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The symmetry properties of positive solutions of the equation

1
Au+§x-Vu+pil

u+u?=0 in R”,

where n>2, p>(n+2)/n, was studied. It was proved that # must be radially sym-
metric about the origin provided u(x)=o(|x| ~%®~1Y) as |x| - co, and that there
exist non-radial solutions u satisfying lim sup,_, | x| =Dy(x) > 0. © 2000
Academic Press

1. INTRODUCTION

In this paper we consider the symmetry properties of positive solutions
of the equation

1
Au-i—ix-Vu+p_1

u+u?=0 in R”, (L.1)

where n>2 and p > 1. This equation arises in the study of (forward) self-
similar solutions of the semilinear heat equation

w,=Aw + w? in R" % (0, o0). (1.2)
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It is well known that if w(x, ) satisfies (1.2), then, for x>0 the rescaled
functions

2/(p

W,u(x> t) =Hu *l)w(,ux, /uzt)

define a one parameter family of solutions to (1.2). A solution w is said to
be self-similar, when w,(x, t) = w(x, t) for all > 0. It can be easily checked
that w is a self-similar solution to (1.2) if and only if w has the form

w(x, 1) =1 Vu(x/ /1), (1.3)

where u satisfies the elliptic Eq. (1.1). Moreover, if u has spherical sym-
metry, that is if u=u(r), r=|x|, then u satisfies the ordinary differential

equation
, (n—1 r\ ,
u + +5)u+
r 2

! u+u?f=0, r>0. (L.4)
p—1

Such self-similar solutions are often used to describe the large time
behavior of global solutions to the Cauchy problem, see, e.g., [ 11, 13, 3, 4,
14, 5, and 15], and to show nonuniqueness of solution to (1.2) with zero
initial data in a certain functional space, see [ 12].

First we state the result concerning the symmetry properties of the
solution of (1.1).

THEOREM 1.1. Let ue C*(R") be a positive solution of (1.1) such that
u(x)=o(|x|~¥*=Y) a5 |x| - . (1.5)

Then u must be radially symmetric about the origin.

The proof of Theorem 1.1 is based on the moving planes argument. This
technique was developed by Serrin [ 18] in PDE theory, and extended and
generalized by Gidas, Ni, and Nirenberg [9, 10]. We remark that with a
change of variables we are still able to prove a radial symmetry result for
Eq. (1.1).

Let us consider the problem

-1 1
u”+<n+r>u’+ utlul?~tu=0,  r>0,
r 2 p—1 (1.6)

u'(0)=0 and wu(0)=aeR.

The problem (1.6) has been investigated extensively in [ 12, 16, 20, and 2].
We denote by u(r; a) the unique solution of (1.6). We recall that u(r; «) has
the following properties:
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(i) lim,  r¥®~Dy(r; a) = L(a) exists and is finite for every a R
(see [12, Theorem 5]);
(i) if L(o) =0, then there exists a constant 4 # 0 such that

u(r; o) = Ae =" =D=n{1 4 O(r=2)} as r— o

(see [16, Theorem 1]);
(i) if p=(n+2)/(n—2), then u(r;a) is positive on [0, o) and
L(ot) >0 for every o> 0 (see [ 12, Theorem 51]);

(iv) if (n+2)/n<p<(n+2)/(n—2), then there exists a unique a >0
such that u(r; o) is positive on [0, co) and L(x)=0 (see [20, Theorem 1]
and [2, Theorem 1.2 and Corollary 1.3]).

By virtue of Theorem 1.1 we obtain the following:

COROLLARY 1.1. (1) Assume that p=(n+2)/(n—2). Then there exists
no positive solution u of (1.1) satisfying (1.5).
(1) Assume that (n+2)n<p<(n+2)/(n—2). Then there exists a
unique positive solution u(x) satisfying (1.5). Moreover, the solution u is
radially symmetric about the origin.

Remark. The result (i) is differently proven by [3, Proposition 4.3 ]
based on the Pohozaev identity.

Following the notations in [3] and [ 14], we define

L¥(K)= {u: R" S R; f |u|? K(x) dx < oo} and
RVI

HYK)= {u: R”—>R;j (Ju]*+ |Vul?) K(x) dx < oo},
RY

where K(x) =exp(|x|?/4). Escobedo and Kavian have shown in [3, Propo-
sition 3.5] that if l <p<(n+2)/(n—2) and if ue H'(K) is a solution of
(1.1), then ue C*(R") and satisfies u(x) = O(exp( —|x|%/8)) as |x| — 0. As
a consequence of Corollary 1.1, we obtain the following:

COROLLARY 1.2. Assume that (n+2)/n<p<(n+2)/(n—2). Then the
problem

1
Au+—-x-Vu+ ut+u?=0 in R",
2 p—1 (L.7)

ueHYK) and u>0 in R",

has a unique solution.
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Let us consider the Cauchy problem

{‘v,=Aw+w” in R”x (0, o), (1.8)

w(x, 0)=1tw, in R”,

where wye L3(K)n L*(R"), wy=0, and 7> 0 is a parameter. We denote
by w(x, t; 7) the unique solutions of (1.8) (see [ 15]). Combining the result
by Kawanago [ 15, Theorem 1] and Corollary 1.2, we obtain the following,
where the asymptotic behavior of w(-, t; t) as t - oo becomes clearer.

COROLLARY 1.3.  Assume that (n+2)/n<p<(n+2)/(n—2). Then there
exists a unique ty>0 such that the solution w(x, t; t) is a global solution if
1€(0,19], and w(x, t;t) blows up in finite time if t€(zy, 00). Moreover,
w(x, t; To) satisfies

lim [ £Y2=Dw(-, £; 7g) — tto( - /1) | pocrry = 0,

t— oo

where u, is a unique solution of the problem (1.7).

Next we consider the existence of nonradial solutions of (1.1). Let
p>(n+2)/nand let U(r) be a positive solution of (1.4) satisfying

U0)=0 and  lim r¥*=Dy(r)>0. (1.9)

r — o0

The existence of such U is obtained by [12, Theorem 5]. Define
(=/((U)>0 as

/= lim r¥®=Dy(r). (1.10)

We investigate the Cauchy problem for Eq. (1.2) with
w(x, 0)=woe Ll (R™), (1.11)

loc

where
0 <wy(x) </ |x|~#P=D, woZ 0, xeR"\{0}. (1.12)

Relation (1.11) is taken in the sense of L} (R"), that is,

j |w(x, t) —wo(x)| dx — 0 as r—0
K

for any compact subset K of R”. We note that wye L} (R") if (1.12) holds
with p > (n+2)/n.
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THEOREM 1.2. Let p> (n+2)/n. Assume that (1.12) holds, where ¢ is the
constant in (1.10). Then there exists a positive solution we C*(R" x (0, o0))
of (1.2) and (1.11). Assume, furthermore, that wye C(R"\{0}), then w
satisfies

w(x, 1) > wo(x) as t— 0 uniformly in |x|=r for every r>0. (1.13)

Moreover, w is self-similar if u*?=Ywy(ux)=wy(x) for every u>0.

COROLLARY 1.4. Letp > (n+2)/n. Assume that A: S"~1 — R is continuous
and satisfies

0<4(o) </, A#O, ceS" L (1.14)

Then there exists a positive self-similar solution we C*'(R"x (0, ©)) of
(1.2) satisfying (1.11) and (1.13) with wy(x) = A(x/|x]) |x| ~¥® D,

Recall that self-similar solutions w to (1.2) have the form (1.3) with u
satisfying (1.1). Therefore, w(o, t)=r¥?~Yuy(re) for oeS"!, where
r=1 /\ﬁ . Then we obtain the following corollary, which shows that condi-
tion (1.5) in Theorem 1.1 is crucial.

COROLLARY 1.5. Let p>(n+2)/n. Assume that A:S""'—R is con-
tinuous and satisfies (1.14). Then there exists a positive non-radial solution u

of (1.1) satisfying
r¥?=VYy(rg) > A(e) as r— oo uniformly in e S" .

Remark. (1) If 1<p<(n+2)/n, no time global, non-negative, and
nontrivial solution exists in (1.2) (see, e.g., [7, 19, and 14]). Therefore,
(1.1) admits a positive solution only if p > (n+2)/n.

(i1)) We find that the solution w of (1.2) and (1.11) obtained in
Theorem 1.2 is a minimal solution of the integral equation

t

w(x, t) =f

R"

T(x—y:t)we(y) dy—i—fo

f I'(x—y:t—s)[w(y,s)]? dyds,

where I'(x: 1) = (4nt) =" ¢~/ See the proof of Theorem 1.2 below.

(iii) Galaktionov and Vazquez [ 8] studied the Cauchy problem (1.2)
and (1.11) with singular initial values for the case p > n/(n —2).

This paper is organized as follows: in Section 2, we treat the symmetry
properties of the solutions and prove Theorem 1.1. In Section 3, we state
some propositions concerning the properties of solutions to the Cauchy
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problem with singular initial data, and prove Theorem 1.2. We prove these
propositions in Section 4.

2. RADIAL SYMMETRY
In this section we investigate more general equation
Au+3x-Vu+ku+ f(luy=0  in R", (2.1)

where n > 2, k is a nonnegative constant, and f € C'[0, o). Theorem 1.1 is
a consequence of the following result.

THEOREM 2.1.  Assume that
f(s)=0(s°) as s—>0 for some o> 1. (2.2)
Let u be a positive solution of (2.1) such that
u(x)=o(|x|=%) as |x|— . (2.3)
Then u must be radially symmetric about the origin.

We obtain Theorem 2.1 by the following two propositions.

ProprosITION 2.1.  Assume that (2.2) holds. Let u be a positive solution
satisfying (2.3). Then, for every m >0, u(x)=o(|x|~™) as |x| - co.

PROPOSITION 2.2. Let u be a positive solution such that
u(x)=o(|x| =) as |x| > oo for some a>0. (2.4)
Assume that
a>k+max{|f"(s)|: 0<s< |l orrm}- (2.5)
Then u must be radially symmetric.

To prove Proposition 2.1 we prepare the following lemma.

LeMMA 2.1.  Assume that (2.2) holds. Let u be a positive solution of (2.1)
such that

u(x)=o(|x| %) as |x| > o for some B>2k.

Then, for every m>0, u(x)=o(|x|~") as |x| - co.
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Proof. Set v(x)=|x|# u(x). Then v(x)— 0 as |x| = co and v satisfies

Av+1x~VU—2ﬂx-Vv—(ﬂ—k>v+[))(ﬁ+2_n)v+ Ix]% f(|x] =% v)=0.

2 |x|? 2 |x|?
Defining
1 2
Lv:Av—i—Ex \%% |x/|32x-Vv,
we have

Lv:Kﬂ_ >_/3(/3+2—n)_f(u)} .

2 |x|? u

Note that f>k/2 and f(s)/s—>0 as s—0 by (2.2). Then there exists a
R, >0 such that Lv>0 for |x| > R,.

Fix m >0 and define w(r) =r—"™, r = |x|. Then it follows that

—1-2 1 D1
B |
r r

Then there exists a R,>0 such that Lw<O0 for |x|>R,. Let R,=

max{R,, R,}. Take C>0 so large that Cw—v>0 on |x|=R,. Then
Cw — v satisfies

L(Cw—v)<0 for |x| >R, and Cw—v—-0 as |x|— oo.

By the maximum principle, we obtain Cw>=v for |x| = R,, ie., u(x)<
C|x|~™~# for |x| > R,. Since m >0 is arbitrary, we obtain the conclusion.

Proof of Proposition 2.1. Set v(x)=|x|*u(x). Then uv(x)—0 as
|x| — oo and v satisfies

1 4k 2k(2k +2 —
Av+fx-va—2x-Vv+(;2n)v+|x|2kf(|x|_2kv)=0.
2 |x| |x|
Defining

4k
Lv=4dv+-x-Vv——5x- Vo,
X
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we have

2k(2k +2—n

Lv=— NE )v—|x|2kf(u).

We note here that

A

2k _
|x| f(u)_ u® |x|2k(a71)'

Then, by (2.2), we obtain
Lv=o(|x| %) as |x| — oo,

where d,=min{2, 2k(c —1)}. Let w(x)=|x| ~°, where d =J,/2. Then we
have

TS S04+ —S(n—1—2k) 5
LW’:|X| 0 _5-"_ |X|2 <_Z|X| °

for |x| sufficiently large. Then there exists a Ry, >0 such that Lw— Lv <0
for |x| > R,. Take C>1 so large that Cw>=v on |x|=R,. Then Cw—v
satisfies

L(Cw—v)<0 for |x| >R, and Cw—v—-0 as |x|— oo.

By the maximum principle, we obtain Cw>v for |x|>=R,, ie., v(x)<
C|x|7¢ for |x|>R,. This implies that u(x)=o(|x| %) as |x| — oo for
f=2k+J>2k. By Lemma 2.1, we conclude that u(x)=o(|x|~™) as
|x| = oo for every m>0. |

Next we prove Proposition 2.2. Let u be a positive solution of (2.1)
satisfying (2.4). Define

wix, ) =t="u(x//1),  (x,1)eR"x (0, 00). (2.6)

LemmaA 2.2. (i) For every T >0, w(x, t)— 0 as |x| » co uniformly in
te(0, TT;

(1) For every A>0, w(x, t) >0 as t > 0 uniformly in |x| = A

Proof. From (2.4), for any ¢ > 0, there exists a R >0 such that

|x|% u(x) <e, |x] > R. (2.7)
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By virtue of (2.6) we have
2 wix, 1) = |x/y/ 112 u(x// 1), (28)
(i) Fix T >0. From (2.7) and (2.8) it follows that
|x|*w(x,t)<e  for |x|=RTY?, te(0,T].

Since ¢>0 is arbitrary, we have w(x,?) >0 as |x| > oo uniformly in
te(0,T].

(i1)) From (2.7) and (2.8) we obtain
A2 w(x, t) < x| 2 w(x, t) <e, for |x|=A 0<t<(i/R)>~

Then w(x, t)— 0 as t » 0 uniformly in |x| > 4. ||

For AeR, we define T, and 2, as

T,={x=(xy, .., x,)eR":x; =1} and Q,={xeR":x; <1},
respectively. For x=(x;, .., x,) e R" and 1eR, let x* be the reflection of x
with respect to T, ie., x*=(24—X;, X,, .., X,). It is easy to see that, if
A>0,
|x*| > |x| for xeQ,  and {xtxeQ,} ={x x>} = {x|x| = 1}.
By Lemma 2.2 we have the following:

LEmMA 2.3. Let A1>0.

(i) For every T >0, w(x* )= 0 as |x| » o, xeQ,, uniformly in
te(0,T7;

(i1) w(x% t)—> 0 as t — 0 uniformly in xe Q.

LEMMA 24. Define ¢ as ¢(x, t)=w(x, t)—w(x* t). Then we have
=49 +c(x,t) ¢ in Q,x(0, ) and ¢=0 on T,;x(0,c0),

where
o(x, t):{ _(a—k)+j1 Frut— s —u))ds | 17! (2.9)
0

with u= u(x/\ﬁ) and u* = u(x’l/\ﬁ).
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Proof. From (2.6) we have
w,=Aw— (a—k) t w477 (1*w), (x,1)eR"x (0, 0).
Let w’(x, t) =w(x*, t). Then w” satisfies
wh=Awt —(a—k) t='wh+ 771 (1"w?), (x,1)eQ,x(0, ).
Then we have ¢, = A¢ + ch, where ¢ is the function in (2.9). ||

LEMMA 2.5. For >0, we have w(x, t) = w(x?*, t) for (x,t)eQ, x (0, 0).

Proof. Let ¢(x,t)=w(x,t)—w(x*, t). We show that ¢(x,7)=>0 for
(x,1)e,%x(0, 00). Assume to the contrary that there exists a (x,, #y) €
Q,x (0, 00) such that ¢(x,, 1) <0. Take ¢>0 so small that @(x,, ty) <
—&<0. By Lemma 2.3(ii), we can take T, € (0, #,) so that w(x*, T,) <e¢ for
x€ ;. Then it follows that

d(x, Ty) > —e¢, xeQ;. (2.10)

Fix T > t,. By Lemma 2.3(i), we can take R > |x,| so large that w(x*, 1) <e
for [x| >R, xeQ,, te[T,, T]. Then we obtain

d(x, 1) > —e¢, |x| =R, xeQ,, te[Ty, T]. (2.11)

Define Q={xeQ,:|x|<R}. Let X be a parabolic boundary of
Ox(T,, T),ie.,

2=(Qx{To}) V(00 x(Ty, T)).
From Lemma 2.4, (2.10), and (2.11) we have
p,=Adp+cp in Qx(T,, T) and ¢p=—¢ on 2.

Note that ¢(x, t) <0 from (2.5) and (2.9). Define Y as y/(x, t) =¢(x, t) +&.
Then y satisfies

Y, z2Ay+cfy in OQx(T,, T) and Yy>=0 onZ.

By the maximum principle ([ 17, Chapter 3, Theorem 7]), we have y =0
on O x[T,, T], which implies that

d(x, 1) = —e, (x,1)eOx [Ty, T]. (2.12)

On the other hand, (x,, ty) € O x(Ty, T') and ¢(x,, ty) < —e&. This contra-
dicts to (2.12). Hence ¢(x, 1) =0 for (x,1)e Q,x (0, 0). |
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Proof of Proposition 2.2. By Lemma 2.5, we have w(x, t) > w(x?%, t) for
A>0, (x,1)e,x%x(0, 00). From the continuity of w, we have w(x, t)>
w(x® 1) for (x, 1) e 2y x (0, o).

We can repeat the previous arguments for the negative x,-direction to
conclude that w(x, 1) <w(x°, ) for (x, t) € 2, x (0, o0). Hence, w(x, ) must
be symmetric about the plane x, =0. Since the Eq.(2.1) is invariant under
the rotation and conclude that w(x, ) is symmetric in every direction.
Therefore, u must be radially symmetric about the origin. ||

3. PROOF OF THEOREM 1.2

We assume, henceforth, that p > (n+ 2)/n. Recall that U(r) is a positive
solution of (1.4) satisfying (1.9), and that / is a positive constant defined
by (1.10). Let W= W(x, t) be a self-similar solution of (1.2) of the form

W(x, 1) =t~ V2= DU(|x|//1). (3.1)

To prove Theorem 1.2, we consider the Cauchy problem

{W,ZAw+g in R"x (0, c0), (32)

w(x, 0)=wye LL (R").

loc

The initial condition in (3.2) is taken in the sense of L. (R"). We always

loc
assume that w, satisfies (1.12), and that g satisfies
0<g(x, ) <[W(x,1)]*? in R”x (0, o). (3.3)
We consider the function w satisfying the growth condition:

{there exists positive constants C, a, and r such that

34
Iw(x, )| < Ce* ™ for all |x| >r and all € [0, o). (34)

We obtain the following propositions. Proofs will be given in the next section.

PropoSITION 3.1.  The function

t

dx, 0=

0

jRn T(x—y:t—s)g(y,s)dyds

is well defined on R" x (0, c0). Assume, furthermore, that g is continuous on
x (0, 00), then ¢ € CH°(R" x (0, c0)).



418 NAITO AND SUZUKI

PROPOSITION 3.2.  Assume that

{ge C(R"x (0, 00)) and x> g(x, t) is locally Hélder continuous

3.5
uniformly in te[ty, T] for every ty and T with 0 <ty <T < c0. (3.5)

Then the function we C* (R"x (0, o0)) is a solution of the problem (3.2)
satisfying the growth condition (3.4) if and only if

w(x, t) :LG I(x—y:t)wy(y) dy—i—jot L” I(x—y:t—s)g(y,s)dyds.
(3.6)

Assume, furthermore, that wye C(R"™\{0}), then w defined by (3.6) satisfies
w(x, t) > wo(x) as t—>0 uniformly in |x|=r for every r>0. (3.7)
We show that W defined by (3.1) satisfies

W(x,0)=¢|x|~%®=Y in the sense of L}

loc

(R"). (3.8)

In fact, we have |x|¥®~D W(x, t)= |x/\/;|2/(1”1) U(|x|/ﬁ). By virtue of
(1.10), we obtain 0 < |x|¥®~D W(x, t) < C with a constant C and

|x|¥P=D W(x,t)>¢ as t—0, |x|#0.

Fix a compact set K<R” By the Lebesgue dominated convergence
theorem, we have

j \W(x, 1) — £ | x|~ =V dx
K
=j x| 2= | |x|2P=D W(x, 1) — £ dx—>0  as 1—0.
K

Hence, (3.8) holds. A quick check implies that W is a solution to the
problem (3.2) with g= W? and wy(x) =/ |x| ~%®»~1. By Propositions 3.1
and 3.2, we have

H [(x—y:t—s)[ W(y,5)]7dyds< o
0 YR"
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and
Wix, t) =J Tx—y:0[¢|y]~¥*=V]dy
Rn

+H T(x—y:t—s)[ Wy, s)]” dyds (3.9)
0 YR"

for (x, t)eR"x (0, o0).
Proof of Theorem 1.2. Define w;, i=1, 2, ..., inductively by

w6 0= Flx—y: o) wo(y) dy,

R"

(3.10)
Wi 1) = wy(x, 1) + jot [ re—yiimobnodds i=12....

By virtue of (1.12) and (3.9) we have

0<wilx, <[ Tx—y:0l/ 1y 7@~ ] dy

R"

< Wix, t) for (x,t)eR"x(0, o0).
Then, by induction, w; is well defined and satisfies
0<wi(x, )< - Swilx, ) Sw (X, 1)< -« S W (X, t) in R”x (0, o0).

Define w(x, t) =lim;_, , w;(x, t). Letting i > oo in (3.10), by the Lebesgue
dominated convergence theorem, we obtain

w(x, t) :f

R"

F(x—y:t)ywy(y) dy—i—fothnF(x—y ct—s)[w(y, s)]? dy ds.
(3.11)

Observe that w is continuous and satisfies w < W. Then g = w? is continuous
and satisfies (3.3). By Proposition 3.1, we have we CL%(R"x (0, 0)), and
then g = w? satisfies (3.5). Therefore, by Proposition 3.2, we C*{(R" x (0, 0))
and w is a solution of (3.2) with g =w?, that is, a solution of (1.1) and
(1.11). Moreover, if woe C(R"\{0}), then w satisfies (1.13). We easily see
that w is a minimal solution of the integral equation (3.11).

Assume that u¥@~Dyw(ux)=wy(x) for all x>0. Then we have
1@~ Oyp(ux, u?t) = w(x, t) for all x>0 by the uniqueness of the minimal
solutions. This implies that w is a self-similar solution. ||
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4. PROOF OF PROPOSITIONS 3.1 AND 3.2

4.1. Define y by

Yx )= T(x—y:i0wly)dy,

R"

where wye L1 _(R") satisfies (1.12). Then iy € C*'(R” x (0, o0)) and satisfies

loc

Y, =AY in R"x(0,0) and (-, 1) > we(-) in L}

loc

(R") ast—0.
(4.1)

(See, e.g., [ 1, Chapter 5, Theorem 6.1].) We obtain the following:

PrOPOSITION 4.1.  For every r>0, there exists a constant C=C(r)>0
such that

0<y(x, 1)< C for |x|=r and 0<t<oo. (4.2)
Assume, furthermore, that wyoe C(R"\{0}), then s satisfies
Y(x, t) > wo(x) as t—0 wuniformly in |x|=r for every r>0. (4.3)

Proof. Let r>0 be arbitrary but fixed. We note that, by (1.12), there
exists a constant C, >0 such that

0<wy(x)<C for |x|=r (4.4)
First, we show that there exists a constant C > 0 satisfying
0<y(x, 1)< C for |x|=2r and 0<?< 0. (4.5)

In fact, we write

1//(x,t)=J +£ Iix—y:t)ywyy)dy=1,+1,.

yl<r yl=r

Observe that |x — y| =7 for |x| >2r and |y| <r. Then, since woe L. (R"),

loc

11<Fr£ wo(y) dy < oo,

yI<r
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where I, =sup{I'(x—y:t): |x—y|=r} =(r:r*?2n). From (4.4) we have

12<C1f I'x—y:t)dy<C,.

Iyl=r

Therefore we obtain (4.5). Since r >0 is arbitrary, (4.2) holds.
Next we show (4.3). Since fRn I'(x—y:t)dy=1, we have

Y(x, 1) —wolx) = fRn I(x—=y:0)[we(y) —wo(x)] dy.

For |x| =r, we write

W(x, 1) — wo(x)|

Ix—=yl=p [x—yl=p
Iyl=r Iyl<r

+| T(x—y:t) [wo(y) —wo(x)| dy

[x—yl<p
=L+1,+1;,

where p €(0, r) is arbitrary but be fixed. From (4.4) we have

Ilgzclj I(x—yp:t)dy—>0 as 1—0.

Ix—yl=p

: 1
Since wy e L, (R"), we have

I2<j (wo(¥)+Cy)dy sup I'(x—y:t)—>0 as t—0.

lyI<r Ix—yl=p

We estimate 75 as
L< sup Iwoly)—wolx)| | Fx—y:oydy="sup wo(y)—wo(x)]
[x—yl<p R" Ix—yl<p

Therefore, for arbitrary p € (0, r),

tliH}) (sup |[Y(x, 1) =wo(x)[) < sup  |wo(y) —wo(x)].
- x| =7 x| =r
Ix—yl<p

We see that wy(x) is uniformly continuous in |x|>=r since wy(x) >0 as
|x| = oo. Hence, we obtain (4.3). ||
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4.2. In this subsection we show the following:

ProprosITION 4.2.  Assume that g satisfies (3.3). Then the function ¢
defined by

o(x, t)szthF(x—y:t—s)g(y,s) dy ds

is well defined on R" x (0, c0) and satisfies the following properties:
(1) ¢(x,t)—>0 as t - 0 uniformly in |x| =r for every r>0;
(i) For every r>0, there exists a constant C >0 such that

0<d(x, )< C  for |x|=r and 0<t<oo;

(ii) (-, 1) >0 in L (R") as t >0,
(iv) Assume that ge C(R"x (0, c0)). Then ¢ € C**(R"x (0, o0));

(v) Assume that (3.5) holds. Then ¢ € C*>(R"x (0, c0)) and satisfies
p,=A9p+ g in R"x (0, o).

To prove Proposition 4.2, define J and @ as
J(x, t:s)zf INx—y:t—s)[W(y,s)]?dy
RI’I
t

D(x,t)= L J(x, t:5)ds.

We note that ¢(x, 1) <P(x,t) by (3.3). We recall that [ W(x, 1)]? =

t=PP =D U(x/\/1)]7. Since x® P~V W(px, ut) = W(x, 1) for all g >0, we
have

w?P=OD(ux, u?t) = d(x, t) for all x>0 (4.6)

by direct calculation. Since U(r) is bounded on [0, c0), there exists a
constant C,> 0 such that, for (x, 1) e R” x (0, o0),

J(x, t:5) < CysP/P=D), O<s<t. (4.7)

We obtain the following estimates of J(x, ¢ : ).
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LeMMA 4.1.  For every t,>0, there exist constants o€ [0, 1) and C;=
C5(ty) >0 such that

J(x,t:5)<Cys™7  forall (x,t,5)eR"x[ty, 00)x(0,1,/2]. (4.8)
LEMMA 4.2. There exist constants g €[0, 1) and C,> 0 such that

J(x,1:85) < Cys™° for O0<s<t<} and |x|>1. (4.9)
To prove Lemmas 4.1 and 4.2, we prepare the following lemma.

LemmaA 4.3. Let p>(n+2)/n. Then there exists q = p satisfying

n 14 q
— <1 4.1
) and P q—1< (4.10)

q>

Proof. 1f p>n/(n—2), then g = p satisfies (4.10). Assume that (n+2)/n
<p<nf/(n—2). We see that (n+2)/n <p implies (n —2)/n>2 — p. Choose
q>0 as (n—2)/n>1/g>2—p. Then we obtain ¢>n/(n—2) and pg—
2¢g + 1> 0. The latter implies the second of (4.10). ||

Proof of Lemma 4.1. By Lemma 4.3 we can choose ¢ > p satisfying
(4.10). By virtue of (1.9) there exists a constant C5> 0 such that

[Ur)]?P<Csr=2/?=D  for r>1.
Since 2p/(p — 1) is decreasing, we obtain

[U(r)]? < Csr—24/a=1 for r=1. (4.11)
With no loss of generality, we may assume f,<1. Fix (x, ¢ 5)eR"x

[, 00) % (0, t,/2]. Note that 0 <\/§< 1 for se(0, #,/2]. We write

J(x,t:s)zs”/("l)[f +

=1 Ys<lyl<1

RIS IR NIV

Es—p/(p—l)[ll +12+13:|

From (4.11) we have

I, < Css?@=D j [(x—y:i—s)dy<Css?a=D

[yI=1
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and

[2<C5Sq/(q—1)J F(x—y:t—s) |y~ gy,
Vs<lyl<1

Since I'(x, t) < (4nt)~"? and t —s>1t,/2, we obtain

1, < Cs(2mty) ~"2 s#/@=1) J || ~2aKa=D) gy,

[yI<1

By virtue of ¢ > n/(n — 2), the integral on the right-hand side is convergent.
To estimate /5, we perform the change of variable z = y/\/g to obtain

e s TRV

g(zmo)—"ﬁsnﬂj [U(|z])]” d=.

|zl <1
Therefore, we obtain
J(x,t:5) < C[s—Pp=D+alla=D 4 g—p/lp—=D+n/2] for some C>0.

Note that p> (n+ 2)/n implies p/(p — 1) —n/2 < 1. Hence, we obtain (4.8)
with

P g p_n
= - —2le
g mln{p_l q—ljp—l 2}<

This completes the proof. |

Proof of Lemma 4.2. By the same argument in the proof of Lemma 4.1,
we obtain (4.11). Let |x| >1 and let 0 <s<¢<1/4. Note that ./s <\ﬁ<
1/2. We write

J(x,t:s)zs_f’/(p_l){f +j
=12 s<ly<1/2

%WMQAFu*y”*”UMﬂA@ﬂP@

=s 2=V + L+ 1]
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From (4.11) we have

I, < Cssq/‘q_”f T(x—y:t—s)|y| 20— gy <229/a=DC g=ala=
=12

and

I, < Css¥a—1 I(x—y:t—s)|y| 24— dy.
Js<h<1

Observe that |x— y|>1/2 for |x| >1 and |y| <1/2. Then we obtain

— —1 —2, —1
12 < Cs F1/25 q/(q—1) f |y| q/(q—1) dy,
IyI<1/2

where I'jp=sup,.o {I'(x—y:t): [x—y|>1/2} =I'(1/2:n/8). Since ¢>

n/(n —2), the integral on the right-hand side is convergent. To estimate /5,
we perform the change of variable z = y/\/; to obtain

LElp|  TUIINSP <D™ | L) d

Izl <1

Therefore, by the same argument of the proof of Lemma 4.1, we obtain

(49). 1

Lemma 4.4.  The function @ is well defined and continuous on R" x (0, c0).
Moreover, for every t,>0, there exists a constant C= C(ty) >0 such that

0<D(x,t)<C  for xeR" and t=t,. (4.12)

Proof. For t=1,>0, we write

/2 t
qb(x,z)=j J(x,t:s)ds—l—f Jx, t:s)ds=1,+1,.
0 /2
From (4.8), we have I, <(1 —a)~'2°7'C51577. By (4.7) it follows that
124 J(x, t:5)ds<(p—1)2Y=DC, o 1e=D),

/2

Thus we obtain (4.12). Since ¢,>0 is arbitrarily, @ is well defined on
R”x (0, ). 1



426 NAITO AND SUZUKI
LemMmA 4.5. (i) @(x,t)— 0as t— 0 uniformly in |x| =r for every r > 0;
(1) There exists a constant C>0 such that
XV o(x, )< C for xeR™\{0}, 0<t<ono;

(iii) &(-, 1) >0 in L!

loc

(R") as t— 0.
Proof. First, we show that
&(x,t)—>0 ast—0 uniformly on |x|>1, (4.13)
and that there exists a constant Cg> 0 satisfying
D(x, 1)< Cq for |x|=1, 0<t<oo. (4.14)

In fact, by Lemma 4.2 we have
C, ,_ 1
d(x, ) S——1t 7 for 0<t<1 and |x|=1.

l1—0o

This implies (4.13). From (4.12), we obtain (4.14).
By virtue of (4.6), we find that (4.13) implies (i). Moreover,

|ux| P =D @(ux, p?t) = |x|¥® =Y @(x, t) for all u>0.

Let |x| =1. Then, by (4.14), we obtain

|ux|¥P =D d(ux, u?t) < Cs  forall u>0, |x|=1, 0<i<o0.
This implies (ii). Fix a compact set K <R”. By the Lebesgue dominated
convergence theorem, we observe that

J d(x, t) dxzj |x| =@ =D ||x|¥?=Dp(x, 1) dx >0  as -0,

K K
which implies (iii). ||

Proof of Proposition 4.2. Since ¢ < @, the function ¢ is well defined on
R” % (0, c0) and satisfies (i)—(iii) by Lemmas 4.4 and 4.5(i)—(iii). To show
(iv) and (v), fix t, and T with 0 <¢,< T. By the Fubini theorem and the
property of the heat kernel I, we obtain

dlx 0=

R

Tx=yit—t) gt dy+ [ [ Tlryii=s)gly.s)dyds

for (x,1)eR"x[ty, T]. If g is continuous, then ¢e CHOR"x [y, T]),
and if (3.5) holds, then ¢ € C>(R" x [y, T]) and satisfies ¢, = A¢ + g in
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R"x[ty, T]. (See, e.g., [6, Chapter 1, Theorem 9].) Since ¢, and T are
arbitrarily, (iv) and (v) hold. ||

4.3. Observe that Proposition 3.1 is included by Proposition 4.2. We
prove Proposition 3.2 by employing Propositions 4.1 and 4.2.

Proof of Proposition 3.2. Assume that w is defined by (3.6), that is,
w=1 +¢. Then, we C*>'(R"x (0, o0)) and is a solution to the problem of
(3.2) by (4.1) and Proposition 4.2(iii) and (v). By (4.2) and Proposition
4.2(i1), w satisfies the growth condition (3.4).

Conversely, assume that w is a solution of (3.2) satisfying (3.4). Define
W as

w(x, t)zj

RrR"

t
Ix—y:t) wo(y)dy+L Lnl“(x—y:z‘fs)g(y,s)dyds.
Then, by the argument above, W is a solution to the problem (3.2) satis-
fying (3.4). Let v=w —w. Then v satisfies the growth condition (3.4) and
is a solution of the problem

v,=Av in R"x(0, o) and v(x,0)=0 in the sense of LL (R").

loc

By the uniqueness theorem ([ 1, Chapter 5, Theorem 6.1]), we have v =0,
that is, w =w. This implies (3.6).

Moreover, if wye C(R*\{0}), then, by (4.3) and Proposition 4.2(i), we
obtain (3.7). |
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