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The symmetry properties of positive solutions of the equation

2u+
1
2

x } {u+
1

p&1
u+u p=0 in Rn,

where n�2, p>(n+2)�n, was studied. It was proved that u must be radially sym-
metric about the origin provided u(x)=o( |x| &2�( p&1)) as |x| � �, and that there
exist non-radial solutions u satisfying lim sup |x| � � |x| 2�( p&1)u(x)>0. � 2000

Academic Press

1. INTRODUCTION

In this paper we consider the symmetry properties of positive solutions
of the equation

2u+
1
2

x } {u+
1

p&1
u+u p=0 in Rn, (1.1)

where n�2 and p>1. This equation arises in the study of (forward) self-
similar solutions of the semilinear heat equation

wt=2w+w p in Rn_(0, �). (1.2)
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It is well known that if w(x, t) satisfies (1.2), then, for +>0 the rescaled
functions

w+(x, t)=+2�( p&1)w(+x, +2t)

define a one parameter family of solutions to (1.2). A solution w is said to
be self-similar, when w+(x, t)=w(x, t) for all +>0. It can be easily checked
that w is a self-similar solution to (1.2) if and only if w has the form

w(x, t)=t&1�( p&1)u(x�- t ), (1.3)

where u satisfies the elliptic Eq. (1.1). Moreover, if u has spherical sym-
metry, that is if u=u(r), r=|x|, then u satisfies the ordinary differential
equation

u"+\n&1
r

+
r
2+ u$+

1
p&1

u+u p=0, r>0. (1.4)

Such self-similar solutions are often used to describe the large time
behavior of global solutions to the Cauchy problem, see, e.g., [11, 13, 3, 4,
14, 5, and 15], and to show nonuniqueness of solution to (1.2) with zero
initial data in a certain functional space, see [12].

First we state the result concerning the symmetry properties of the
solution of (1.1).

Theorem 1.1. Let u # C2(Rn) be a positive solution of (1.1) such that

u(x)=o( |x|&2�( p&1)) as |x| � �. (1.5)

Then u must be radially symmetric about the origin.

The proof of Theorem 1.1 is based on the moving planes argument. This
technique was developed by Serrin [18] in PDE theory, and extended and
generalized by Gidas, Ni, and Nirenberg [9, 10]. We remark that with a
change of variables we are still able to prove a radial symmetry result for
Eq. (1.1).

Let us consider the problem

{u"+\n&1
r

+
r
2+ u$+

1
p&1

u+|u| p&1 u=0, r>0,
(1.6)

u$(0)=0 and u(0)=: # R.

The problem (1.6) has been investigated extensively in [12, 16, 20, and 2].
We denote by u(r; :) the unique solution of (1.6). We recall that u(r; :) has
the following properties:
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(i) limr � � r2�( p&1)u(r; :)=L(:) exists and is finite for every : # R
(see [12, Theorem 5]);

(ii) if L(:)=0, then there exists a constant A{0 such that

u(r; :)=Ae&r 2�4r2�( p&1)&n[1+O(r&2)] as r � �

(see [16, Theorem 1]);

(iii) if p�(n+2)�(n&2), then u(r; :) is positive on [0, �) and
L(:)>0 for every :>0 (see [12, Theorem 5]);

(iv) if (n+2)�n<p<(n+2)�(n&2), then there exists a unique :>0
such that u(r; :) is positive on [0, �) and L(:)=0 (see [20, Theorem 1]
and [2, Theorem 1.2 and Corollary 1.3]).

By virtue of Theorem 1.1 we obtain the following:

Corollary 1.1. (i) Assume that p�(n+2)�(n&2). Then there exists
no positive solution u of (1.1) satisfying (1.5).

(ii) Assume that (n+2)�n<p<(n+2)�(n&2). Then there exists a
unique positive solution u(x) satisfying (1.5). Moreover, the solution u is
radially symmetric about the origin.

Remark. The result (i) is differently proven by [3, Proposition 4.3]
based on the Pohozaev identity.

Following the notations in [3] and [14], we define

L2(K )={u: Rn � R; |
Rn

|u|2 K(x) dx<�= and

H1(K )={u: Rn � R; |
R n

( |u|2+|{u|2) K(x) dx<�= ,

where K(x)=exp( |x|2�4). Escobedo and Kavian have shown in [3, Propo-
sition 3.5] that if 1<p<(n+2)�(n&2) and if u # H1(K ) is a solution of
(1.1), then u # C2(Rn) and satisfies u(x)=O(exp(&|x|2�8)) as |x| � �. As
a consequence of Corollary 1.1, we obtain the following:

Corollary 1.2. Assume that (n+2)�n<p<(n+2)�(n&2). Then the
problem

{2u+
1
2

x } {u+
1

p&1
u+u p=0 in Rn,

(1.7)

u # H1(K ) and u>0 in Rn,

has a unique solution.
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Let us consider the Cauchy problem

{wt=2w+w p

w(x, 0)={w0

in Rn_(0, �),
in Rn,

(1.8)

where w0 # L2(K ) & L�(Rn), w0�0, and {>0 is a parameter. We denote
by w(x, t; {) the unique solutions of (1.8) (see [15]). Combining the result
by Kawanago [15, Theorem 1] and Corollary 1.2, we obtain the following,
where the asymptotic behavior of w( } , t; {) as t � � becomes clearer.

Corollary 1.3. Assume that (n+2)�n<p<(n+2)�(n&2). Then there
exists a unique {0>0 such that the solution w(x, t; {) is a global solution if
{ # (0, {0], and w(x, t; {) blows up in finite time if { # ({0 , �). Moreover,
w(x, t; {0) satisfies

lim
t � �

&t1�( p&1)w( } , t; {0)&u0( } �- t )&L�(R n)=0,

where u0 is a unique solution of the problem (1.7).

Next we consider the existence of nonradial solutions of (1.1). Let
p>(n+2)�n and let U(r) be a positive solution of (1.4) satisfying

U$(0)=0 and lim
r � �

r2�( p&1)U(r)>0. (1.9)

The existence of such U is obtained by [12, Theorem 5]. Define
l=l(U )>0 as

l= lim
r � �

r2�( p&1)U(r). (1.10)

We investigate the Cauchy problem for Eq. (1.2) with

w(x, 0)=w0 # L1
loc(Rn), (1.11)

where

0�w0(x)�l |x|&2�( p&1), w0�0, x # Rn "[0]. (1.12)

Relation (1.11) is taken in the sense of L1
loc(Rn), that is,

|
K

|w(x, t)&w0(x)| dx � 0 as t � 0

for any compact subset K of Rn. We note that w0 # L1
loc(R

n) if (1.12) holds
with p>(n+2)�n.
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Theorem 1.2. Let p>(n+2)�n. Assume that (1.12) holds, where l is the
constant in (1.10). Then there exists a positive solution w # C2, 1(Rn_(0, �))
of (1.2) and (1.11). Assume, furthermore, that w0 # C(Rn"[0]), then w
satisfies

w(x, t) � w0(x) as t � 0 uniformly in |x|�r for every r>0. (1.13)

Moreover, w is self-similar if +2�( p&1)w0(+x)=w0(x) for every +>0.

Corollary 1.4. Let p>(n+2)�n. Assume that A: Sn&1 � R is continuous
and satisfies

0�A(_)�l, A�0, _ # Sn&1. (1.14)

Then there exists a positive self-similar solution w # C2, 1(Rn_(0, �)) of
(1.2) satisfying (1.11) and (1.13) with w0(x)=A(x�|x| ) |x|&2�( p&1).

Recall that self-similar solutions w to (1.2) have the form (1.3) with u
satisfying (1.1). Therefore, w(_, t)=r2�( p&1)u(r_) for _ # S n&1, where
r=1�- t . Then we obtain the following corollary, which shows that condi-
tion (1.5) in Theorem 1.1 is crucial.

Corollary 1.5. Let p>(n+2)�n. Assume that A: Sn&1 � R is con-
tinuous and satisfies (1.14). Then there exists a positive non-radial solution u
of (1.1) satisfying

r2�( p&1)u(r_) � A(_) as r � � uniformly in _ # S n&1.

Remark. (i) If 1<p�(n+2)�n, no time global, non-negative, and
nontrivial solution exists in (1.2) (see, e.g., [7, 19, and 14]). Therefore,
(1.1) admits a positive solution only if p>(n+2)�n.

(ii) We find that the solution w of (1.2) and (1.11) obtained in
Theorem 1.2 is a minimal solution of the integral equation

w(x, t)=|
R n

1 (x& y: t) w0( y) dy+|
t

0
|

Rn
1 (x& y: t&s)[w( y, s)] p dy ds,

where 1 (x: t)=(4?t)&n�2 e&|x|2�4t. See the proof of Theorem 1.2 below.

(iii) Galaktionov and Vazquez [8] studied the Cauchy problem (1.2)
and (1.11) with singular initial values for the case p>n�(n&2).

This paper is organized as follows: in Section 2, we treat the symmetry
properties of the solutions and prove Theorem 1.1. In Section 3, we state
some propositions concerning the properties of solutions to the Cauchy
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problem with singular initial data, and prove Theorem 1.2. We prove these
propositions in Section 4.

2. RADIAL SYMMETRY

In this section we investigate more general equation

2u+ 1
2 x } {u+ku+ f (u)=0 in Rn, (2.1)

where n�2, k is a nonnegative constant, and f # C1[0, �). Theorem 1.1 is
a consequence of the following result.

Theorem 2.1. Assume that

f (s)=O(s_) as s � 0 for some _>1. (2.2)

Let u be a positive solution of (2.1) such that

u(x)=o( |x|&2k) as |x| � �. (2.3)

Then u must be radially symmetric about the origin.

We obtain Theorem 2.1 by the following two propositions.

Proposition 2.1. Assume that (2.2) holds. Let u be a positive solution
satisfying (2.3). Then, for every m>0, u(x)=o( |x|&m) as |x| � �.

Proposition 2.2. Let u be a positive solution such that

u(x)=o( |x|&2:) as |x| � � for some :>0. (2.4)

Assume that

:>k+max[ | f $(s)|: 0�s�&u&L�(R n)]. (2.5)

Then u must be radially symmetric.

To prove Proposition 2.1 we prepare the following lemma.

Lemma 2.1. Assume that (2.2) holds. Let u be a positive solution of (2.1)
such that

u(x)=o( |x|&; ) as |x| � � for some ;>2k.

Then, for every m>0, u(x)=o( |x|&m) as |x| � �.
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Proof. Set v(x)=|x|; u(x). Then v(x) � 0 as |x| � � and v satisfies

2v+
1
2

x } {v&
2;
|x|2 x } {v&\;

2
&k+ v+

;(;+2&n)
|x|2 v+|x|; f ( |x| &; v)=0.

Defining

Lv#2v+
1
2

x } {v&
2;
|x|2 x } {v,

we have

Lv=_\;
2

&k +&
;(;+2&n)

|x| 2 &
f (u)

u & v.

Note that ;>k�2 and f (s)�s � 0 as s � 0 by (2.2). Then there exists a
R1>0 such that Lv�0 for |x|�R1 .

Fix m>0 and define w(r)=r&m, r=|x|. Then it follows that

Lw=wrr+
n&1&2;

r
wr+

1
2

rwr=r&1 _&
m
2

+
m(m+1)&m(n&1&2;)

r2 & .

Then there exists a R2>0 such that Lw�0 for |x|�R2 . Let R0=
max[R1 , R2]. Take C>0 so large that Cw&v�0 on |x|=R0 . Then
Cw&v satisfies

L(Cw&v)�0 for |x|>R0 and Cw&v � 0 as |x| � �.

By the maximum principle, we obtain Cw�v for |x|�R0 , i.e., u(x)�
C |x|&m&; for |x|�R0 . Since m>0 is arbitrary, we obtain the conclusion.

K

Proof of Proposition 2.1. Set v(x)=|x|2k u(x). Then v(x) � 0 as
|x| � � and v satisfies

2v+
1
2

x } {v&
4k
|x|2 x } {v+

2k(2k+2&n)
|x|2 v+|x| 2k f ( |x|&2kv)=0.

Defining

Lv#2v+
1
2

x } {v&
4k
|x|2 x } {v,
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we have

Lv=&
2k(2k+2&n)

|x|2 v&|x|2k f (u).

We note here that

|x|2k f (u)=
f (u)
u_

v_

|x|2k(_&1) .

Then, by (2.2), we obtain

Lv=o( |x|&$0) as |x| � �,

where $0=min[2, 2k(_&1)]. Let w(x)=|x|&$, where $=$0 �2. Then we
have

Lw=|x|&$ _&
$
2

+
$($+1)&$(n&1&2k)

|x|2 &� &
$
4

|x|&$

for |x| sufficiently large. Then there exists a R0>0 such that Lw&Lv�0
for |x|�R0 . Take C�1 so large that Cw�v on |x|=R0 . Then Cw&v
satisfies

L(Cw&v)�0 for |x|>R0 and Cw&v � 0 as |x| � �.

By the maximum principle, we obtain Cw�v for |x|�R0 , i.e., v(x)�
C |x|&$ for |x|�R0 . This implies that u(x)=o( |x|&; ) as |x| � � for
;=2k+$>2k. By Lemma 2.1, we conclude that u(x)=o( |x|&m) as
|x| � � for every m>0. K

Next we prove Proposition 2.2. Let u be a positive solution of (2.1)
satisfying (2.4). Define

w(x, t)=t&:u(x�- t ), (x, t) # Rn_(0, �). (2.6)

Lemma 2.2. (i) For every T >0, w(x, t) � 0 as |x| � � uniformly in
t # (0, T ];

(ii) For every *>0, w(x, t) � 0 as t � 0 uniformly in |x|�*.

Proof. From (2.4), for any =>0, there exists a R>0 such that

|x|2: u(x)<=, |x|�R. (2.7)
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By virtue of (2.6) we have

|x|2: w(x, t)=|x�- t |2: u(x�- t ). (2.8)

(i) Fix T >0. From (2.7) and (2.8) it follows that

|x|2: w(x, t)<= for |x|�RT 1�2, t # (0, T ].

Since =>0 is arbitrary, we have w(x, t) � 0 as |x| � � uniformly in
t # (0, T ].

(ii) From (2.7) and (2.8) we obtain

*2:w(x, t)�|x|2: w(x, t)<=, for |x|�*, 0<t<(*�R)2.

Then w(x, t) � 0 as t � 0 uniformly in |x|�*. K

For * # R, we define T* and 0* as

T*=[x=(x1 , ..., xn) # Rn : x1=*] and 0*=[x # Rn : x1<*],

respectively. For x=(x1 , ..., xn) # Rn and * # R, let x* be the reflection of x
with respect to T* , i.e., x*=(2*&x1 , x2 , ..., xn). It is easy to see that, if
*>0,

|x*|>|x| for x # 0* and [x*: x # 0*]=[x: x1>*]/[x: |x|�*].

By Lemma 2.2 we have the following:

Lemma 2.3. Let *>0.

(i) For every T >0, w(x*, t) � 0 as |x| � �, x # 0* , uniformly in
t # (0, T ];

(ii) w(x*, t) � 0 as t � 0 uniformly in x # 0* .

Lemma 2.4. Define , as ,(x, t)=w(x, t)&w(x*, t). Then we have

,t=2,+c(x, t) , in 0*_(0, �) and ,=0 on T*_(0, �),

where

c(x, t)=_&(:&k)+|
1

0
f $(u*&s(u*&u)) ds& t&1 (2.9)

with u=u(x�- t ) and u*=u(x*�- t ).
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Proof. From (2.6) we have

wt=2w&(:&k) t&1w+t&:&1 f (t:w), (x, t) # Rn_(0, �).

Let w*(x, t)=w(x*, t). Then w* satisfies

w*
t =2w*&(:&k) t&1w*+t&:&1 f (t:w*), (x, t) # 0*_(0, �).

Then we have ,t=2,+c,, where c is the function in (2.9). K

Lemma 2.5. For *>0, we have w(x, t)�w(x*, t) for (x, t) # 0*_(0, �).

Proof. Let ,(x, t)=w(x, t)&w(x*, t). We show that ,(x, t)�0 for
(x, t) # 0*_(0, �). Assume to the contrary that there exists a (x0 , t0) #
0*_(0, �) such that ,(x0 , t0)<0. Take =>0 so small that ,(x0 , t0)<
&=<0. By Lemma 2.3(ii), we can take T0 # (0, t0) so that w(x*, T0)<= for
x # 0* . Then it follows that

,(x, T0)>&=, x # 0* . (2.10)

Fix T >t0 . By Lemma 2.3(i), we can take R>|x0| so large that w(x*, t)<=
for |x|�R, x # 0* , t # [T0 , T ]. Then we obtain

,(x, t)>&=, |x|�R, x # 0* , t # [T0 , T ]. (2.11)

Define Q=[x # 0* : |x|<R]. Let 7 be a parabolic boundary of
Q_(T0 , T ), i.e.,

7=(Q_[T0]) _ (�Q_(T0 , T )).

From Lemma 2.4, (2.10), and (2.11) we have

,t=2,+c, in Q_(T0 , T ) and ,� &= on 7.

Note that c(x, t)�0 from (2.5) and (2.9). Define � as �(x, t)=,(x, t)+=.
Then � satisfies

�t�2�+c� in Q_(T0 , T ) and ��0 on 7.

By the maximum principle ([17, Chapter 3, Theorem 7]), we have ��0
on Q� _[T0 , T ], which implies that

,(x, t)�&=, (x, t) # Q� _[T0 , T ]. (2.12)

On the other hand, (x0 , t0) # Q_(T0 , T ) and ,(x0 , t0)<&=. This contra-
dicts to (2.12). Hence ,(x, t)�0 for (x, t) # 0*_(0, �). K
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Proof of Proposition 2.2. By Lemma 2.5, we have w(x, t)�w(x*, t) for
*>0, (x, t) # 0*_(0, �). From the continuity of w, we have w(x, t)�
w(x0, t) for (x, t) # 00_(0, �).

We can repeat the previous arguments for the negative x1-direction to
conclude that w(x, t)�w(x0, t) for (x, t) # 00_(0, �). Hence, w(x, t) must
be symmetric about the plane x1=0. Since the Eq.(2.1) is invariant under
the rotation and conclude that w(x, t) is symmetric in every direction.
Therefore, u must be radially symmetric about the origin. K

3. PROOF OF THEOREM 1.2

We assume, henceforth, that p>(n+2)�n. Recall that U(r) is a positive
solution of (1.4) satisfying (1.9), and that l is a positive constant defined
by (1.10). Let W=W(x, t) be a self-similar solution of (1.2) of the form

W(x, t)=t&1�( p&1)U( |x|�- t ). (3.1)

To prove Theorem 1.2, we consider the Cauchy problem

{wt=2w+ g in Rn_(0, �),
w(x, 0)=w0 # L1

loc(R
n).

(3.2)

The initial condition in (3.2) is taken in the sense of L1
loc(Rn). We always

assume that w0 satisfies (1.12), and that g satisfies

0�g(x, t)�[W(x, t)] p in Rn_(0, �). (3.3)

We consider the function w satisfying the growth condition:

{there exists positive constants C, :, and r such that
|w(x, t)|�Ce: |x|2 for all |x|�r and all t # [0, �).

(3.4)

We obtain the following propositions. Proofs will be given in the next section.

Proposition 3.1. The function

,(x, t)=|
t

0
|

Rn
1 (x& y: t&s) g( y, s) dy ds

is well defined on Rn_(0, �). Assume, furthermore, that g is continuous on
Rn_(0, �), then , # C1, 0(Rn_(0, �)).
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Proposition 3.2. Assume that

{g # C(Rn_(0, �)) and x [ g(x, t) is locally Ho� lder continuous
uniformly in t # [t0 , T ] for every t0 and T with 0<t0<T<�.

(3.5)

Then the function w # C2, 1(Rn_(0, �)) is a solution of the problem (3.2)
satisfying the growth condition (3.4) if and only if

w(x, t)=|
R n

1 (x& y: t) w0( y) dy+|
t

0
|

R n
1 (x& y: t&s) g( y, s) dy ds.

(3.6)

Assume, furthermore, that w0 # C(Rn"[0]), then w defined by (3.6) satisfies

w(x, t) � w0(x) as t � 0 uniformly in |x|�r for every r>0. (3.7)

We show that W defined by (3.1) satisfies

W(x, 0)=l |x|&2�( p&1) in the sense of L1
loc(R

n). (3.8)

In fact, we have |x|2�( p&1) W(x, t)=|x�- t |2�( p&1) U( |x|�- t ). By virtue of
(1.10), we obtain 0�|x|2�( p&1) W(x, t)�C with a constant C and

|x|2�( p&1) W(x, t) � l as t � 0, |x|{0.

Fix a compact set K/Rn. By the Lebesgue dominated convergence
theorem, we have

|
K

|W(x, t)&l |x|&2�( p&1)| dx

=|
K

|x|&2�( p&1) | |x|2�( p&1) W(x, t)&l| dx � 0 as t � 0.

Hence, (3.8) holds. A quick check implies that W is a solution to the
problem (3.2) with g=W p and w0(x)=l |x|&2�( p&1). By Propositions 3.1
and 3.2, we have

|
t

0
|

R n
1 (x& y : t&s)[W( y, s)] p dy ds<�
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and

W(x, t)=|
R n

1 (x& y : t)[l | y| &2�( p&1)] dy

+|
t

0
|

Rn
1 (x& y : t&s)[W( y, s)] p dy ds (3.9)

for (x, t) # Rn_(0, �).

Proof of Theorem 1.2. Define wi , i=1, 2, ..., inductively by

{
w1(x, t)=|

Rn
1 (x& y : t) w0( y) dy,

(3.10)

wi+1(x, t)=w1(x, t)+|
t

0
|

Rn
1(x& y : t&s)[wi ( y, s)] p dy ds, i=1, 2, ... .

By virtue of (1.12) and (3.9) we have

0�w1(x, t)�|
R n

1 (x& y : t)[l | y|&2�( p&1)] dy

�W(x, t) for (x, t) # Rn_(0, �).

Then, by induction, wi is well defined and satisfies

0�w1(x, t)� } } } �wi (x, t)�wi+1(x, t)� } } } �W(x, t) in Rn_(0, �).

Define w(x, t)=limi � � wi (x, t). Letting i � � in (3.10), by the Lebesgue
dominated convergence theorem, we obtain

w(x, t)=|
Rn

1 (x& y : t) w0( y) dy+|
t

0
|

Rn
1 (x& y : t&s)[w( y, s)] p dy ds.

(3.11)

Observe that w is continuous and satisfies w�W. Then g=w p is continuous
and satisfies (3.3). By Proposition 3.1, we have w # C1, 0(Rn_(0, �)), and
then g=w p satisfies (3.5). Therefore, by Proposition 3.2, w # C2, 1(Rn_(0, �))
and w is a solution of (3.2) with g=w p, that is, a solution of (1.1) and
(1.11). Moreover, if w0 # C(Rn "[0]), then w satisfies (1.13). We easily see
that w is a minimal solution of the integral equation (3.11).

Assume that +2�( p&1)w0(+x)=w0(x) for all +>0. Then we have
+2�( p&1)w(+x, +2t)=w(x, t) for all +>0 by the uniqueness of the minimal
solutions. This implies that w is a self-similar solution. K
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4. PROOF OF PROPOSITIONS 3.1 AND 3.2

4.1. Define � by

�(x, t)=|
R n

1 (x& y : t) w0( y) dy,

where w0 # L1
loc(Rn) satisfies (1.12). Then � # C2, 1(Rn_(0, �)) and satisfies

�t=2� in Rn_(0, �) and �( } , t) � w0( } ) in L1
loc(Rn) as t � 0.

(4.1)

(See, e.g., [1, Chapter 5, Theorem 6.1].) We obtain the following:

Proposition 4.1. For every r>0, there exists a constant C=C(r)>0
such that

0��(x, t)�C for |x|�r and 0<t<�. (4.2)

Assume, furthermore, that w0 # C(Rn "[0]), then � satisfies

�(x, t) � w0(x) as t � 0 uniformly in |x|�r for every r>0. (4.3)

Proof. Let r>0 be arbitrary but fixed. We note that, by (1.12), there
exists a constant C1>0 such that

0�w0(x)�C1 for |x|�r. (4.4)

First, we show that there exists a constant C>0 satisfying

0��(x, t)�C for |x|�2r and 0<t<�. (4.5)

In fact, we write

�(x, t)=|
| y|�r

+|
| y|�r

1 (x& y : t) w0( y) dy#I1+I2 .

Observe that |x& y|�r for |x|�2r and | y|�r. Then, since w0 # L1
loc(Rn),

I1�1r |
| y|�r

w0( y) dy<�,
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where 1r=sup[1 (x& y : t): |x& y|�r]=1 (r : r2�2n). From (4.4) we have

I2�C1 |
| y|�r

1 (x& y : t) dy�C1 .

Therefore we obtain (4.5). Since r>0 is arbitrary, (4.2) holds.
Next we show (4.3). Since �Rn 1 (x& y : t) dy=1, we have

�(x, t)&w0(x)=|
Rn

1 (x& y : t)[w0( y)&w0(x)] dy.

For |x|�r, we write

|�(x, t)&w0(x)|

�|
|x& y|�\
| y|�r

+|
|x& y| �\
| y|�r

+|
|x& y|<\

1 (x& y : t) |w0( y)&w0(x)| dy

#I1+I2+I3 ,

where \ # (0, r) is arbitrary but be fixed. From (4.4) we have

I1�2C1 |
|x& y|�\

1 (x& y : t) dy � 0 as t � 0.

Since w0 # L1
loc(Rn), we have

I2�|
| y|�r

(w0( y)+C1) dy sup
|x& y| �\

1 (x& y : t) � 0 as t � 0.

We estimate I3 as

I3� sup
|x& y| <\

|w0( y)&w0(x)| |
R n

1 (x& y : t) dy= sup
|x& y|<\

|w0( y)&w0(x)|.

Therefore, for arbitrary \ # (0, r),

lim
t � 0

( sup
|x|�r

|�(x, t)&w0(x)| )� sup
|x| �r

|x& y|<\

|w0( y)&w0(x)|.

We see that w0(x) is uniformly continuous in |x|�r since w0(x) � 0 as
|x| � �. Hence, we obtain (4.3). K
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4.2. In this subsection we show the following:

Proposition 4.2. Assume that g satisfies (3.3). Then the function ,
defined by

,(x, t)=|
t

0
|

Rn
1 (x& y : t&s) g( y, s) dy ds

is well defined on Rn_(0, �) and satisfies the following properties:

(i) ,(x, t) � 0 as t � 0 uniformly in |x|�r for every r>0;

(ii) For every r>0, there exists a constant C>0 such that

0�,(x, t)�C for |x|�r and 0<t<�;

(iii) ,( } , t) � 0 in L1
loc(R

n) as t � 0;

(iv) Assume that g # C(Rn_(0, �)). Then , # C1, 0(Rn_(0, �));

(v) Assume that (3.5) holds. Then , # C2, 1(Rn_(0, �)) and satisfies

,t=2,+ g in Rn_(0, �).

To prove Proposition 4.2, define J and 8 as

{
J(x, t : s)=|

R n
1 (x& y : t&s)[W( y, s)] p dy

8(x, t)=|
t

0
J(x, t : s) ds.

We note that ,(x, t)�8(x, t) by (3.3). We recall that [W(x, t)] p=
t&p�( p&1)[U(x�- t )] p. Since +2�( p&1)W(+x, +2t)=W(x, t) for all +>0, we
have

+2�( p&1)8(+x, +2t)=8(x, t) for all +>0 (4.6)

by direct calculation. Since U(r) is bounded on [0, �), there exists a
constant C2>0 such that, for (x, t) # Rn_(0, �),

J(x, t : s)�C2s&p�( p&1), 0<s<t. (4.7)

We obtain the following estimates of J(x, t : s).
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Lemma 4.1. For every t0>0, there exist constants _ # [0, 1) and C3=
C3(t0)>0 such that

J(x, t : s)�C3s&_ for all (x, t, s) # Rn_[t0 , �)_(0, t0 �2]. (4.8)

Lemma 4.2. There exist constants _ # [0, 1) and C4>0 such that

J(x, t : s)�C4s&_ for 0<s<t� 1
4 and |x|�1. (4.9)

To prove Lemmas 4.1 and 4.2, we prepare the following lemma.

Lemma 4.3. Let p>(n+2)�n. Then there exists q�p satisfying

q>
n

n&2
and

p
p&1

&
q

q&1
<1. (4.10)

Proof. If p>n�(n&2), then q= p satisfies (4.10). Assume that (n+2)�n
<p�n�(n&2). We see that (n+2)�n<p implies (n&2)�n>2& p. Choose
q>0 as (n&2)�n>1�q>2& p. Then we obtain q>n�(n&2) and pq&
2q+1>0. The latter implies the second of (4.10). K

Proof of Lemma 4.1. By Lemma 4.3 we can choose q�p satisfying
(4.10). By virtue of (1.9) there exists a constant C5>0 such that

[U(r)] p�C5 r&2p�( p&1) for r�1.

Since 2p�( p&1) is decreasing, we obtain

[U(r)] p�C5 r&2q�(q&1) for r�1. (4.11)

With no loss of generality, we may assume t0<1. Fix (x, t, s) # Rn_
[t0 , �)_(0, t0 �2]. Note that 0<- s <1 for s # (0, t0 �2]. We write

J(x, t : s)=s&p�( p&1) _| | y|�1
+|

- s �| y|�1

+|
| y| �- s

1 (x& y : t&s)[U( | y|�- s )] p dy&
#s&p�( p&1)[I1+I2+I3].

From (4.11) we have

I1�C5 sq�(q&1) |
| y|�1

1 (x& y : t&s) dy�C5 sq�(q&1)

423SELF-SIMILAR SOLUTIONS



and

I2�C5 sq�(q&1) |
- s �| y|�1

1 (x& y : t&s) | y| &2q�(q&1) dy.

Since 1 (x, t)�(4?t)&n�2 and t&s�t0 �2, we obtain

I2�C5(2?t0)&n�2 sq�(q&1) |
| y|�1

| y|&2q�(q&1) dy.

By virtue of q>n�(n&2), the integral on the right-hand side is convergent.
To estimate I3 , we perform the change of variable z= y�- s to obtain

I3�(2?t0)&n�2 |
| y|�- s

[U( | y|�- s )] p dy

�(2?t0)&n�2 sn�2 |
|z|�1

[U( |z| )] p dz.

Therefore, we obtain

J(x, t : s)�C[s&p�( p&1)+q�(q&1)+s&p�( p&1)+n�2] for some C>0.

Note that p>(n+2)�n implies p�( p&1)&n�2<1. Hence, we obtain (4.8)
with

_=min { p
p&1

&
q

q&1
,

p
p&1

&
n
2=<1.

This completes the proof. K

Proof of Lemma 4.2. By the same argument in the proof of Lemma 4.1,
we obtain (4.11). Let |x|�1 and let 0<s<t�1�4. Note that - s <- t �
1�2. We write

J(x, t : s)=s&p�( p&1) _| | y|�1�2
+|

- s �| y| �1�2

+|
| y|�- s

1 (x& y : t&s)[U( | y|�- s )] p dy&
#s&p�( p&1)[I1+I2+I3].
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From (4.11) we have

I1�C5 sq�(q&1) |
| y|�1�2

1 (x& y : t&s) | y|&2q�(q&1) dy�22q�(q&1)C5s&q�(q&1)

and

I2�C5 sq�(q&1) |
- s �| y|�1�2

1 (x& y : t&s) | y| &2q�(q&1) dy.

Observe that |x& y|�1�2 for |x|�1 and | y|�1�2. Then we obtain

I2�C511�2s&q�(q&1) |
| y|�1�2

| y|&2q�(q&1) dy,

where 11�2=supt>0 [1 (x& y : t): |x& y|�1�2]=1 (1�2 : n�8). Since q>
n�(n&2), the integral on the right-hand side is convergent. To estimate I3 ,
we perform the change of variable z= y�- s to obtain

I3�11�2 |
| y|�- s

[U( | y|�- s )] p dy�11�2sn�2 |
|z| �1

[U( |z| )] p dz.

Therefore, by the same argument of the proof of Lemma 4.1, we obtain
(4.9). K

Lemma 4.4. The function 8 is well defined and continuous on Rn_(0, �).
Moreover, for every t0>0, there exists a constant C=C(t0)>0 such that

0�8(x, t)�C for x # Rn and t�t0 . (4.12)

Proof. For t�t0>0, we write

8(x, t)=|
t0 �2

0
J(x, t : s) ds+|

t

t0 �2
J(x, t : s) ds#I1+I2 .

From (4.8), we have I1�(1&_)&1 2_&1C3 t1&_
0 . By (4.7) it follows that

I2�|
�

t0 �2
J(x, t : s) ds�( p&1) 21�( p&1)C2t&1�( p&1)

0 .

Thus we obtain (4.12). Since t0>0 is arbitrarily, 8 is well defined on
Rn_(0, �). K
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Lemma 4.5. (i) 8(x, t) � 0 as t � 0 uniformly in |x|�r for every r>0;

(ii) There exists a constant C>0 such that

|x|2�( p&1) 8(x, t)�C for x # Rn"[0], 0<t<�;

(iii) 8( } , t) � 0 in L1
loc(R

n) as t � 0.

Proof. First, we show that

8(x, t) � 0 as t � 0 uniformly on |x|�1, (4.13)

and that there exists a constant C6>0 satisfying

8(x, t)�C6 for |x|�1, 0<t<�. (4.14)

In fact, by Lemma 4.2 we have

8(x, t)�
C4

1&_
t1&_ for 0<t�

1
4

and |x|�1.

This implies (4.13). From (4.12), we obtain (4.14).
By virtue of (4.6), we find that (4.13) implies (i). Moreover,

|+x|2�( p&1) 8(+x, +2t)=|x|2�( p&1) 8(x, t) for all +>0.

Let |x|=1. Then, by (4.14), we obtain

|+x|2�( p&1) 8(+x, +2t)�C6 for all +>0, |x|=1, 0<t<�.

This implies (ii). Fix a compact set K/Rn. By the Lebesgue dominated
convergence theorem, we observe that

|
K

8(x, t) dx=|
K

|x| &2�( p&1) | |x|2�( p&1)8(x, t)| dx � 0 as t � 0,

which implies (iii). K

Proof of Proposition 4.2. Since ,�8, the function , is well defined on
Rn_(0, �) and satisfies (i)�(iii) by Lemmas 4.4 and 4.5(i)�(iii). To show
(iv) and (v), fix t0 and T with 0<t0<T. By the Fubini theorem and the
property of the heat kernel 1, we obtain

,(x, t)=|
R n

1 (x& y : t&t0) ,( y, t0) dy+|
t

t0
|

Rn
1 (x& y; t&s) g( y, s) dy ds

for (x, t) # Rn_[t0 , T ]. If g is continuous, then , # C 1, 0(Rn_[t0 , T ]),
and if (3.5) holds, then , # C2, 1(Rn_[t0 , T ]) and satisfies ,t=2,+ g in
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Rn_[t0 , T ]. (See, e.g., [6, Chapter 1, Theorem 9].) Since t0 and T are
arbitrarily, (iv) and (v) hold. K

4.3. Observe that Proposition 3.1 is included by Proposition 4.2. We
prove Proposition 3.2 by employing Propositions 4.1 and 4.2.

Proof of Proposition 3.2. Assume that w is defined by (3.6), that is,
w=�+,. Then, w # C 2, 1(Rn_(0, �)) and is a solution to the problem of
(3.2) by (4.1) and Proposition 4.2(iii) and (v). By (4.2) and Proposition
4.2(ii), w satisfies the growth condition (3.4).

Conversely, assume that w is a solution of (3.2) satisfying (3.4). Define
w~ as

w~ (x, t)=|
R n

1 (x& y : t) w0( y) dy+|
t

0
|

R n
1 (x& y : t&s) g( y, s) dy ds.

Then, by the argument above, w~ is a solution to the problem (3.2) satis-
fying (3.4). Let v=w&w~ . Then v satisfies the growth condition (3.4) and
is a solution of the problem

vt=2v in Rn_(0, �) and v(x, 0)=0 in the sense of L1
loc(R

n).

By the uniqueness theorem ([1, Chapter 5, Theorem 6.1]), we have v#0,
that is, w#w~ . This implies (3.6).

Moreover, if w0 # C(Rn"[0]), then, by (4.3) and Proposition 4.2(i), we
obtain (3.7). K
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