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§ l. The present note arose out of an attempt to understand better 
the meaning and significance of the following theorem of SALEM [l] (see 
also [2]) in which S[f] denotes the Fourier series off, and Sn(x), or Sn[f] 
its partial sums; by periodic functions we mean functions of period 2:n. 

Theorem A. Suppose that f(x) is peTiodic, integmble, and satisfies 
the condition 

h 

(l) 2
1h J [f(x+ t)- f(x-t)] dt= o { 10~ h} (h ->r + 0) 

0 

uniformly in x. Then 

(i) S[f] conveTges almost everywhere; 

(ii) the convergence is uniform ove1· every closed interval of points of con
tinuity of f; 

(iii) if f is in LP, p> l, the function 

(2) s*(x) =sup /Sn(x)/ 
" belongs to LP. 

The main result of this section is that condition (l) alone implies that 
f is in LP for every p, and the result is primarily a theorem about smooth 
functions (see below). This is a special case of the following theorem. 

Theorem l. If F(x) is periodic and for some fJ >! satisfies 

(3) .cJ2F(x h)=F(x+h)+F(x-h)-2F(x)=0{-h-} 
' jloghjfl 

uniformly in x, then 1!' is the indefinite integml of an f belonging to every LP. 

Functions Ji' satisfying the condition LPF(x, h)=o(h) for each x and 
h -->- 0 are called smooth; (3) is a strengthening of the condition of 
smoothness. For the theory of smooth functions and some of their proper
ties see e.g. [4], or [31], pp. 42 and 114. 

It is of interest that Theorem 1 is false for fJ = f. For example, the 
Weierstrass type function 

( 4) 
00 cos 9nx 

F(x) =0' "' ---. £.. 2n n ~ 
Jt.o.=l 

1 ) The reserch resulting iu this paper was supported in part by the Office 
of ticientific Research of tho Air :Force under contraet AF ]g (60il) llll. 
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satisfies, as can easily be seen (see e.g. [31], p. 47) condition (3) with f3=i 
and is at the same time differentiable almost nowhere, since the last series 
when differentiated termwise is lacunary but not in L2 (see [31], p. 206). 

The following results makes possible an application of Theorem l to 
the proof of Theorem A. 

Theorem 2. Suppose that a periodic and continuous F satisfies the 
condition 

(5) 

and let Sn and an be respectively the partial sums and (0, l) means of S'[F] 
(i.e. S[F] differentiated termwise). Then 

(6) Sn-(Jn-70 

·uniformly in x. 

In view of Theorem l, an(x) converges almost everywhere to f=F', and 
the convergence is uniform over every closed interval of points of con
tinuity of f. This implies parts (i) and (ii) of Theorem A. It is also well 
known that iff E LP, then the function 

a*(x) =sup jan(x)j 

is also in LP, so that part (iii) of Theorem A is immediate. 
We now pass to the proof of Theorem l. 
Let En[F] be the best approximation ofF by trigonometric polynomials 

of order n. The hypothesis (3) implies that 

En[F] = 0 {n-1 (log n)-fl}. 

This follows immediately if we e.g. consider Jackson's polynomials 

" 
1 I (sinnt)4 Jn(X, F)= k., F(x+t) sint dt, 

-n 
where 

"' I (sin nt)4 3 len= sint dt!:::!An, 
-n 

and observe that 
"' 

Jn (x, F) -F(x) =~I LJ2 F(x, t) (s!~ty dt = 

0 

1/n n 

= ~I 0 {n(lo~n)fl} O (n4)dt+ ~I O {(lo; t)fl} O (~) dt = O (nlo~fln) · 
0 1/n 

On the other hand, it is also known that if Sn are the partial sums of 
S[Fl then the "delayed means" 

( ) Sn+Sn+1+···+S2n-1 'in X = .....:.:.....;___;:.:....:...::....:....-"'---'::::_-=. 
n 

4 Series A 
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differ from F(x) by not more than 4 En[F] (see [31], p. 115). Hence, with 
the hypothesis (3), 

F(x)- <n(x) = O{n-1 (log n)-P}. 
Write 

00 

F(x) = <1 + (r2 -7:1) + (7:4 -7:2) + ... + (r2n-r2n-1) + ... = ! Un, 
n=O 

say, so that Un=r2n-r2n-1 for n= l, 2, .... Observe now that <m(x) is 
obtained by multiplying the k-th term of S[F] by ATe, where ATe= l for 
k <. m and decreases linearly to 0 as k increases from m to 2m. Hence the 
non-zero terms of Un=<2"-r2n-1 are of ranks k satisfying the condition 
2n-1<k<2n+l. It follows that the two series 

are non-overlapping. We show that if we differentiate these two series 
termwise we obtain Fourier series of functions belonging to every LP. In 
view of the theorem of LITTLEWOOD and PALEY 1) (see e.g. [311], p. 233) it 
is enough to prove that the two functions 

(U{3+ U~2+ U~2+ ... )• and (U~2+ U~2+ U~2+ ... )t 

are in every LP. We shall show that under our hypotheses they are 
bounded. For by Bernstein's theorem on the derivatives of trigonometric 
polynomials, 

max I U~(x)l <,2n+l max I Un(x)l =o(n-P), 
m m 

and since a series with terms O(n-2P) converges, Theorem l is established. 
We now pass to the proof of Theorem 2 and first show that under its 

hypotheses, 

(7) F -Sn(x) = o(~) 

uniformly in x. To see this we write 

F = <m+Qm, where m =[in]. 
Then 

F-Sn[F] = F-Sn[<m]-Sn[Qm] 

= (F-rm)-Sn[em] = em-Sn[em]. 

Since em= o(lfm log m) =o(lfn log n) and, using Lebesgue constants, 

ISn[em]l = 0 (log n) max lem(x)l = o(lfn), 
n 

(7) follows. 
Write 

00 00 

F' =I_,! (aTe cos kx+b1c sin kx) =! A1c(x) 
1 1 

1) The theorem asserts that if f E LP, p > 1, and if we decompose 8[f] 
into a series of blocks, S[f] = L'Ll~c, where Ll,. consists of the terms of rank v 

satisfying n,. ~n < nk+1, with 1 <IX< nk+1/n1c </3 < oo, then the ratio of 1/f//P 
and 1/(L'Ll~)I:I/P is contained between two constants depending on IX and f3 only. 
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and let Bk=ak sin kx-bk cos kx. Then (7) can be written 

1 BJc(X) =0 (~). 
k-n k n 

In particular 
I k-1 Bk(x) = o(N-1) 

iN<lc.;;.N 

for any positive number N, not necessarily an integer and, by Berstein's 
theorem, 

I Ak(X)=o(1). 
iN<k.;;.N 

Using Bernstein's inequality for conjugate trigonometric polynomials of 
order n (max JT'(x)J .;;;n max JT(x)i) we have 

I kAk(x) = o(N), 
iN<k.;;.N 

whence, replacing N by i-N, iN, iN, ... and adding, 
N 

I kA" (x) = o(N), 
k=l 

which is (6), with N for n. 

§ 2. In this section we consider a generalization of Theorem 2. A 
periodic F(x) E LP will be said to satisfy condition A: if 

2" 
(8) II L12F (x,h)llp= ( f JF (x+h) +F (x-h) -2 F (x)JPdx)lfP=o(h). 

0 

Replacing here '0' by 'o' we obtain condition A~. It is well known that 
A; and A; are the classes of functions which in the metric LP can be 
approximated to by polynomials of order n with an error 0(1/n) and 
o(1/n) respectively. While functions in A~ can be discontinuous and even 
unbounded (for example the function equal to log JxJ for JxJ .;;;n and 
continued periodically is in A~), the functions from A~, p> 1, are essentially 
continuous and even have absolutely convergent Fourier series. In 
addition to A~ we shall also consider the classes A~./l of functions satis
fying the condition 

II L12F(x,h)llp = 0 {llo:hlfl}. 

Theorem 3. (i) IfF E A~.fl' 1 .;;;p.;;;2, fJ> 1/p, then F is absolutely 
continuous and F' E LP. The result is false if fJ= 1/p. 

(ii) If FE A~.fl' 2.;;;p<=, fJ>i-, then F is absolutely continuousand 
F' E LP. The result is false if fJ=i-· 

(i) Let Sn and Sn be the partial sums of S[F] and S'[F] respectively 
and let (assuming that the constant term of S[F] is 0) 

00 

s [F] = I k-1 Bk(X). 
k-1 
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The hypothesis implies that the best approximation of F in the metric 
LP by trigonometric polynomials of order n is 0(1/n log Pn) (we may use 
Jackson's polynomials for the proof) and so, if p> 1, leaving the case 
p = 1 temporarily aside, 

2n 

(9) {f IF-SniP dx}l'P = O{n-1 (log n)-P}. 
0 

Let Lin and l5n denote the blocks of terms with indices 2n-l.;;;k<2n 
(n= 1, 2, ... ) for S[F] and S'[F] respectively. From (9) we deduce that 

(10) 

and so, using Bernstein's inequality for the metric LP, 

(ll) 

Applying the theorem of Littlewood and Paley, we see that the positive 
assertion of (i) will follow if we show that 

is finite. Since p.;;;2, the last integral is majorized by 

2n 

J (L ll5n 121) dx = L II ~n II:= L 0 (n -PP) < oo, 
0 

if {Jp> 1. 
The case p= 1 must be treated slightly differently since it is no longer 

true that the approximation to F by the Sn[F] is of the same order as 
the best approximation (in the metric L). The required modification has 
already been used in § 1. Let 'in be the delayed means of S[F]. Then 

F = 'il + (T2-'il)+ (T4-'i2)+ ... = Uo+ ul + U2+ .... 

The two series Uo+ U2+ U4+ ... and U1 + Ua+ Us+ ... are non-over
lapping and are respectively S[F1] and S[F2]. It is enough to show that 
S'[F1] and S'[F2] are both Fourier series. Now 

and it is enough to observe that, say, 

if {J> 1. 
As regards counterexamples, suppose first that 1 < p < 2 and consider 

the periodic function 

I I ( 2n)-l'p I I F(x) = x 1121' log TXT ( x :;;;;;;n}, 

where p' is the index conjugate to p. A simple computation which we 
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omit shows that F is in A~.IIP and that F'(x), which is asymptotically 
equal to x-llp (log 1/x)-llp as x-+ + 0, is not in LP. 

Similarly the periodic function equal to 

log log 1: 1 

for lxl .;;;n is in A~,1, but its derivative is not in L. 
(ii) We pass to the case 2<;;;p<oo, and suppose that FE A~.P where 

fJ>!. Defining the blocks L1n and on as before, we may write S[F]= _2L1n, 
S'[F]= _2on. 

We again have (9), (10) and (ll). Since p;;;. 2, Minkowski's inequality gives 
2n 2n 

{J (,2o!)•Pdx}21P~ .2 {J (o!) 1Pdx}2'P =!II a, II~· 
0 0 

Since the terms of the last series are 0( n - 211), and fJ > f, the series converges, 
the integral on the left is finite and the Littlewood-Paley theorem shows 
that S' [ F] = ,2 on is the Fourier series of a function in LP. This completes 
the proof of the positive assertion in (ii). That the result is false for fJ = t 
is seen by the example of the function (4), for which 

LJ2F(x, h)= 0 {h log-• (1/h)}, 

so that FE A~ .•• and which is differentiable only in a set of measure 0. 

Remarks. a. SALEM localized his theorem to a subinterval (a, b) of a 
period. We can likewise generalize Theorem 2: 

Theorem 2'. If F is periodic, integrable, continuous in an interval 
(a, b), satisfies uniformly in that interval condition (5), and has Fourier 
coefficients o(1/n), then Sn-Gn tends uniformly to 0 in every (a+e, b-e}, 
e>O, where Sn and an are the partial sums and (0, 1} means of S'[F]. 

The proof might, in principle, imitate that of Theorem 2, but since 
then a few non-trivial details would have to be attended to, we prefer to 
reduce Theorem 2' to Theorem 2. If we could represent the Fin Theorem 2' 
as a sum F1 + F 2 of two periodic functions such that F1 is everywhere 
continuous and satisfies a condition analogous to (5}, and F2 is integrable 
and zero in (a, b), the reduction would be immediate. For then, if s1,n, 
s2,n, a1,n, a2,n are respectively the partial sums and (0, 1) means of S'[F1] 
and S'[F2], we would have 

Sn- Gn = (s1,n- Gt,n) + (s2,n- G2,n}, 

and since s1,n- a1,n tends uniformly to 0 it would be enough to show 
that s2,n-a2,n tends uniformly to 0 in (a+e, b-e). But s2,n-a2,n is the 
n-th partial sum divided by (n+ 1) of S"[F2], and since the coefficients 
of S"[F2] are o(n}, and F 2 = 0 in (a, b), the partial sums of S"[F2] would 
be o(n) uniformly in (a+e,b-e) ([3], p.367} and the assertion would follow. 

Whether a decomposition of the kind just described is possible we do 
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not know, and the problem of extending a smooth function outside the 
initial interval of definition is not obvious though possibly not difficult. 
For our purposes however it is enough to show that in (a, b) we can find 
points a1, b1 arbitrarily close to a and b respectively and such that F 
can be continued outside (a1, b1) with the preservation of (5). First we 
show that ifF satisfies condition (5) in (a, b) then there is a dense set of 
points ~ E (a, b) such that F'(~) exists and 

F(;+h)-F(;) -F'(t) = (-1-) 
h s- 0 log lhl · 

This is certainly true, with F'(~)=O, if~ is an extremum ofF, and sub
tracting from F linear functions we obtain a dense set- even one of the 
power of the continuum-of the points ~. and if we take for a1 and b1 
points ~. and define F1 as equal to Fin (a1. b1) and equal to an arbitrary 
function of the class 0' elsewhere, provided F1 is continuous and dif
ferrentiable at a1 and b1, then it is not difficult to see that F1 is a required 
extension of F. (On a similar argument we might base an extension from 
(a1. b1) interior to (a, b) of a function which satisfies in (a, b) the condition 
LI2F(x, h)=o(h) or = O(h), not necessarily uniformly in x.) 

b) There is an analogue of Theorem 2 for the metric LP, l < p < oo, The 
cases p = l and l < p < oo are slightly different. If F E Ab, then 

llsn-O'nlll-+ 0, 

and, slightly more generally, ifF E A~./1• then llsn-O'nllp=O {(log n)l-ll}. 
If l <p<oo, and ifF E A~. 11 , then llsn-O'nll =o {(log n)-11}. The 'o' can be 
replaced by '0' throughout. 
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