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In classical measure theory the Brooks–Jewett Theorem provides a finitely-additive-
analogue to the Vitali–Hahn–Saks Theorem. In this paper, it is studied whether the
Brooks–Jewett Theorem allows for a noncommutative extension. It will be seen that, in
general, a bona-fide extension is not valid. Indeed, it will be shown that a C∗-algebra A
satisfies the Brooks–Jewett property if, and only if, it is Grothendieck, and every irreducible
representation of A is finite-dimensional; and a von Neumann algebra satisfies the Brooks–
Jewett property if, and only if, it is topologically equivalent to an abelian algebra.
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1. Introduction and preliminaries

This paper continues to study possible noncommutative extensions of classical convergence theorems of measure theory.
The results obtained here build on our previous work [7,8] and extend that in [4–6]. Besides clarifying the status of the
Brooks–Jewett Theorem in the noncommutative setting, this paper exhibits an interesting interplay between Banach space
properties, measure-theoretic properties and structural properties of operator algebras. The paper is organized as follows.
After recalling basic facts in the introduction, we then continue to collect needed results on Grothendieck C∗-algebras and
weakly compact operators in Section 2. The main results concerning the noncommutative Brooks–Jewett property are given
in Section 3. This is followed by a small Appendix A, in which a new convergence theorem for weakly compact operators is
proved.

Let us recall needed concepts and fix the notation. For a normed space X we use the symbol X1 to denote its closed unit
ball and X∗ its dual. For normed spaces X and Y the symbol B(X, Y ) denotes the space of all bounded linear mappings
of X into Y equipped with the operator norm. We write B(X) instead of B(X, X). The strong operator topology on B(X, Y )

is induced by the seminorms T ∈ B(X, Y ) �→ ‖T x‖, x ∈ X . For T ∈ B(X, Y ) the symbol T ∗ denotes the adjoint of T .
Throughout the paper, A is a unital C∗-algebra and A+ (respectively A∗+) denotes the positive part of A (respectively

of A∗). Our standard reference for operator algebras is [12,18,22]. For every ψ ∈ A∗+ the mapping a �→ √
ψ(a∗a) + ψ(aa∗)

defines a seminorm on A which we denote by ηψ .
We write M to denote a generic von Neumann algebra and M∗ its predual. We identify the elements of M∗ with the

normal functionals in M∗ . We write M∗+ to denote the positive part of M∗ . We recall that the weak∗-topology on M (de-
noted by σ(M, M∗)) is the weakest topology compatible with the duality 〈M∗, M〉. The strongest topology on M compatible
with this duality is the Mackey topology and is denoted by τ (M, M∗). The τ (M, M∗) topology on M coincides with the
topology of uniform convergence on weakly relatively compact subsets of M∗ . Lying between these topologies we have
the σ -strong topology s(M, M∗) determined by the family of seminorms {�ψ | ψ ∈ M∗+} where �ψ(x) = √

ψ(x∗x); and
the σ -strong∗ topology s∗(M, M∗) determined by the family of seminorms {ηψ | ψ ∈ M∗+}. Recall that on bounded parts

* Corresponding author.
E-mail addresses: emanuel.chetcuti@um.edu.mt (E. Chetcuti), hamhalte@math.feld.cvut.cz (J. Hamhalter).
0022-247X/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2009.02.018

https://core.ac.uk/display/82366007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:emanuel.chetcuti@um.edu.mt
mailto:hamhalte@math.feld.cvut.cz
http://dx.doi.org/10.1016/j.jmaa.2009.02.018


840 E. Chetcuti, J. Hamhalter / J. Math. Anal. Appl. 355 (2009) 839–845
of M the σ -strong∗ topology coincides with the Mackey topology. We denote by P (M) the projection lattice of M , i.e.
P (M) = {p ∈ M | p = p2 = p∗}. An operator T ∈ B(M, X) is said to be completely additive if T (

∑
α∈I pα) = ∑

α∈I T (pα)

whenever {pα | α ∈ I} is a set of pairwise orthogonal projections in M . (The sum on the left-hand side is equal to
∨

α∈I pα

and is the s∗(M, M∗) limit of the net {∑α∈ J pα | J is a finite subset of I}. The sum on the right-hand side is considered in
the norm topology.) It is well known that any one-dimensional operator on M is completely additive if, and only if, it is
normal (see [22, Corollary 3.11, p. 136]).

A subset K of B(A, X) is said to be pointwise absolutely continuous with respect to ψ ∈ A∗+ (in symbols K 
p ψ ) if the
restriction of every T ∈ K to A1 is continuous with respect to the seminorm ηψ . If K = {T } we write T 
 ψ instead of
{T } 
p ψ . K is said to be uniformly absolutely continuous with respect to ψ (in symbols K 
u ψ ) if the set {T |A1 | T ∈ K} is
uniformly continuous on A1 with respect to ηψ .

In particular, for K ⊂ M∗ we define K p = {ψ ∈ M∗+ | K 
p ψ} and Ku = {ψ ∈ M∗+ | K 
u ψ}. A von Neumann algebra M
is said to have the Vitali–Hahn–Saks property if K p = Ku is satisfied for every weakly relatively compact subset K ⊂ M∗ . In
view of [22, Theorem 5.4, p. 149], a von Neumann algebra has the Vitali–Hahn–Saks property if, and only if, the weakly
relatively compact subsets of M∗ are precisely the bounded subsets for which ∅ 
= K p = Ku . The following theorem was
established in [8]. Let us recall that the von Neumann algebra M is finite if, and only if, the ∗-operation is σ -strongly
continuous. Hence M is finite if, and only if, the Mackey topology coincides with the σ -strong topology on bounded parts
of M .

Theorem 1. (See [8, Theorem 2.3].) A von Neumann algebra has the Vitali–Hahn–Saks property if, and only if, it is finite.

We recall that for a C∗-algebra A, we can identify A∗∗ with the von Neumann envelope of A in its universal representa-
tion. Let ϕ ∈ A∗ . The double adjoint ϕ∗∗ of ϕ is a linear functional acting on A∗∗ . It is well known that ϕ∗∗ is the unique
extension of ϕ from A (embedded canonically into the second dual A∗∗) to a normal functional ϕ∗∗ on the von Neumann
algebra A∗∗ . We usually identify ϕ with ϕ∗∗ but sometimes we insist on the notational distinction to aid clarity. We recall
that the image of A1 under the canonical embedding of A into A∗∗ is dense in the unit ball of A∗∗ with respect to the
s∗(A∗∗, A∗)-topology (Kaplansky’s Density Theorem); and therefore with respect to the seminorm ηψ∗∗ for any ψ ∈ A∗+ . So
if K ⊂ A∗ and ψ ∈ A∗+ such that K 
u ψ , then K ∗∗ = {ϕ∗∗ | ϕ ∈ K } 
u ψ∗∗ (see also [5, Lemma 4.2]). We recall that every
ϕ ∈ A∗ can be uniquely decomposed into a linear combination of four positive linear functionals ϕ = ϕ1 − ϕ2 + i(ϕ3 − ϕ4)

where ϕ1 and ϕ2 (respectively ϕ3 and ϕ4) have orthogonal support projections in A∗∗ . We denote by [ϕ] the positive linear
functional defined by [ϕ] = ϕ1 + ϕ2 + ϕ3 + ϕ4.

In classical measure theory, the Brooks–Jewett Theorem can be considered as the finitely-additive analogue of the Vitali–
Hahn–Saks Theorem and reads as follows:

Theorem 2. Let Σ be a σ -field and (μn) a sequence of s-bounded vector-valued ( finitely-additive) measures on Σ . Suppose further
that (μn) is pointwise convergent on the elements of Σ and that each μn is absolutely continuous with respect to some positive
( finitely-additive) measure μ on Σ . Then the set {μn | n ∈ N} is uniformly absolutely continuous with respect to μ.

It must be remarked here that this theorem was first proved for finitely-additive scalar measures by Andô [2] using
sliding hump arguments. The vector case can be easily reduced to the scalar case. Without knowing this, Brooks and Jewett
proved it directly again in [3] (see discussion on p. 35 in [11]).

To elucidate the generalization made in this paper, we recall that any commutative von Neumann algebra M is
∗-isomorphic to the algebra L∞(Σ,ν) of essentially bounded Σ-measurable functions, where ν is a (possibly infinite-
valued) positive σ -additive measure on Σ . On the other hand, except for some pathological cases, every algebra L∞(Σ,ν)

is a commutative von Neumann algebra. Any element of Σ can be identified with its corresponding characteristic function in
the von Neumann algebra L∞(Σ,ν). We recall the well-known fact from integration theory that every finitely-additive vec-
tor measure μ on Σ that is absolutely continuous with respect to ν extends uniquely to a bounded operator on L∞(Σ,ν).
Thus, one can obtain an algebraic version of Theorem 2 by replacing the structure of sets Σ with the algebra L∞(Σ,ν); the
control measure μ with a positive functional on L∞(Σ,ν); and each μn with an operator on L∞(Σ,ν). We further recall
that every commutative von Neumann algebra L∞(Σ,ν) can be identified with the algebra C(X) of continuous functions on
a suitable hyperstonean space X (see [13,22]). Thus the convergence theorem we study in this paper gives a two-fold gener-
alization of the Vitali–Hahn–Saks Theorem. Basically, we ask whether the same conclusion as in Theorem 2 can be drawn if
one were to replace (μn) by a sequence (Tn) of elements of B(A, X) where A is a (not necessarily commutative) C∗-algebra
and X a Banach space. Let us recall that noncommutative extensions of convergence theorems of classical measure theory
have received a considerable attention and led to many deep results recently (see [4–8,15] and extensive references therein).

Definition 1. A C∗-algebra A has the Brooks–Jewett property if the following holds: If (ϕn) is a weakly∗ convergent sequence
in A∗ and {ϕn | n ∈ N} 
p ψ ∈ A∗+ , then {ϕn | n ∈ N} 
u ψ .

Let us comment on the difference between the definition of the Vitali–Hahn–Saks property and the Brooks–Jewett
property. While the Vitali–Hahn–Saks property postulates uniform continuity of weakly compact sets of functionals, the
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Brooks–Jewett property allows to conclude uniform continuity only for convergent sequences of functionals. The reason is
that unlike the Vitali–Hahn–Saks property, the “set version” of the Brooks–Jewett property would imply the reflexivity of
the algebra; and therefore this would imply that the algebra is finite-dimensional. Indeed, let A be a C∗-algebra satisfying
the “set version” of the Brooks–Jewett property. Every countable subset {ϕn | n ∈ N} of A∗

1 admits a functional such that
each ϕn is absolutely continuous with respect to it, namely ψ = ∑

n
1

2n [ϕn]. Clearly, {ϕn | n ∈ N} is weak∗ relatively com-
pact, and therefore {ϕn | n ∈ N} 
u ψ . Thus {ϕ∗∗

n | n ∈ N} 
u ψ∗∗ and, in view of Akemann’s Theorem [1], this implies that
{ϕ∗∗

n | n ∈ N} is weakly relatively compact. Hence A∗
1 is weakly compact by the Eberlein–Šmulian Theorem, i.e. A is reflexive

and so finite-dimensional.

2. Grothendieck property and its consequences for operator algebras

It turns out that the convergence theorems are closely connected with the Grothendieck property. For this reason we
isolate in this section some facts about Grothendieck operator algebras. We recall that a Banach space has the Grothendieck
property (or is a Grothendieck Banach space) if every weakly∗ null sequence in its dual is weakly null. It was proved by
H. Pfitzner [19] that all von Neumann algebras have the Grothendieck property. Later on this result was generalized by
K. Saitô and J.D.M. Wright to the effect that all monotone σ -complete C∗-algebras are Grothendieck spaces [20].

The Grothendieck property for Banach spaces is defined in terms of linear functionals, i.e. one-dimensional operators.
However, this property carries over to linear operators, as shown in the following lemma. Although this follows implicitly
from [17, Lemma 1], we here provide a direct proof for the sake of completeness.

Lemma 3. Let X be a Grothendieck Banach space and let Y be a normed space. Let (Tn) be a sequence in B(X, Y ) convergent to T in
the strong operator topology. Then (T ∗∗

n ) converges to T ∗∗ in the strong operator topology.

Proof. Suppose on the contrary that there is f ∈ X∗∗ such that (T ∗∗
n f )n∈N does not converge to T ∗∗ f . Without loss of

generality assume that there is an ε > 0 such that ‖T ∗∗
n f − T ∗∗ f ‖ > ε for each n. Let ϕn ∈ Y ∗

1 with
∣∣(T ∗∗

n f − T ∗∗ f
)
ϕn

∣∣ > ε/2. (1)

Put

ψn = (
T ∗

n − T ∗)ϕn ∈ X∗.

By hypothesis, ‖(Tn − T )x‖ → 0 for each x ∈ X and so ψn(x) → 0 for each x ∈ X . By the Grothendieck property ψ∗∗
n (g) → 0

for each g ∈ X∗∗ . But this contradicts (1). �
We recall that an operator T in B(X, Y ) is weakly compact if T X1 is weakly relatively compact in Y . It is well known

that T is weakly compact if, and only if, T ∗∗(X∗∗) ⊂ Y (see [13, Theorem 2, p. 482]). If T is weakly compact, then the same
holds for its adjoint T ∗ . If Y is a Banach space, Gantmacher’s Theorem states that T is weakly compact if, and only if, T ∗ is
weakly compact (see [13, Theorem 8, p. 485]).

Proposition 4. Let X be a Grothendieck Banach space and let Y be a Banach space. Let (Tn) be a sequence of weakly compact operators
in B(X, Y ) convergent to T in the strong operator topology. Then T is weakly compact.

Proof. The images of the T ∗∗
n are in Y because they are weakly compact.

From Lemma 3 it follows that T ∗∗
n converges to T ∗∗ in the strong operator topology. Thus the image of T ∗∗ is in Y , too,

and T is weakly compact. �
We remark that the statement above does not hold if X does not have the Grothendieck property. Indeed, take A = c0

and operators Tn ∈ B(A) defined by Tn(x1, x2, . . .) = (x1, x2, . . . , xn,0,0, . . .). All Tn ’s are weakly compact and converge to
the identity in the strong operator topology. But the identity is not weakly compact since A is not reflexive (see also [24]).

The absolute continuity of an operator with respect to some positive functional is a ubiquitous assumption made in the
paper. In the following proposition, it is shown that we are every time working with weakly compact operators. For the
theory of weakly compact operators on C∗-algebras we refer the reader to [16,21,23].

Proposition 5. Let X be a Banach space. The following four conditions for an operator T in B(A, X) are equivalent.

(1) T is weakly compact.
(2) Whenever (an) is an orthogonal sequence of self-adjoint elements in the unit ball of A, then limn→∞‖T (an)‖ = 0.
(3) There exists ψ ∈ A∗+ such that T 
 ψ .
(4) T ∗∗ is completely additive.
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Proof. ((1) ⇔ (2)) T is weakly compact if, and only if, T ∗ X∗
1 is weakly relatively compact. Result now follows from the deep

Pfitzner’s Theorem [19, Theorem 1].
((1) ⇒ (3)) If T is weakly compact, then T ∗ X∗

1 is weakly relatively compact. Since T ∗ X∗
1 is bounded, it follows from

Akemann’s Theorem [1] that there exists ψ in A∗+ such that T ∗ X∗
1 
u ψ . Consequently T ∗∗ 
 ψ∗∗ and therefore T 
 ψ .

((3) ⇒ (4)) If T 
 ψ , then T ∗ X∗
1 
u ψ . As explained in the Introduction (paragraph before Theorem 2) this implies that

(T ∗ X∗
1)∗∗ 
u ψ∗∗ , i.e. {ϕ∗∗ ◦ T ∗∗ | ϕ ∈ X∗

1} 
u ψ∗∗ . Consequently T ∗∗ 
 ψ∗∗ . Let {pα | α ∈ I} be a set of pairwise orthogonal
projections in A∗∗ . For each finite subset J of I , put e J = ∑

α∈ J pα . Then the net {e J | J is a finite subset of I} converges in
the s∗(A∗∗, A∗)-topology to

∨
α∈I pα = ∑

α∈I pα . In particular, e J → ∑
α∈I pα in the ηψ∗∗ seminorm and since T ∗∗ 
 ψ∗∗ ,

it follows that T ∗∗(e J ) → T ∗∗(
∑

α∈I pα); i.e. T ∗∗ is completely-additive.
((4) ⇒ (1)) Let (pn) be a decreasing sequence of projections in A∗∗ converging in the weak∗-topology to zero. We

have limn→∞‖T ∗∗(pn)‖ = 0; i.e. limn→∞ supϕ∈X∗
1
|ϕ∗∗ ◦ T ∗∗(pn)| → 0 as n → ∞. This implies that T ∗ X∗

1 is weakly relatively
compact (by Akemann’s Theorem—see [22, Theorem 5.4, p. 149]), and therefore T ∗ is weakly compact. Consequently, T is
weakly compact. �

The following proposition is a basis for various convergence theorems for weakly compact operators on C∗-algebras [5]
and was proved in the setup of monotone σ -complete algebras in [6]. Here we show that what is essential is the
Grothendieck property of the underlying algebra.

Proposition 6. Let A be a C∗-algebra with the Grothendieck property and X a normed space. Let (Tn) be a strong operator convergent
sequence of weakly compact operators in B(A, X). Then the set

K = {
ϕ ◦ Tn

∣∣ ϕ ∈ X∗
1, n ∈ N

}

is a weakly relatively compact subset of A∗ .

Proof. Since each T ∗∗
n restricts to a completely-additive vector-valued measure on P (A∗∗), result follows from Lemma 3

and [7, Theorem 3.3]. �
Corollary 7 (Vitali–Hahn–Saks–Nikodým Theorem). Let A be a C∗-algebra with the Grothendieck property and X a normed space. Let
(Tn) be a strong operator convergent sequence of weakly compact operators in B(A, X). Then (T ∗∗

n ) is uniformly completely additive
on A∗∗ .

Proof. This follows from Proposition 6 and Akemann’s Theorem. �
3. Brooks–Jewett property

We start with an auxiliary lemma.

Lemma 8. Let X be a Banach space and (ϕn) a weakly∗ null sequence in X∗ . If {ϕn | n ∈ N} is weakly relatively compact, then (ϕn)n∈N

is weakly null.

Proof. For a contradiction, suppose that (ϕn)n∈N is not weakly null. This implies that there is positive real number ε,
f ∈ X∗∗ and a subsequence (ϕnk ) such that | f (ϕnk )| > ε for all k ∈ N. By the Eberlein–Šmulian Theorem, one can pass to
a weakly convergent subsequence of (ϕnk ). Let ϕ0 ∈ X∗ be the weak limit of this subsequence. Then ϕ0(x) = 0 for all x ∈ X
and therefore ϕ0 = 0. This contradicts the fact that | f (ϕ0)| � ε. �

In the following theorem we characterize the Brooks–Jewett property of a C∗-algebra in terms of measure-theoretic
properties of A∗∗ .

Theorem 9. A C∗-algebra A has the Brooks–Jewett property if, and only if, A is Grothendieck and A∗∗ has the Vitali–Hahn–Saks
property. Consequently, A has the Brooks–Jewett property if, and only if, A is Grothendieck and its bidual is a finite von Neumann
algebra.

Proof. Assume that A has the Brooks–Jewett property and let K ⊂ A∗ be weakly relatively compact. Seeking a contradiction,
let ψ ∈ K p , (ϕn) a sequence in K and (an) a sequence in A∗∗

1 such that ηψ(an) → 0 and inf{|ϕn(am)| | n ∈ N, m ∈ N} > 0.
By the Eberlein–Šmulian Theorem, (ϕn)n∈N has a weakly convergent subsequence (ϕnk ). From the hypothesis it follows that
{ϕnk | k ∈ N} is uniformly continuous on A1 when endowed with the seminorm ηψ , and therefore, as was already remarked
in the introduction, {ϕnk | k ∈ N} is uniformly continuous on A∗∗

1 with respect to ηψ . This implies that

0 = inf
{∣∣ϕn (am)

∣∣ ∣∣ k ∈ N, m ∈ N
}

� inf
{∣∣ϕn(am)

∣∣ ∣∣ n ∈ N, m ∈ N
}

> 0,
k
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which is a contradiction. This proves that if A has the Brooks–Jewett property then A∗∗ has the Vitali–Hahn–Saks property.
To show that the Brooks–Jewett property implies the Grothendieck property, suppose that (ϕn) is a weakly∗ null sequence
in A∗ and let ψ = ∑

n
1

2n [ϕn]. Observe that {ϕn | n ∈ N} 
p ψ and therefore by hypothesis {ϕn | n ∈ N} 
u ψ . This implies
that {ϕn | n ∈ N} is uniformly continuous on A∗∗

1 with respect to ηψ (i.e. {ϕ∗∗
n | n ∈ N} 
u ψ∗∗). By Akemann Theorem [1] it

implies that {ϕn | n ∈ N} is weakly relatively compact and therefore, by Lemma 8, (ϕn)n∈N is weakly null.
For the converse, let (ϕn) be a weakly∗ convergent sequence in A∗ and ψ ∈ A∗+ such that {ϕn | n ∈ N} 
p ψ . Then

(ϕn)n∈N is weakly convergent and {ϕ∗∗
n | n ∈ N} 
p ψ∗∗ . From the Vitali–Hahn–Saks property of A∗∗ it follows that

{ϕ∗∗
n | n ∈ N} 
u ψ∗∗ and consequently A has the Brooks–Jewett property. The last statement follows from Theorem 1. �
Combining Theorem 9, Lemma 3, Proposition 6 and [8, Theorems 2.1] one deduces that a C∗-algebra with the Brooks–

Jewett property automatically has the vector form of the Brooks–Jewett property.

Theorem 10. Let A be a C∗-algebra having the Brooks–Jewett property and X a Banach space. Let (Tn) be a strong operator convergent
sequence in B(A, X) such that {Tn | n ∈ N} 
p ψ ∈ A∗+ . Then {Tn | n ∈ N} 
u ψ .

Proof. In view of Theorem 9 and Lemma 3, observe that the sequence (T ∗∗
n ) is strong operator convergent in B(A∗∗, X∗∗).

Furthermore, Proposition 5 implies that each T ∗∗
n is completely additive on P (A∗∗). Since {T ∗∗

n | n ∈ N} 
p ψ∗∗ , we can
invoke [8, Theorems 2.1] to deduce that {T ∗∗

n | n ∈ N} 
u ψ∗∗ . �
The next theorem provides a structural characterization of C∗-algebras with the Brooks–Jewett property; they are

precisely those which are Grothendieck and for which the irreducible representations are finite-dimensional. The same char-
acterization was given in a quite different line of research; namely that concerning the Dunford–Pettis property for operator
algebras. As a consequence, we obtain that for Grothendieck C∗-algebras, the Brooks–Jewett property and the Dunford–Pettis
property are equivalent. So we can see the interplay of seemingly different properties. Let us recall that a Banach space X
has the Dunford–Pettis property if each weakly compact operator from X to other Banach space is completely continuous
in the sense that it carries weakly convergent sequences to norm convergent sequences. Alternatively, X has the Dunford–
Pettis property if, and only if, ϕn(xn) → 0 whenever (ϕn) and (xn) are weakly null sequences in X∗ and X , respectively.
It was established by Chu, Iochum and Watanabe [9,10] based on the results by Hamana [14] that a C∗-algebra has the
Dunford–Pettis property if, and only if, all irreducible representations of this algebra act on a finite-dimensional Hilbert
space.

Theorem 11. Let A be a C∗-algebra. The following conditions are equivalent:

(1) A has the Brooks–Jewett property;
(2) A is Grothendieck and has the Dunford–Pettis property;
(3) A is Grothendieck and every irreducible representation of A is finite-dimensional;
(4) A is Grothendieck and A∗∗ is a finite type I von Neumann algebra.

Proof. (4) implies (1) by Theorem 9.
If A∗∗ is finite then any irreducible representation of A is finite-dimensional, for otherwise A∗∗ would have an infinite

direct summand. Hence (1) ⇒ (3) by Theorem 9.
It has been proved in [14, Lemma 5] that the bidual of a C∗-algebra A is finite type I if, and only if, all irreducible

representations of A are finite-dimensional. It gives immediately the implication (3) ⇒ (4).
The equivalence of (2) and (3) follows from the deep fact mentioned above that a C∗-algebra has the Dunford–Pettis

property if, and only if, every irreducible representation is finite-dimensional. �
Since abelian C∗-algebras have only one-dimensional irreducible representations, Theorem 11 implies that the

Grothendieck property and the Brooks–Jewett property coalesce in the commutative case. However, the Brooks–Jewett prop-
erty is much stronger than the Grothendieck property in general. For instance, every von Neumann factor is Grothendieck
but for it to satisfy that every irreducible representation is finite-dimensional, the factor itself must be finite-dimensional.

The next theorem provides a structural description of von Neumann algebras having the Brooks–Jewett property. The
proof is based on the equivalence of the following two statements: (a) M∗∗ is a finite type I von Neumann algebra, and
(b) M is a finite direct sum of finite type I homogeneous algebras. Notwithstanding the fact that this follows from the work
of M. Hamana [14] (see also [22, p. 358]) we here prefer to give an alternative simpler proof to aid clarity.

Theorem 12. A von Neumann algebra M has the Brooks–Jewett property if, and only if, M is a finite sum of finite type I homogeneous
algebras.

Proof. As every von Neumann algebra is Grothendieck we know by Theorem 11 that M has the Brooks–Jewett property
if, and only if, M∗∗ is of finite type I. So M itself must be of finite type I. Suppose, for a contradiction, that there is
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a strictly increasing sequence of integers (ni) and a sequence Xni of hyperstonean spaces such that M is ∗-isomorphic to∑
i C(Xni ) ⊗ B(Hni ). (Here C(Xni ) is the algebra of continuous functions on Xni and Hni is a Hilbert space of dimension ni .)

First of all we show that (
∑

B(Hni ))
∗∗ is not finite.

To this end, for each i ∈ N, let {ξ i
j | 0 � j � ni − 1} be an orthonormal basis of Hni . For every k ∈ N let ei

k mod ni
be the

projection in B(Hni ) mapping Hni onto span{ξ i
k mod ni

} and define ek = ∑
i ei

k mod ni
∈ ∑

i B(Hni ). The set {ek | k ∈ N} consists
of mutually equivalent projections in

∑
i B(Hni ) and ekek′ is a finite-dimensional projection when k 
= k′ . Since the algebra

N = ∑
i B(Hni ) is finite there is a canonical central-valued trace T on N . Let � be a pure state on the centre of N such that

�(T (e1)) > 0 and such that � is zero on any finite-dimensional central projection in N . Then ϕ = � ◦ T is a tracial state
vanishing on all finite-dimensional projections and such that ϕ(e1) > 0. Therefore ϕ(ek) = ϕ(e1) 
= 0 for every k ∈ N. Let
(πϕ, Hϕ) be the GNS representation associated with ϕ . Let us observe that πϕ(ek) ⊥ πϕ(ek′) whenever k 
= k′ . Summing it
up the set {πϕ(ek) | k ∈ N} consists of mutually equivalent nonzero orthogonal projections in πϕ(N). Consequently, N∗∗ is
not finite. As there is a ∗-homomorphism mapping M onto N , we see that M has a representation which is not finite and
so M∗∗ cannot be a finite algebra either. This implies that M∗∗ is not finite. �

The content of Theorem 12 is that the von Neumann algebras enjoying the Brooks–Jewett property can be obtained from
classical function algebras C(X) on hyperstonean spaces by forming tensor products with matrix algebras and taking finite
sums. In [14, Theorem 2] it was shown that such algebras are precisely those isomorphic to abelian C∗-algebras as Banach
spaces.

Corollary 13. A von Neumann algebra enjoys the Brooks–Jewett property if, and only if, it is topologically linearly isomorphic to an
abelian C∗-algebra.
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Appendix A

The foregoing results of the paper reveal that a bona-fide noncommutative analogue for the Brooks–Jewett Theorem is
not possible unless one imposes relatively strong restriction on the underlying algebra. In order to obtain Brooks–Jewett
type theorems for general C∗-algebras one has to consider a stronger form of absolute continuity. Following [5], T ∈ B(A, X)

is said to be strongly absolutely continuous with respect to ψ ∈ A∗+ if for each f ∈ X∗ we have that [ f ◦ T ] is absolutely
continuous with respect to ψ . The following theorem was proved first in [4] for a sequence of functionals on von Neumann
algebras. A far reaching generalization was then obtained in [6] for monotone σ -complete C∗-algebras. We generalize the
result further to Grothendieck C∗-algebras.

Theorem 14. Let A be a Grothendieck C∗-algebra and X a normed space. Let (Tn) be a sequence of weakly compact operators from A
to X such that (Tn) converges in the strong operator topology. If each Tn is strongly absolutely continuous with respect to ψ , then
{Tn | n ∈ N} is uniformly absolutely continuous with respect to ψ .

Proof. By Proposition 6 we know that the set K = { f ◦ Tn | f ∈ X∗
1, n ∈ N} is weakly relatively compact. Now the results

follow from [5, Theorem 5.5.]. �
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