] as closely as possible.

2. The category of morphisms

Throughout the entire paper, C denotes a pointed model category with functorial
factorizations. Let ArC be the category of morphisms in C: It is a diagram category,
where the index category has two objects and a unique map between them. Thus
objects of ArC are morphisms in C; and morphisms in ArC are commuting squares
in C: When the meaning is clear, we write X for the identity object X-X of ArC:

The category ArC supports two model structures: the injective structure and the
projective structure [2, p. 314]. In both structures, the weak equivalences are
levelwise weak equivalences. Therefore, the associated homotopy categories are
identical.

Definition 2.1. A weak equivalence (or more precisely a levelwise weak equivalence)
(resp., injective cofibration, projective fibration) from a map f : X-X 0 to another
map g : Y-Y 0 in the category ArC is a commutative square

in which the horizontal maps are weak equivalences (resp., cofibrations, fibrations).
The map f-g is a projective cofibration if both X-Y and X 0NX Y-Y 0 are
cofibrations. The map f-g is an injective fibration if both X 0-Y 0 and X-X 0 	Y 0 Y

are fibrations.

Both model structures are examples of Reedy model structures [7, Chapter 15].
One way of obtaining the injective structure is by considering the opposite of the
projective model structure on ArðCopÞ:

Note that all projective cofibrations are injective cofibrations. Similarly, all
injective fibrations are projective fibrations. A cofibration in C is an injective
cofibrant object if and only if it is a projective cofibrant object if and only if it has
cofibrant source. Similarly, a fibration in C is projective fibrant if and only if it is
injective fibrant if and only if it has fibrant target.
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We restate here the following useful lemma about base changes and cobase
changes of weak equivalences in model categories.

Lemma 2.2. Base changes along fibrations preserve weak equivalences between fibrant

objects. Dually, cobase changes along cofibrations preserve weak equivalences between

cofibrant objects.

Proof. See [7, Proposition 13.1.2]. &

The following lemma is used many times throughout the paper. It allows us to
unify arguments that either assume fibrancy or right properness.

Lemma 2.3. Let p-p0 be a weak equivalence between fibrations p : X-Y and p0 :
X 0-Y 0 with fibres F and F 0 respectively. If Y and Y 0 are fibrant, or C is right proper,
then the induced map F-F 0 is a weak equivalence.

Proof. Let P be the fibre product X 0 	Y 0 Y : Consider the diagram

The map P-X 0 is a weak equivalence: in the right proper case, this is by
definition, and in the case where Y and Y 0 are fibrant, this follows from Lemma 2.2.
Therefore the map X-P is also a weak equivalence by the two-out-of-three axiom.
The fibre of P-Y is isomorphic to F 0: Hence it suffices to assume that Y equals Y 0:

Consider the model category CkY of objects over Y : Let R : CkY-C be the
functor taking a map A-Y to � 	Y A: It is straightforward to check that R is right
adjoint to the functor L : C-CkY taking an object A to the trivial map A-Y :

The functor L preserves cofibrations and acyclic cofibrations, so L and R form a
Quillen pair. This means that R preserves weak equivalences between fibrant objects.
The fibrant objects of CkY are the fibrations with target Y ; so p and p0 are both
fibrant in this category. Therefore, Rp-Rp0 is a weak equivalence.

The right proper case also follows from [7, Proposition 13.3.9]. &

Frequently in abstract homotopy theory, one has a square

commuting in C and wants to know whether a map B-X exists making both
resulting triangles commute. We rewrite this problem in terms of the category ArC:
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Lemma 2.4. Suppose given a square as above in the category C: A lift exists for this

square if and only if a lift exists in the square

in ArC if and only if a lift exists in the square

Proof. The proof is a straightforward diagram chase. &

We shall frequently switch between these three equivalent forms of the lifting
problem.

3. Lifting results

We now study how lifts for a given cofibration carry over to another weakly
equivalent cofibration.

Proposition 3.1. Let i : A-B and i0 : A0-B0 be cofibrations, and let i-i0 be a weak

equivalence in ArC: Also assume that A and A0 are cofibrant or that C is left proper.

Let p : X-Y be any fibration. Then a lift exists in the square

ð3:1Þ

if and only if a lift exists in the square

ð3:2Þ

Proof. The proof is very similar to the proof of [7, Proposition 13.2.16]. If a lift
B0-X exists in the square 3.1, then the composition B-B0-X is a lift for the
square 3.2. The other implication is harder.
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Suppose that a lift B-X exists for the square 3.2. Let P be the pushout ANBA0:
Because of left properness or because of Lemma 2.2, the map B-P is a weak
equivalence, so P-B0 is a weak equivalence by the two-out-of-three axiom. Since
j : A0-P is a cobase change of i; there is a lift P-X in the square

Now consider the model category A0kCkY of objects under A0 and over Y : Then
P and B0 (equipped with the obvious structure maps from A0 and to Y ) are cofibrant
objects of this category, while X is a fibrant object. Moreover, there are morphisms
P-B0 and P-X in A0kCkY : The first map is a weak equivalence, so there is also a
map B0-X in A0kCkY by [7, Corollary 7.7.5]. &

The point of this result is that finding lifts for i0 reduces to finding lifts for i: Given
any lifting problem for i0 (in other words, a square 3.1), we can consider the square
3.2 instead. However, finding lifts for i does not reduce to finding lifts for i0: in
general, not every square

can be rewritten in the form 3.2, even if A is cofibrant.
For future reference, we record the dual result here.

Proposition 3.2. Let p : X-Y and p0 : X 0-Y 0 be fibrations, and let p-p0 be a weak

equivalence in ArC: Also assume that Y and Y 0 are fibrant or that C is right proper.

Let i : A-B be any cofibration. Then a lift exists in the square

ð3:3Þ

if and only if a lift exists in the square

ð3:4Þ

Proof. The proof is dual to the proof of Proposition 3.1. &

ARTICLE IN PRESS
J.D. Christensen et al. / Advances in Mathematics 181 (2004) 396–416402



4. Obstruction theory

Definition 4.1. A cofibration i has an obstruction theory if there exists an object W

such that for every fibration p with fibre F and every map i-p in ArC there exists a
well-defined obstruction a; which is a weak homotopy class from W to F (i.e., an
element of ½W ;F �), with the following two properties. First, a lift exists in the square

if and only if a is the trivial homotopy class. Second, a is functorial in the following
sense. Given two fibrations p and p0 with fibres F and F 0 respectively and a map
p-p0; the obstruction a0 of the composition i-p-p0 is the composition of the
obstruction a of the map i-p with the map F-F 0:

Remark 4.2. The functoriality of obstructions can be reexpressed in terms of the
Grothendieck construction of the functor

C-Sets : X/½W ;X �:

Definition 4.3. A cofibration has a fibrant obstruction theory if the conditions of
Definition 4.1 (including functoriality) are satisfied for all maps i-p for which p is a
fibration with fibrant target. A cofibration has a cofibrant fibrant obstruction theory if
the conditions of Definition 4.1 (including functoriality) are satisfied for all injective
cofibrations i-p for which p is a fibration with fibrant target.

As in Remark 4.2, the functoriality of fibrant obstruction theories and cofibrant
fibrant obstruction theories can be expressed in terms of Grothendieck construc-
tions.

These three notions of obstruction theory have some obvious relationships. If a
cofibration has an obstruction theory, then it necessarily has a fibrant obstruction
theory. Also, if it has a fibrant obstruction theory, then it has a cofibrant fibrant
obstruction theory. Next we state some less obvious connections.

Proposition 4.4. If C is right proper, then a cofibration has a fibrant obstruction theory

if and only if it has an obstruction theory.

Proof. The axioms for an obstruction theory are stronger than the axioms for a
fibrant obstruction theory, so one implication follows from the definitions.

Suppose that a cofibration i has a fibrant obstruction theory. Now consider a map
i-p in which p is a fibration between not necessarily fibrant objects. Let p̂ be an
injective fibrant replacement for p; so p̂ is a fibration between fibrant objects and

there is a weak equivalence p-p̂ in ArC: Let F and F̂ be the fibres of p and p̂

ARTICLE IN PRESS
J.D. Christensen et al. / Advances in Mathematics 181 (2004) 396–416 403



respectively, and let #a be the obstruction for the composition i-p-p̂ : By

Lemma 2.3, the map F-F̂ is a weak equivalence. Define the obstruction a
for i-p to be composition of #a with the weak homotopy inverse of the map F-F̂ :
This definition of a is functorial because injective fibrant replacements are
functorial.

By Proposition 3.2, a lift exists in the square i-p if and only if a lift exists in the
square i-p-p̂ ; here we use that C is right proper. A lift exists in the square

i-p-p̂ if and only if #a is trivial. Since F-F̂ is a weak equivalence, #a is trivial if and
only if a is trivial. &

The next proposition tells us that fibrant obstruction theories and cofibrant fibrant
obstruction theories are actually equivalent.

Proposition 4.5. A cofibration has a fibrant obstruction theory if and only if it has a

cofibrant fibrant obstruction theory.

Proof. The axioms for a fibrant obstruction theory are stronger than the axioms for
a cofibrant fibrant obstruction theory, so one implication follows from the
definitions.

Suppose that a cofibration i has a cofibrant fibrant obstruction theory. For
every map i-p for which p is a fibration with fibrant target, take a functorial
factorization

i-p0-p

where the first map is an injective cofibration and the second map is an acyclic
injective fibration. Then p0 is a fibration with fibrant target, so there exists an
obstruction a0 for i-p0:

Let F 0 and F be the fibres of p0 and p respectively. By Lemma 2.3, the map F 0-F

is a weak equivalence; here we use that p0 and p have fibrant targets. Define the
obstruction a for i-p to be the composition of a0 with the map F 0-F : This
definition is functorial since factorizations in the injective model structure on ArC
are functorial.

By Proposition 3.2, a lift exists for i-p if and only if a lift exists for i-p0: By
assumption, a lift exists for i-p0 if and only if a0 is trivial. Since F 0-F is a weak
equivalence, a0 is trivial if and only if a is trivial. &

The following proposition establishes a certain homotopy invariance
property of obstructions. The result is not needed later, but we include it for
completeness.

Proposition 4.6. Let i be a cofibration that has a fibrant obstruction theory, and let p be

a fibration with fibrant target. Suppose given two maps f and g (i.e., commuting

squares) from i to p that are right homotopic in the injective or projective model

structure. Then the obstructions for f and for g are equal.
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Proof. Let pI be a good path object for p in the injective model structure. This is also
a good path object for p in the projective model structure. So in either case there

exists a good right homotopy i-pI between f and g [5, Section 4.12]. This means
that there is a commutative diagram

Note that pI is a fibration with fibrant target because pI-p 	 p is an injective

fibration. There is an obstruction a for the map i-pI ; which is a homotopy class into

the fibre F I of pI :

Let F be the fibre of p: By Lemma 2.3, the map F-FI is a weak equivalence since

p-pI is a weak equivalence. Therefore, both maps FI-F are equal in the
homotopy category since they have the same right inverse.

Since the fibrant obstruction theory for i is functorial, the obstructions for f and g

are the compositions of a with the two maps FI-F : Therefore, the obstructions for
f and g are equal. &

4.1. Rigid obstruction theories

For any map f : X-Y ; we can choose a functorial factorization of f into an
acyclic cofibration X-X 0 followed by a fibration f 0 : X 0-Y : Write hofib for the
functor ArC-C sending f to the fibre of f 0: When f is a fibration, there is a natural
weak equivalence fibðf Þ-hofibðf Þ; where fibðf Þ denotes the fibre of f (see the proof
of Lemma 2.3).

Now consider a cofibration i that has an obstruction theory. Then we have an
obstruction a in ½W ; hofibðiÞ� for the square i-i0: Any other square i-p; where p is
a fibration, factors through the square i-i0: Therefore, the class a determines by
functoriality the entire obstruction theory for i:

This implies that any obstruction theory can be rigidified in the following way.
Assume without loss of generality that W is cofibrant, and fix a representative
a : W-hofibðiÞ for the class a: To each fibration p and square i-p; assign the map
W-hofibðpÞ which is the composite of a with the map hofibðiÞ-hofibðpÞ: This is
functorial at the model category level, and via the natural weak equivalences
fibðpÞ-hofibðpÞ specializes to the obstruction theory we started with.

These ideas lead to the following definition. A rigid obstruction theory

for a cofibration i is a cofibrant object W and a map a : W-hofibðiÞ such that
for each square i-p with p a fibration, the square has a lift if and only if the
composite W-hofibðiÞ-hofibðpÞ is null-homotopic. A map of rigid obstruction
theories for i from a : W-hofibðiÞ to a0 : W 0-hofibðiÞ is simply a map W-W 0

over hofibðiÞ:
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4.2. Uniqueness

Our definition of obstruction theory does not uniquely determine W nor the
assignment of obstruction classes to each square.

Given a cofibration i; we can form a category OðiÞ of obstruction theories for i in
the following way. The objects are obstruction theories for i (i.e., pairs ðW ; aÞ; where
W is an object of C and a is a function that assigns an obstruction class to each
square in a functorial way). A morphism ðW ; aÞ-ðW 0; a0Þ is a weak homotopy class
in C from W to W 0 such that a is given by composition of a0 with this weak
homotopy class.

The category OðiÞ is contractible if it is non-empty. This is seen in the following
way. First, note that if ðW ; aÞ and ðW 0; a0Þ are obstruction theories for i; then
ðW

‘
W 0; a

‘
a0Þ is also an obstruction theory for i: Now, fix an obstruction theory

a ¼ ðW ; aÞ and consider the functor a
‘

� : OðiÞ-OðiÞ: There are natural
transformations idOðiÞ-a

‘
�’ca; where ca : OðiÞ-OðiÞ is the constant functor

sending everything to a: This shows that the identity map on the nerve of OðiÞ is null-
homotopic.

In this sense, obstruction theories for i are unique up to a contractible family of
choices. Similarly, one can define a category of rigid obstruction theories (see Section
4.1), and one again finds that this category is contractible if it is non-empty.

We will show in Remark 7.3 how to construct obstruction theories in practice.

5. Maps that have obstruction theories

Having described the basic types of obstruction theories, we study the existence of
obstruction theories for certain kinds of cofibrations.

Proposition 5.1. Let i : A-B be a cofibration such that A is cofibrant and B is weakly

contractible and fibrant. Then i has a fibrant obstruction theory.

Corollary 6.4 will show that the assumption that B is fibrant is unnecessary.

Proof. Let p : X-Y be a fibration with fibre F such that Y is fibrant. Suppose given
a square i-p: Let p0 : X 0-B be the pullback fibration X 	Y B-B: The fibre of p0 is
also F : Lemma 2.3 applied to the square

implies that the map F-X 0 is a weak equivalence; here we use that B is fibrant.
Define the obstruction for i-p to be the homotopy class of the map A-X 0

composed with the weak homotopy inverse of F-X 0: This definition is functorial.
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If a lift exists for i-p; then the map A-X 0 factors through the contractible object
B: It follows that the obstruction is null-homotopic.

Now suppose that the obstruction is null-homotopic. We need only show that the
square i-p0 has a lift. Because A is cofibrant and X 0 is fibrant, we have a left null-
homotopy of the map A-X 0: Thus, A-X 0 factors through a contractible object C:
Here C is the cofibre of a cofibration A-CylðAÞ; where CylðAÞ is a cylinder object
for A: By factoring C-X 0 into an acyclic cofibration followed by a fibration, we
may assume that C-X 0 is a fibration. This gives us a commutative square

in which the right vertical arrow is an acyclic fibration because both C and B are
weakly contractible. Hence a lift exists, and the composition B-C-X 0 is the
desired lift. &

Proposition 5.2. The class of cofibrations that have an obstruction theory (resp., fibrant

obstruction theory, cofibrant fibrant obstruction theory) is closed under cobase change.

Proof. We prove the proposition for obstruction theories. The other cases are
identical.

Let

be a pushout square in which i (and hence i0 also) is a cofibration. Suppose that i has
an obstruction theory.

Given a map i0-p in which p : X-Y is a fibration, define the obstruction a to be
the obstruction for the composition i-i0-p: This definition is functorial.

If B0-X is a lift for the square i0-p; then the composition B-B0-X is a lift for
the square i-i0-p: On the other hand, if B-X is a lift for the square i-i0-p; then
the maps B-X and A0-X induce a lift B0-X for the square i0-p: Thus, a lift
exists for the square i0-p if and only if a lift exists for the square i-i0-p: A lift
exists for the square i-i0-p if and only if a is trivial. &

Proposition 5.3. The class of cofibrations that have an obstruction theory (resp.,
fibrant obstruction theory, cofibrant fibrant obstruction theory) is closed under

retract.

Proof. We prove the proposition for obstruction theories. The other cases are
identical.
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Suppose that i : A-B is a cofibration and that it has an obstruction theory. Let
i0 : A0-B0 be a retract of i: Then i0 is a cofibration since cofibrations are closed under
retract.

Given a map i0-p in which p : X-Y is a fibration, define the obstruction a to be
the obstruction for the composition i-i0-p: This definition is functorial.

If B0-X is a lift for the square i0-p; then the composition B-B0-X is a lift for
the square i-i0-p: On the other hand, if B-X is a lift for the square i-i0-p; then
the composition B0-B-X is a lift for the square i0-p: Thus, a lift exists for the
square i0-p if and only if a lift exists for the square i-i0-p: A lift exists for the
square i-i0-p if and only if a is trivial. &

6. Weakly equivalent cofibrations

The goal of this section is to show that a cofibration has an obstruction theory if
and only if a weakly equivalent cofibration has an obstruction theory (Proposition
6.3). Together with the results of the previous section, this establishes the
characteristic properties of the class of cofibrations that have obstruction theories.

Note that we study fibrant obstruction theories in this section. When C is right
proper, Proposition 4.4 tells us that the same results hold for obstruction theories.

Proposition 6.1. Let i : A-B and i0 : A0-B0 be cofibrations, and let i-i0 be a weak

equivalence. Also assume that A and A0 are cofibrant or that C is left proper. Then i has

a fibrant obstruction theory if and only if i0 has a fibrant obstruction theory.

Proof. First suppose that i has a fibrant obstruction theory. Given a map i0-p in
which p : X-Y is a fibration with fibrant target, define the obstruction a to be the
obstruction for the composition i-i0-p: This definition is functorial. By
Proposition 3.1, a lift exists in the square i0-p if and only if a lift exists in the
square i-i0-p: A lift exists for the square i-i0-p if and only if a is trivial. This
finishes one implication.

Now suppose that i0 has a fibrant obstruction theory. By Proposition 4.5, it
suffices to show that i has a cofibrant fibrant obstruction theory. Let i-p be an
injective cofibration such that p : X-Y is a fibration with fibrant target. Let p0 be
the pushout pNii

0 : XNAA0-YNBB0: The map p-p0 is a weak equivalence because
the map i-p is an injective cofibration. Here we use that the injective structure on
ArC is left proper or that i and i0 are injective cofibrant so that Lemma 2.2 applies to
the injective model structure on ArC:

The map p0 is not in general a fibration, so let p00 be an injective fibrant
replacement for p0: Then we have a commutative diagram
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Define the obstruction for i-p to be the obstruction for i0-p00: This definition is
functorial because the construction of p00 is functorial.

The obstruction vanishes if and only if i0-p00 has a lift. By Proposition 3.1, i0-p00

has a lift if and only if i-p00 has a lift; here we use that C is left proper or that A and
A0 are cofibrant. By Proposition 3.2, i-p00 has a lift if and only if i-p has a lift; here
we use that p and p00 have fibrant targets. &

Recall that a projective cofibrant replacement f̃ : X̃-Ỹ of any map f : X-Y is a
cofibration between cofibrant objects together with a commuting square

in which the horizontal arrows are acyclic fibrations.

Corollary 6.2. Let i be a cofibration, and suppose that i has cofibrant source or that C

is left proper. Let ĩ be any projective cofibrant replacement for i: Then i has a fibrant

obstruction theory if and only if ĩ does.

Proof. There is a weak equivalence ĩ-i; so the result follows from Proposition
6.1. &

Proposition 6.3. Let i and i0 be weakly equivalent cofibrations. Suppose that i and i0

have cofibrant sources or that C is left proper. Then i has a fibrant obstruction theory if

and only if i0 has a fibrant obstruction theory.

The proof does not simply reduce to a repeated application of Proposition 6.1 to a
zig-zag of weak equivalences because we need to know that the intermediate objects
in the zig-zag in ArC are cofibrations in order to apply that result.

Proof. Factor i0-� as

where the first map is an acyclic projective cofibration and the second is a projective
fibration. Note that j is a cofibration with cofibrant source. Then j is a projective

fibrant replacement for i0; so there is an actual map ĩ-j representing the weak

equivalence between i and i0; where ĩ is a projective cofibrant replacement for i:

By Corollary 6.2, i has a fibrant obstruction theory if and only if ĩ has a fibrant

obstruction theory. By Proposition 6.1, ĩ has a fibrant obstruction theory if and only
if j has a fibrant obstruction theory. By Proposition 6.1 again, j has a fibrant
obstruction theory if and only if i0 has a fibrant obstruction theory. &
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Corollary 6.4. Let i : A-B be a cofibration such that B is weakly contractible.

Suppose also that A is cofibrant or that C is left proper. Then i has a fibrant obstruction

theory.

The difference between this result and Proposition 5.1 is that we do not assume
that B is fibrant here.

Proof. Let ĩ : Ã-B̃ be a projective cofibrant replacement for i: Let B̃-B̂ be an

acyclic cofibration from B̃ to a fibrant object. Then the composite cofibration Ã-B̂

is weakly equivalent to i; and it has cofibrant source and fibrant and weakly
contractible target. Propositions 6.1 and 5.1 finish the argument. &

7. Classification of cofibrations with obstruction theories

Theorem 7.1. Consider the smallest class of cofibrations with cofibrant source that

contains all cofibrations with cofibrant source and weakly contractible target and is

closed under retract, weak equivalence, and cobase change. This class coincides with the

class of cofibrations with cofibrant source that have a fibrant obstruction theory. If C is

right proper, then this class also coincides with the class of cofibrations with cofibrant

source that have an obstruction theory.

Proof. The second claim follows from the first by Proposition 4.4. By Propositions
5.2, 5.3, 6.3 and Corollary 6.4, we need only show that if i is a cofibration with
cofibrant source that has a fibrant obstruction theory, then i is related to a
cofibration with cofibrant source and weakly contractible target by a series of weak
equivalences, retracts, and cobase changes.

Let i : A-B be a cofibration with a fibrant obstruction theory such that A is
cofibrant. We will construct the following commutative diagram:

Let B-B f be a fibrant replacement for B; and let ĩ : A-B f be the composite,

which is also a cofibration. Let A-A0-B f be a factorization of ĩ into an acyclic

cofibration followed by a fibration i0: Let F be the fibre of i0; and let F̃-F be a
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cofibrant replacement for F : Let F̃-CF̃ be a cofibration with weakly contractible

target, and let D and C be the pushouts as indicated above. The map i0 : A0-B f and

the constant map D-B f agree on F and therefore induce a map C-B f : Factor the

map C-B f into an acyclic cofibration C-C0 followed by a fibration p : C0-B f ;

and let G be the fibre of C0-B f : The composite D-B f is constant, so there is an
induced map D-G: This completes the construction of the above diagram.

The map ĩ has a fibrant obstruction theory by Proposition 6.3 because i does.

Because obstructions are functorial, the obstruction for lifting the square ĩ-p is the

composite of the obstruction for lifting the square ĩ-i0 with the map F-G: Since
after inverting weak equivalences the map F-G factors through the weakly

contractible object CF̃; it is null in the homotopy category. Therefore the obstruction

vanishes and a lift exists in the square ĩ-p: The cofibration i is weakly equivalent to

the cofibration ĩ; which is a retract of the cofibration A-C0 (because of the lift),

which is weakly equivalent to A0-C; which is a pushout of the cofibration F̃-CF̃;
which has cofibrant source and weakly contractible target. &

Theorem 7.2. Let C be left proper. Consider the smallest class of cofibrations that

contains all cofibrations with weakly contractible target and is closed under retract,
weak equivalence, and cobase change. This class coincides with the class of cofibrations

that have a fibrant obstruction theory. If C is also right proper, then this class also

coincides with the class of cofibrations that have an obstruction theory.

Proof. The first claim follows from Theorem 7.1, since Corollary 6.2 allows us to
assume that i has cofibrant source. Use Proposition 4.4 for the second claim. &

Remark 7.3. The smallest class of cofibrations containing cofibrations with weakly
contractible target and closed under weak equivalences and cobase changes are the
principal cofibrations. That is, up to weak homotopy, they are the maps that occur as
a quotient map of some cofibre sequence. Therefore, the previous two theorems tell
us that the retracts of principal cofibrations are the cofibrations that have
obstruction theories.

In the case of principal cofibrations, one can inspect the proofs of Propositions
5.1, 5.2 and 6.1 and easily choose an object W : If i is principal, then there is a cofibre
sequence

A-B-C

in which the second map is weakly homotopic to i: Then A is one possible choice of
the object W :

Corollary 7.4. Let B be a cofibrant object of C: If the cofibration �-B has a

fibrant obstruction theory, then B is weakly equivalent to a retract of SOB; where S
and O refer to the suspension and loop functors on the homotopy category (see

Section 8.2).
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Proof. This follows from the proof of Theorem 7.1. In the notation of that proof, F̃

is OB and C is SOB: &

We shall see below that the converse is also true; retracts of suspensions always
have obstruction theories.

Corollary 7.5. Let 2pnpN: In the category of pointed simplicial sets, the map

�-RPn does not have an obstruction theory.

Proof. The cohomology of RPn has non-trivial cup products, but the cohomology of
a retract of a suspension has trivial cup products. &

Similar considerations show that the map from a point to any space with non-
trivial cup products (such as tori) does not have an obstruction theory.

It is possible to prove Corollary 7.5 directly, providing an independent verification
of Theorem 7.1.

One consequence of this corollary is that cofibrations that have obstruction

theories are not closed under composition. The map �-RP2 is the composition of
two maps that both have obstruction theories.

8. Applications

8.1. Unpointed spaces

Our first application concerns the category of simplicial sets. When nX1; the
generating cofibration @Dn-Dn has an obstruction theory because the standard
model structure on simplicial sets is right proper, because Dn is weakly contractible,
and because @Dn is cofibrant. Strictly speaking, this obstruction theory applies to the
category of pointed simplicial sets. However, one can take any unpointed lifting
problem and turn it into a pointed lifting problem by choosing compatible
basepoints (as long as nX1 so that @Dn is non-empty).

We conclude that when nX1; obstructions to lifting squares of the form

are elements of pn�1ðF ; �Þ for some �; where F is a fibre of the fibration p: When

n ¼ 0; there is no obstruction theory for the cofibration |-D0:

Theorem 8.1. Let nX1: A fibration p : X-Y of unbased simplicial sets has the right

lifting property with respect to @Dn-Dn if and only if pn�1ðF ; �Þ is zero for every fibre

F of p and every basepoint � of F :
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Proof. First suppose that every homotopy group vanishes. Then lifts exist because
the obstructions must be trivial.

Now suppose that p has the right lifting property. Consider a fibre F over an
element y of Y ; and let � be any basepoint of this fibre. Since F is fibrant,
every element of pn�1ðF ; �Þ is represented by an actual map f : @Dn-F : Take the
square

in which the bottom horizontal arrow is the constant map with value y and the top
horizontal arrow is the composition of f with the inclusion F-X of the fibre. A lift
exists in the square, and this shows that f is null-homotopic. (See the proof of
Theorem 8.6.) &

8.2. Suspensions of cofibrations

In any pointed model category, the suspension SA of any object A is the cofibre of
a cofibration

iA : A-CA;

where CA is a cone on A (i.e., a weakly contractible object together with a cofibration
from A). If C is left proper or A is cofibrant, a lifting argument combined with the

dual of the proof of Lemma 2.3 shows that if C0A is a fibrant cone on A; and S0A is

the corresponding suspension, then there is a weak equivalence SA-S0A: Thus the
choice of cone object does not affect the weak homotopy type of SA: If f : A-B is a
map, and the cones are chosen so that f extends to a map CA-CB (e.g. if CB is
fibrant, or the cones are chosen functorially), then we get an induced map Sf :
SA-SB: In fact, Sf is the suspension of f in the projective model structure on ArC;
and therefore the above argument shows that any two constructions of Sf yield
weakly equivalent maps provided that f is a cofibration between cofibrant objects or
that C is left proper.

By choosing a cone functorially, one makes S into a functor, and, by the dual of
Lemma 2.3, S takes weak equivalences between cofibrant objects to weak
equivalences. Thus the left derived functor of S; defined by applying S to a
cofibrant replacement, gives a well-defined functor on the homotopy category. If the
model category is left proper, then the dual of Lemma 2.3 tells us that S is homotopy
invariant on all objects.

Dually, the loop functor O takes an object X to the fibre of a fibration

PX-X ;

where PX is a path object on X (i.e., a weakly contractible object with a fibration
to X ). The other statements above dualize as well.
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Theorem 8.2. Let C be a pointed model category, and let i : A-B be any cofibration.

Suppose that A is cofibrant or that C is left proper. Choose a model for Si such that it is

a cofibration. Then Si has a fibrant obstruction theory. If C is right proper, then Si has

an obstruction theory.

Proof. The second claim follows from the first claim because of Proposition 4.4. The
left proper case follows from the other case by Corollary 6.2. Hence we may suppose
that A is cofibrant.

By two applications of the dual to [13, Proposition I.3.3], SB is the homotopy
cofibre of the map Ci-SA; where Ci is the mapping cone CANAB: We may use
CðCiÞNCiSA to compute SB; where Ci-CðCiÞ is a cofibration with weakly
contractible target. Thus Si is weakly equivalent to a cobase change of the
cofibration Ci-CðCiÞ: Now CðCiÞ is weakly contractible and Ci is cofibrant since A

is, so Theorem 7.1 finishes the proof. &

Remark 8.3. From the proofs of Propositions 5.1 and 5.2, it follows that the
obstructions for lifting Si are homotopy classes from the mapping cone Ci: This
object can be thought of as the desuspension of the cofibre of Si:

8.3. Stable model categories

Now we proceed to stable model categories. A stable model category is a pointed
model category in which the left derived suspension (see Section 8.2) induces an
automorphism of the homotopy category; its inverse is then the right derived loop
functor.

Corollary 8.4. Let C be a stable model category. Every cofibration in C with cofibrant

source has a fibrant obstruction theory. If C is left proper, then every cofibration in C
has a fibrant obstruction theory. If C is left and right proper, then every cofibration has

an obstruction theory.

Proof. This follows from Theorem 8.2 and the fact that in a stable model
category, every cofibration is weakly equivalent to the suspension of a
cofibration. &

Example 8.5. Let ‘‘spectra’’ refer to Bousfield–Friedlander spectra [1] or symmetric
spectra [9]. Both model categories are right proper. Consider the generating
cofibration Fm@Dn

þ-FmDn
þ of spectra. The meaning of Fm depends on which

category of spectra we are considering. The spectrum Fm@Dn
þ is cofibrant,

but this fact is not essential because the stable model structures under consideration
are left and right proper. The desuspension of the cofibre of this generating

cofibration is weakly equivalent to the sphere spectrum Sn�m�1: Therefore,
obstructions for lifting generating cofibrations of spectra are elements of stable
homotopy groups.
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Theorem 8.6. Let nX1 and mX0: A fibration p : X-Y of spectra with fibre Z has the

right lifting property with respect to Fm@Dn
þ-FmDn

þ if and only if pn�m�1Z is zero.

Proof. First suppose that every homotopy group vanishes. Then lifts exist because
the obstructions must be trivial.

Now suppose that p has the right lifting property. If @Dn and Dn are based at the
0th vertex, there is a pushout square

so p has the right lifting property also with respect to the cofibration Fm@Dn-FmDn:
Let a be any element of pn�m�1Z: Since Fm@Dn is a cofibrant model for the sphere

spectrum Sn�m�1; we can represent a by an actual map f : Fm@Dn-Z: Thus, we have
a square

in which the top horizontal map is the composition of f with the map Z-X and the
bottom horizontal map is constant. This square has a lift l by assumption. Since the
bottom map is constant, l factors through the fibre Z: Since the inclusion Z-X is
monic, this shows that f : Fm@Dn-Z factors through the weakly contractible object
FmDn: Hence f is weakly null-homotopic, and a ¼ 0: This shows that
pn�m�1Z ¼ 0: &

Remark 8.7. The proof of Theorem 8.6 is more complicated than the proof of
Theorem 8.1. The difference arises from the fact that the simplicial set Dn is weakly
contractible, while the spectrum FmDn

þ is not.

Remark 8.8. Just as in Theorem 8.1, we must assume in Theorem 8.6 that nX1: A
fibration p : X-Y with fibre Z has the right lifting property with respect to

Fm@D0
þ-FmD0

þ if and only if the map Xm-Ym of simplicial sets is surjective. This

does not guarantee that p�m�1Z is zero.
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