
International Journal of Solids and Structures 51 (2014) 1931–1945
Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsols t r
Sliding contact problems involving inhomogeneous materials
comprising a coating-transition layer-substrate and a rigid punch
http://dx.doi.org/10.1016/j.ijsolstr.2014.02.003
0020-7683/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +44 01865 492957.
E-mail address: sj.chidlow@brookes.ac.uk (S.J. Chidlow).
S.J. Chidlow a,⇑, M. Teodorescu b

a Department of Mechanical Engineering and Mathematical Sciences, Oxford Brookes University, Oxford OX33 1HX, UK
b Baskin School of Engineering, University of California, Santa Cruz, 95064 CA, USA

a r t i c l e i n f o
Article history:
Received 11 October 2013
Received in revised form 13 January 2014
Available online 15 February 2014

Keywords:
Contact mechanics
Functionally graded materials
Sliding contact
Sub-surface stresses
a b s t r a c t

This paper proposes a semi-analytical model for the two-dimensional contact problem involving a
multi-layered elastic solid loaded normally and tangentially by a rigid punch. The solid is comprised of
a homogeneous coating and substrate joined together by a graded elastic transition layer whose material
properties exhibit an exponential dependence on the vertical coordinate. By applying the Fourier
transform to the governing boundary value problem, we formulate analytic expressions for the stresses
and displacements induced by the application of line forces acting both normally and tangentially at the
origin. The superposition principle is then used to generalise these expressions to the case of distributed
normal and tangential tractions acting on the solid surface. A pair of coupled integral equations are
further derived for the parabolic stamp problem which are easily solved using collocation methods.

The primary aim of this paper is to provide insight into the likely behaviour of graded materials under
the combined effects of surface pressure and shear stress. In this study, the assumption of Coulomb fric-
tion is invoked and the effects of material gradation, coating/interlayer thickness and friction coefficient
upon the contact footprint and sub-surface stress field are investigated in great detail. The results we
obtain suggest that the thickness of the transition layer as well as the combined thickness of the coating
and transition layer have a significant effect on the maximum sub-surface stress attained through con-
tact. This indicates that small changes in the composition of the coating can lead to significant differences
in material behaviour. We additionally find that an increase in the amount of friction present in the con-
tact can cause dramatic changes in the pattern of the stress field and can give rise to a much larger max-
imum stress. This effect can be offset somewhat under certain conditions by changing the thickness of the
transition layer.

To the best of the authors belief, this work represents the first attempt made to characterise the effects
of friction on the sub-surface stress field within a graded elastic material.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Contact problems involving functionally graded materials
(FGMs) have received much attention in recent times as such
materials are widely used as protective coatings in load transfer
problems, typically involving friction. In particular, the gradual
variation in material properties helps alleviate some of the prob-
lems associated with perfectly bonded, homogeneous layers such
as cracking. The potential benefits of using functionally graded
materials in such applications are covered in more detail in Suresh
(2001) and Suresh et al. (1999).
The majority of proposed models that seek to describe the solu-
tion of the contact problem involving FGMs assume that the mate-
rial is in a state of plane strain and are thus two-dimensional. Ma
and Korsunsky (2004) and independently Çömez and Erdöl
(2012) model the coating-substrate system as two distinct yet
homogeneous perfectly bonded layers. Both authors applied the
Fourier transform to the governing two-dimensional boundary va-
lue problem (BVP) to derive a pair of singular integral equations
from which the normal and tangential pressures resulting from
contact by a rigid punch can be determined. In both cases, the tan-
gential pressure resulting from contact is assumed to be a multiple
of the normal pressure (Coulomb friction) although their models
are not restricted to this assumption. An alternate model was
derived by Teodorescu et al. (2009) who proposed an iterative
algorithm to determine the contact footprint resulting from the
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parabolic stamp problem. The authors allowed only for frictionless
contact and concentrated on determining the effects of different
coatings on the induced sub-surface stress field.

A better assumption that can be used to model functionally
graded materials is that the shear modulus of the coating depends
on the coordinate system in some way and therefore varies contin-
uously throughout its thickness. Guler and Erdogan (2004)
assumed that the shear modulus of the protective coating depends
exponentially on the vertical coordinate and using a similar
method to that of Ma and Korsunsky determined a coupled pair
of singular integral equations from which the normal and tangen-
tial tractions caused by contact could be determined. The authors
used the assumption of Coulomb friction to produce a series of
benchmark solutions for the flat and triangular stamp problems
which were further augmented by results presented for the para-
bolic stamp problem in Guler and Erdogan (2007). Ke and Wang
(2006) and Ke and Wang (2007) derived a multi-layer model to
determine the solution of the contact problem. The coating was as-
sumed to comprise a series of layers whose shear moduli vary in a
piecewise linear fashion which allowed arbitrary shear modulus
variations to be considered. The authors compare results produced
from their model with those of Guler and Erdogan and both show
excellent agreement with each other.

A more complicated model still was proposed by Yang and Ke
(2008) who assumed that both the protective coating and sub-
strate are homogeneous but separated by a functionally graded
transitional layer comprising an arbitrary number of piecewise lin-
ear sub-layers where the properties of the material gradually
change from those of the coating to the substrate. The authors con-
sider the rigid parabolic stamp problem and present a series of re-
sults indicating how the contact pressure and interfacial stresses
are affected by different materials. Choi (2012) used a similar
assumption to derive a model to approximate the mode III stress
intensity factors that result from two offset interfacial cracks in
bonded dissimilar media except that the shear modulus in the
interlayer is taken to possess an exponential variation. This ap-
proach was also taken by Teixeira (2001) who proposed a numer-
ical model to investigate the influence of a graded layer on the
thermal stress distribution within a solid comprising a ceramic
coating and a metallic substrate. This work concluded that inter-
layer thickness has a significant effect on the stress distribution
as the optimum condition for stress elimination in a hard coating
is obtained when the interlayer is much thicker than the coating.

This paper is concerned with the derivation of a model that
approximates the contact footprint and sub-surface stress field
within an inhomogeneously elastic solid comprising a homoge-
neous coating and substrate joined together by a functionally
graded transition layer. The proposed model incorporates friction
within the contact and provides a natural extension to the type
of problem considered by Yang and Ke (2008) and Chidlow and
Teodorescu (2013).

The numerical results presented within this work focus on
determining the effects of material properties and friction on
the sub-surface stress field. King and O’Sullivan (1987) have pro-
vided a detailed analysis of this kind for the contact problem
involving a layered elastic half space incorporating two distinct
homogeneous layers. Their model however does not allow for
graded materials and so an attempt is made here to investigate
how the presence of the transition layer changes material re-
sponse. The results contained here detail how changes in material
stiffness, coating/interlayer thickness and friction all effect the in-
duced sub-surface stress field with a particular emphasis placed
on determining the region of the solid in which the maximum
stress will occur. These results are presented in Figs. 11–13 and
to the best of the authors belief, are the only results of this type
currently available.
2. Fundamental solution of the half-plane problem

Consider an inhomogeneously elastic solid in a state of plane
strain occupying the half-plane y 6 0 comprising two finitely thick
layers bonded to an infinitely deep substrate (region 3). The upper
layer (region 1) occupying �h1 6 y 6 0 represents a homoge-
neously elastic coating whilst the middle layer occupying the
region �h2 6 y < �h1 represents a graded elastic transition layer
(interlayer) where the material properties of the solid progres-
sively change from those of the coating to those of the substrate.
The shear modulus of the solid is defined to be

lðyÞ ¼
l1; �h1 6 y 6 0;
l0eaðyþh2Þ; �h2 6 y < �h1;

l0; �1 < y < �h2;

8><
>: ð1Þ

where

a ¼ 1
h2 � h1

ln
l1

l0

� �
ð2Þ

which ensures that the shear modulus is continuous everywhere.
The Poisson ratio of the solid is assumed constant and is denoted m.

We introduce the local Airy stress function /jðx; yÞ; j ¼ 1;2;3
within each region to determine the stresses induced by pressure
applied to the solid surface. The stresses within each region can
be calculated from the stress function via the relations

rðjÞyy ¼
@2/j

@x2 ; rðjÞxx ¼
@2/j

@y2 ; rðjÞxy ¼ �
@2/j

@x@y
: ð3Þ

Substituting (1) into the compatibility condition valid for a two-
dimensional material (see Timoshenko and Goodier, 1970 for exam-
ple) reveals that the local stress functions satisfy

r4/1 ¼ 0; ð4Þ

r4/2 � 2a
@

@y
r2/2

� �
þ a2 @

2/2

@y2 � a2q
@2/2

@x2 ¼ 0; ð5Þ

r4/3 ¼ 0; ð6Þ

with

r2 ¼ @2

@x2 þ
@

@y2 ;

denoting the Laplacian operator and q ¼ m=ð1� mÞ. We may apply
the Fourier transform which we define as

~/jðn; yÞ ¼
Z 1

�1
/jðx; yÞeinxdx; ð7Þ

to (4)–(6) which results in the transformed equations

~/
0000

1 � 2n2 ~/001 þ n4 ~/1 ¼ 0; ð8Þ

~/
0000

2 � 2a~/0002 þ ða2 � 2n2Þ~/002 þ 2an2 ~/02 þ n2ðn2 þ qa2Þ~/2 ¼ 0; ð9Þ

~/
0000

3 � 2n2 ~/003 þ n4 ~/3 ¼ 0; ð10Þ

where 0 denotes differentiation with respect to y. Eqs. (8)–(10) ad-
mit the general solutions

~/1ðn; yÞ ¼ ðC1 þ C2yÞejnjy þ ðC3 þ C4yÞe�jnjy; ð11Þ

~/2ðn; yÞ ¼
X4

n¼1

Anekny; ð12Þ

~/3ðn; yÞ ¼ ðD1 þ D2yÞejnjy þ ðD3 þ D4yÞe�jnjy; ð13Þ
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Fig. 1. A definition sketch of the concentrated line force problem investigated in
Section 2.
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where the roots kn satisfy the quartic equation

k4 � 2ak3 þ ða2 � 2n2Þk2 þ 2an2kþ n2ðn2 þ qa2Þ ¼ 0 ð14Þ

and may be written explicitly as

k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
ða2 þ 4n2Þ þ iajnj ffiffiffiffiqp

r
þ 1

2
a; ð15aÞ

k2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
ða2 þ 4n2Þ þ iajnj ffiffiffiffiqp

r
þ 1

2
a; ð15bÞ

k3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
ða2 þ 4n2Þ � iajnj ffiffiffiffiqp

r
þ 1

2
a; ð15cÞ

k4 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
ða2 þ 4n2Þ � iajnj ffiffiffiffiqp

r
þ 1

2
a: ð15dÞ

The constants appearing in the solution above are n-dependent and
are obtained by specifying boundary conditions for this problem.
We assume here that the transition layer is perfectly bonded to both
the coating and substrate and thus enforce the continuity of both
the stresses and displacements across each interface. Mathemati-
cally we stipulate that

uðiÞ ¼ uðiþ1Þ;

v ðiÞ ¼ v ðiþ1Þ;

rðiÞyy ¼ rðiþ1Þ
yy ;

rðiÞxy ¼ rðiþ1Þ
xy ð16Þ

at y ¼ �hi; i ¼ 1;2 where uðjÞðx; yÞ and v ðjÞðx; yÞ denote the horizontal
and vertical displacement of the solid in the jth region respectively.
We further require that the induced stresses and displacements
vanish as y! �1 and thus we impose the radiation conditions
juj; jv j ! 0 as y! �1. The remaining boundary conditions are ap-
plied on the solid surface (y ¼ 0) and specify that

ryy ¼ �PðxÞ; ð17Þ
rxy ¼ �QðxÞ: ð18Þ

We initially consider the state of stress that results in the solid
from the application of line forces to its surface so we take
PðxÞ ¼ dðxÞP;QðxÞ ¼ dðxÞQ where dðxÞ denotes the Dirac delta func-
tion centred at the origin (see Fig. 1). A discussion of how these
solutions may be generalised to distributed normal and tangential
tractions is provided in the next section.

It is easily observed that the radiation conditions applied as
y! �1 imply that D3 ¼ D4 ¼ 0. Applying the Fourier transform
to the remaining boundary and matching conditions allows us to
deduce that the constants appearing in (11) possess the closed
form solutions

C1

C2

� �
¼ U�1

P
n2

iQ
n

 !
ð19Þ

C3

C4

� �
¼ �e�2jnjh1 ðJ1 � SW�1L1Þ

�1ðH1 � SW�1G1ÞU�1
P
n2

iQ
n

 !
; ð20Þ

whilst the remaining constants can be computed from the relations
A1

A3

� �
¼W�1 e�jnjh1 G1

C1

C2

� �
þ ejnjh1 L1

C3

C4

� �� �
; ð21Þ

A2

A4

� �
¼ �ðT2Kð2Þ2 Þ

�1
T1Kð2Þ1

A1

A3

� �
; ð22Þ

D1

D2

� �
¼ ejnjh2 G�1

2 M1Kð2Þ1

A1

A3

� �
þM2Kð2Þ2

A2

A4

� �� �
: ð23Þ
Please see A for the definition of the matrices appearing in (19)–
(23).

The stresses induced within the solid and its displacement at
any point may now be computed by applying the inverse Fourier
transform. In particular, we note that the horizontal and vertical
displacement of the solid surface may be written as

uðx;0Þ
vðx;0Þ

� �
¼ 1

4pl1

Z 1

�1
HðnÞZðnÞðP;QÞT e�inxdn; ð24Þ

where

HðnÞ ¼
in 2ið1� mÞsignðnÞ in �2ið1� mÞsignðnÞ
�jnj ð1� 2mÞ jnj ð1� 2mÞ

� �
; ð25Þ

ZðnÞ ¼
v
W

� �
; ð26Þ

vðnÞ ¼ U�1
1
n2 0

0 i
n

 !
; ð27Þ

WðnÞ ¼ �e�2jnjh1 ðJ1 � SW�1L1Þ
�1ðH1 � SW�1G1Þv: ð28Þ

We note that the entries of the matrices H and Z satisfy

Hijð�nÞ ¼ ð�1ÞiþjHijðnÞ; ð29Þ

Zi1ð�nÞ ¼ Zi1ðnÞ; ð30Þ

Zi2ð�nÞ ¼ �Zi2ðnÞ ð31Þ

for i; j ¼ 1;2 and so the displacements appearing in (24) can be writ-
ten in the alternate form

u1ðx;0Þ ¼
1

2pl1
P
Z 1

0
ðnðv11 þW11Þ þ 2ð1� mÞðv21 �W21ÞÞ

�

� sinðnxÞdnþ iQ
Z 1

0
ðnðv12 þW12Þ

þ2ð1� mÞðv22 �W22ÞÞ cosðnxÞdn
�
; ð32Þ

v1ðx;0Þ¼
1

2pl1
P
Z 1

0
ðð1�2mÞðv21þW21Þ�nðv11�W11ÞÞcosðnxÞdn

�

þiQ
Z 1

0
ðnðv12�W12Þ�ð1�2mÞðv22þW22ÞÞsinðnxÞdn

�
:

ð33Þ



Fig. 2. A definition sketch of the parabolic punch problem investigated in Section 3.
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Eqs. (32) and (33) are not ideal to work with in this form as the inte-
grals appearing within these formulae need to be evaluated numer-
ically but are not obviously convergent. We can remedy this
problem however by considering the behaviour of the constants
Cj; j ¼ 1; . . . ;4 as n!1. In this limit, the constants Cj reduce to

C1

C2

� �
! H�1

0

P
n2

iQ
n

 !
; ð34Þ

C3

C4

� �
! 0 ð35Þ

and so

~uðn;0Þ
~vðn;0Þ

� �
! f̂ ðnÞ

ĝðnÞ

 !
¼ � 1

2l1n

ið1� 2mÞP þ 2ð1� mÞsignðnÞQ
2ð1� mÞsignðnÞP � ið1� 2mÞQ

� �

ð36Þ

as n!1. Applying the inverse Fourier transform to these functions
then gives

f ðxÞ ¼ � 1
4pl1

Z 1

�1

ið1� 2mÞP
n

þ 2ð1� mÞsignðnÞQ
n

� �
e�inxdn;

¼ � 1
2pl1

p
2

Pð1� 2mÞsignðxÞ � 2ð1� mÞQ ln jxj
� �

; ð37Þ

gðxÞ ¼ � 1
4pl1

Z 1

�1

2ð1� mÞsignðnÞP
n

� ið1� 2mÞQ
n

� �
e�inxdn;

¼ 1
2pl1

2ð1� mÞ ln jxjP þ p
2
ð1� 2mÞsignðxÞQ

� �
ð38Þ

which follow from the standard resultsZ 1

0

cosðnxÞ
n

dn ¼ � ln jxj; ð39Þ

Z 1

0

sinðnxÞ
n

dn ¼ p
2

signðxÞ: ð40Þ

By adding the integrated forms of (37) and (38), (32) and (33) and
subtracting their corresponding integral forms, we may write

u1ðx;0Þ¼�
ð1�2mÞsignðxÞP

4l1
þð1�mÞ ln jxjQ

pl1

þ 1
2pl1

P
Z 1

0
nðv11þW11Þþ2ð1�mÞðv21�W21Þþ

ð1�2mÞ
n

� �
sinðnxÞdn

�

þiQ
Z 1

0
nðv12þW12Þþ2ð1�mÞðv22�W22Þ�

2ið1�mÞ
n

� �
cosðnxÞdn

�
; ð41Þ

v1ðx;0Þ¼
ð1�mÞln jxj

pl1
Pþð1�2mÞsignðxÞ

4l1

þ 1
2pl1

P
Z 1

0
ð1�2mÞðv21þW21Þ�nðv11�W11Þþ

2ð1�mÞ
n

� ��

�cosðnxÞdnþ iQ
Z 1

0
nðv12�W12Þ�ð1�2mÞðv22þW22Þþ

ið1�2mÞ
n

� �
sinðnxÞdn

�
: ð42Þ

We note immediately that the integrals appearing in (41) and (42)
are convergent as the integrands tend to zero as n!1 and thus
these integrals can be easily evaluated numerically. These terms in-
form the effects of material inhomogeneity on the surface displace-
ment whilst the non-integral terms correspond to the horizontal
and vertical displacements of the solid surface of a homogeneous
material (see Johnson, 1985).

3. Contact problems involving a rigid punch

The solutions derived in the previous section for the case of line
forces applied at the origin can be generalised to solve the rigid
punch problem. A definition sketch of this problem is presented
in Fig. 2. In this situation, contact will occur between the punch
and solid surface in some interval ½�b; a� with the result that both
the normal and tangential pressures applied to the solid will be
non-zero only within this interval. We refer to the normal pressure
as pðxÞ and friction force as qðxÞ within this section.

Applying the superposition principle to (41) and (42) gives the
displacement of the solid surface as

u1ðx;0Þ¼�
ð1�2mÞ

4l1

Z a

�b
signðx� tÞpðtÞdtþð1�mÞ

pl1

Z a

�b
ln jx� tjqðtÞdt

þ 1
2pl1

Z a

�b
L1ðx;tÞpðtÞdtþ i

2pl1

Z a

�b
L2ðx;tÞqðtÞdt; ð43Þ

v1ðx;0Þ¼
ð1�mÞ
pl1

Z a

�b
ln jx� tjpðtÞdtþð1�2mÞ

4l1

Z a

�b
signðx� tÞqðtÞdt

þ 1
2pl1

Z a

�b
L3ðx;tÞpðtÞdtþ i

2pl1

Z a

�b
L4ðx;tÞqðtÞdt; ð44Þ

where

L1ðx; tÞ ¼
Z 1

0
nðv11 þW11Þ þ 2ð1� mÞðv21 �W21Þ þ

ð1� 2mÞ
n

� �

� sinðnðx� tÞÞdn; ð45Þ

L2ðx; tÞ ¼
Z 1

0
nðv12 þW12Þ þ 2ð1� mÞðv22 �W22Þ �

2ið1� mÞ
n

� �

� cosðnðx� tÞÞdn; ð46Þ

L3ðx; tÞ ¼
Z 1

0
�nðv11 �W11Þ þ ð1� 2mÞðv21 þW21Þ þ

2ð1� mÞ
n

� �

� cosðnðx� tÞÞdn; ð47Þ

L4ðx; tÞ ¼
Z 1

0
nðv12 �W12Þ � ð1� 2mÞðv22 þW22Þ þ

ið1� 2mÞ
n

� �
� sinðnðx� tÞÞdn: ð48Þ

In the rigid punch problem, the gradient of the surface deflection
will be known rather than the deflection itself as the punch profile
will be given. We therefore differentiate (43) and (44) with respect
to x to obtain



S.J. Chidlow, M. Teodorescu / International Journal of Solids and Structures 51 (2014) 1931–1945 1935
@u1

@x
ðx;0Þ ¼ � ð1� 2mÞ

2l1
pðxÞ � ð1� mÞ

pl1

Z a

�b

qðtÞ
t � x

dt þ 1
2pl1

Z a

�b

� @L1

@x
ðx; tÞpðtÞdt þ i

2pl1

Z a

�b

@L2

@x
ðx; tÞqðtÞdt;

ð49Þ

@v1

@x
ðx;0Þ ¼ ð1� 2mÞ

2l1
qðxÞ � ð1� mÞ

pl1

Z a

�b

pðtÞ
t � x

dt þ 1
2pl1

Z a

�b

� @L3

@x
ðx; tÞpðtÞdt þ i

2pl1

Z a

�b

@L4

@x
ðx; tÞqðtÞdt: ð50Þ

Eqs. (49) and (50) constitute a pair of coupled integral equations
which may be solved for the unknown functions pðxÞ and qðxÞ pro-
vided that we know the stamp profile and contact conditions. It is
assumed here for simplicity that friction is of Coulomb type so that

qðxÞ ¼ gpðxÞ ð51Þ

and thus we have only one unknown function to determine. Substi-
tuting (51) into (50) gives

gð1� 2mÞ
2l1

pðxÞ � ð1� mÞ
pl1

Z a

�b

pðtÞ
t � x

dt þ 1
p

Z a

�b
ðI3ðx; tÞ

þ igI4ðx; tÞÞpðtÞdt ¼ gðxÞ; ð52Þ

where

Ijðx; tÞ ¼
1

2l1

@Lj

@x
; j ¼ 1; . . . ;4 ð53Þ

gðxÞ ¼ @v1

@x
ðx;0Þ ð54Þ

which holds for �b 6 t; x 6 a. The uniqueness of the solution pðxÞ
obtained from (52) is assured by enforcing the conditionZ a

�b
pðxÞdx ¼W ð55Þ

which stipulates that the integral of the normal pressure over the
contact region is equivalent to the total compressive force.

3.1. Approximating the solution of the integral equation

As (52) is a singular integral equation of the second kind, it may
be solved numerically using the collocation method proposed by
Krenk (1975). We briefly discuss how this method may be applied
here but refer readers to Ke and Wang (2007) for a more detailed
discussion.

In order to apply the relevant collocation technique, we need to
non-dimensionalise the contact region so that �b 6 x; t 6 a corre-
sponds to �1 6 f; s 6 1. The requisite mappings are

x ¼ 1
2
ððbþ aÞf� ðb� aÞÞ; ð56Þ

t ¼ 1
2
ððbþ aÞs� ðb� aÞÞ ð57Þ

which allow us to write (52) as

gð1� 2mÞ
2l1

pðfÞ � ð1� mÞ
pl1

Z 1

�1

1
s� f

pðsÞdsþ ðbþ aÞ
2p

Z 1

�1
ðI3ðf; sÞ

þ igI4ðf; sÞÞpðsÞds ¼ gðfÞ: ð58Þ

We now assume that the pressure can be written in the form

pðfÞ ¼ f ðfÞð1� fÞb1 ð1� fÞb2 ; ð59Þ

where

b1 ¼
1
p tan�1 2ð1� mÞ

gð1� 2mÞ

� �
þ N0; ð60Þ

b2 ¼ �
1
p

tan�1 2ð1� mÞ
gð1� 2mÞ

� �
þM0 ð61Þ
for arbitrary integers N0;M0 which are determined from the
physics of the problem. In the case of contact by a parabolic
stamp, the collocation method of Krenk (1975) reduces (58) to
the system

XM

i¼1

WM
i � ð1� mÞ

l1ðsi � fkÞ
þ ðbþ aÞ

2
ðI3ðfk; siÞ þ igðfk; siÞÞ

� �
f ðsiÞ ¼ gðfkÞ;

k ¼ 1; . . . ;M þ 1; ð62Þ

where

gðfkÞ ¼
ðbþ aÞfk � ðb� aÞ

2R
ð63Þ

which follows from applying the change of variable to the parabolic
stamp profile. The corresponding equilibrium condition (55) is
transformed into

XM

i¼1

WM
i f ðsiÞ ¼

2W
pðbþ aÞ ; ð64Þ

where the weights WM
i appearing in these equations are defined as

WM
i ¼ �2�ðN0þM0Þ Cðb1ÞCð1� b1Þ

p
ð65Þ

and C denotes the Gamma function. The collocation points used
within this method satisfy

Pðb1 ;b2Þ
n ðsiÞ ¼ 0; ð66Þ

Pð�b1 ;�b2Þ
nþ1 ðfkÞ ¼ 0 ð67Þ

for i ¼ 1; . . . ;M; k ¼ 1; . . . ;M þ 1 where Pðb1 ;b2Þ
n ðsÞ denotes the Jacobi

polynomial of degree n. The unknowns that appear within (62) and
(64) are the values of the function f at the M specified gridpoints
and the values of a and b. We therefore have M þ 2 unknowns in
M þ 2 equations.

In order to solve the contact problem, we need to compute the
values of a and b iteratively. We choose initial guesses for a and b
denoted a0 and b0 and solve the first M equations in (62) to deter-
mine the values of f at the M designated gridpoints. We use the
ðM þ 1Þth equation in (62) and (64) to update our approximations
to a and b using the Secant method. The stopping criteria used in
this method is

maxðbnþ1 � bn; anþ1 � anÞ < 1� 10�8 ð68Þ

which ensures that a good degree of accuracy is obtained in the
solution.

4. Model validation

In this section, we compare results produced using this model
to those of other authors in two different limiting cases. This serves
as a check on the accuracy of our model and allows us to validate it
before presenting new results for the problem of sliding contact.

4.1. Example 1

We initially attempt to recreate the results of Çömez and Erdöl
(2012) who derived a model to approximate the solution of the
parabolic stamp problem involving a solid comprising two distinct,
homogeneous layers. As we cannot recreate this situation exactly
as a!1 in this limit, we consider what happens as h2 � h1 be-
comes increasingly small.

The parameter values used in this problem are

R
h1
¼ 500;

l1h1

W
¼ 50;

l1

l0
¼ 2; m ¼ 0:25
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Fig. 3. Contact pressure curves produced for the problem originally considered by
Yang and Ke (2008). The blue line represents l1=l0 ¼ 3, the red line l1=l0 ¼ 2, the
green line l1=l0 ¼ 1 and the black line l1=l0 ¼ 0:5. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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whilst we consider two different interlayer thicknesses to see how
our model behaves as h2 � h1 ! 0. The two representative thick-
nesses chosen satisfy

h2 � h1

h1
¼ 0:01;0:001:

The results produced using these values and those of Çömez and
Erdöl (2012) are contained in Table 1 and indicate good agreement
between models. We see that the results produced for the thinner
interlayer are closer to those of Çömez and Erdöl (2012) and thus
we deduce that in the limit h2 � h1 ! 0, our model describes a solid
comprising a homogeneously elastic coating bonded to a distinct
homogeneous substrate as expected.

4.2. Example 2

We now validate our model further by comparing our results
with those of Yang and Ke (2008). These authors considered a fric-
tionless contact problem involving a rigid parabolic stamp and so-
lid comprising a coating-graded layer-substrate where the graded
layer is split into several sub-layers whose shear moduli have a lin-
ear dependence on the vertical coordinate. In the example we con-
sider, these authors used their piecewise linear model to
approximate an exponentially varying shear modulus within the
transition layer.

The parameter values used within this problem are

h1

h2
¼ 1; m ¼ 0:3;

R
h2
¼ 5;

W
l0h2

¼ 6:7� 10�3

whilst the four different coatings satisfying l1=l0 ¼ 0:5;1;2;3 are
used. The results produced using our model are presented in
Fig. 3 and show excellent agreement with those of Yang and Ke as
expected (compare with their Fig. 5).

5. Computing the sub-surface stress field

As we have validated our model against the results of other
authors, we can now look to produce results for the full sliding
contact problem. In what follows, we will mainly be interested in
how different parameters (e.g., coating/interlayer thickness, fric-
tion coefficient) effect the sub-surface stress fields that result from
contact. Using (3), we may write

rðjÞyy ¼ �
1

2p

Z 1

�1
n2/̂jðn; yÞe�inxdn; ð69Þ

rðjÞxx ¼
1

2p

Z 1

�1
/̂00j ðn; yÞe�inxdn; ð70Þ

rðjÞxy ¼
i

2p

Z 1

�1
n/̂0jðn; yÞe�inxdn; ð71Þ

where j ¼ 1;2;3 denotes the different regions within the solid. As
the constants that appear in the solutions of /̂j are very complicated
in form, the integrals appearing in (69)–(71) cannot be evaluated
Table 1
Variation of the contact-half width and eccentricity with increased friction coefficient. The

g Cömez and Erdöl ðh2 � h1

Half-width Eccentricity Half-wi

0 (uncoated) 3.09020 0 3.09019
0 2.74060 0 2.73925
0.4 2.75159 0.23674 2.75028
0.8 2.78367 0.47046 2.78238
1 2.80682 0.58537 2.80556
analytically. Instead, we use the inverse discrete Fourier transform
(IDFT) to approximate these quantities. The discretisation used
within this work is slightly different from that used in the standard
IDFT and is described below.

Let x occupy the finite length interval ½�L; L� which is split into
N � 1 sub-intervals of width D and let the frequency variable
x ¼ n=2p occupy the finite interval ½�xF ;xF �. We define the nth
coordinate in the spatial domain and the kth value in the frequency
domain to be

xn ¼ �Lþ ðn� 1ÞD; ð72Þ

xk ¼
1

2ND
ð2ðk� 1Þ � ðN � 1ÞÞ ð73Þ

for n; k ¼ 1; . . . ;N. The IDFT of an arbitrary function ŝðxÞ is defined
as

sðxnÞ ¼
1

ND

XN

k¼1

ŝðxkÞe�2pıxk ; n ¼ 1; . . . ;N ð74Þ

which using (72) and (73) can be written as

sðxnÞ ¼
e

piðN�1Þ
ND ððn�1ÞD�LÞ

ND

XN

k¼1

ŝðxkÞe
2piLðk�1Þ

ND e�
2pi
N ðk�1Þðn�1Þ: ð75Þ

By denoting

SðxkÞ ¼ ŝðxkÞe
2piLðk�1Þ

ND ; ð76Þ

WN ¼ e�
2pi
N ; ð77Þ

we may re-write (75) as

sðxnÞ ¼
e

piðN�1Þ
ND ððn�1ÞD�LÞ

ND

XN

k¼1

SðxkÞW ðk�1Þðn�1Þ
n : ð78Þ
results produced using our model are compared to those of Çömez and Erdöl (2012).

Þ=h1 ¼ 0:01 ðh2 � h1Þ=h1 ¼ 0:001

dth Eccentricity Half-width Eccentricity

0 3.09019 0
0 2.74045 0
0.23679 2.75147 0.23675
0.47054 2.78355 0.47046
0.58545 2.80670 0.58536
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The IDFT is now in the correct form to evaluate using the fast Fou-
rier transform algorithms (FFT). We choose to use the classical Coo-
ley and Tukey algorithm within this work so N will be taken to be a
power of 2.

6. Numerical results

We conclude this work with an investigation into the full three-
layer sliding contact problem. As before, we consider contact by a
parabolic stamp subject to the fixed parameter values

m ¼ 0:3; R ¼ 5 cm; W ¼ 10000 N;
h2

ah
¼ 1;

with ah denoting the predicted Hertzian contact half-width. The
formulae for this quantity and the maximum predicted Hertzian
pressure are included below for brevity. These values are used here
to allow us to compare results against those produced for a
homogeneous material in the classic contact problem and because
it will allow an easy comparison with the results of Chidlow and
Teodorescu (2013).

ah ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2WRð1� mÞ

pl1

s
; ph ¼

2W
pah

: ð79Þ

Our aim within this example is to determine how coating and inter-
layer thickness as well as increasing friction effect the predicted
Fig. 4. Plots of the predicted contact pressure curves produced for a selection of differe
represents l1=l0 ¼ 4, the red line l1=l0 ¼ 2, the green line l1=l0 ¼ 1, the magenta line
colour in this figure legend, the reader is referred to the web version of this article.)
contact footprint and stress field. With this in mind, we begin this
example by considering how the predicted contact pressure curves
pðxÞ and contact half-width H ¼ ðaþ bÞ=2 obtained for a selection of
different coatings are affected by different values of the friction
coefficient g and coating/layer thickness ratio h1=h2. Please note
that in what follows, coatings that satisfy l1

l0
> 1 are referred to as

hard whilst coatings that satisfy l1
l0
< 1 are called soft.

The predicted contact half-widths and pressure curves pro-
duced here are non-dimensionalised using the relevant Hertzian
parameters in order to compare our solutions with the classical
frictionless punch problem involving a homogeneous material.
We therefore define the new quantities

�pðxÞ ¼ pðxÞ
ph

; ð80Þ

H ¼ ðbþ aÞ
2ah

ð81Þ

which represent the dimensionless contact pressure and dimen-
sionless contact half-width respectively.

6.1. Predicted contact footprint

We initially examine the pressure curves produced for five dif-
ferent coatings satisfying l1=l0 ¼ 0:25;0:5;1;2;4 subject to the
coating thickness/layer thickness ratio satisfying h1=h2 ¼ 0:1. The
nt coatings subject to three different values of friction. The blue line in this figure
l1=l0 ¼ 0:5 and the black line l1=l0 ¼ 0:25. (For interpretation of the references to



Fig. 5. Plots of the predicted contact pressure curves produced for a hard and soft coating subject to two representative thicknesses and different values of the friction
coefficient. Within this figure, the blue line represents g ¼ 0, the red line g ¼ 0:1, the green line g ¼ 0:2, the magenta line g ¼ 0:3 and the black line g ¼ 0:4. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Plots of the maximum principal stress produced using the pressure curves in Fig. 4 against L=H for three different coatings subject to two different values of g. The blue
line represents l1l0 ¼ 2, the green line l1=l0 ¼ 1 and the red line l1=l0 ¼ 0:5. (For interpretation of the references to colour in this figure caption, the reader is referred to
the web version of this article.)
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Fig. 7. Plots of the sub-surface stress fields produced using the contact pressure curves in Fig. 4 for the hard coating l1=l0 ¼ 2 and soft coating l1=l0 ¼ 0:5 subject to the
coating thickness h1=h2 ¼ 0:1 and friction coefficients given.
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value of g is fixed within each problem but is allowed to vary be-
tween problems.

The predicted contact pressure curves corresponding to these
parameter values are presented in Fig. 4. This figure indicates that
hard coatings experience larger maximum pressures than soft
coatings but act over a smaller area. These observations are in ac-
cord with those of Chidlow and Teodorescu (2013) and Yang and
Ke (2008). We also note that when g ¼ 0; b ¼ a and so the contact
interval is symmetric about the origin. As the friction coefficient
increases in value, we see that b < a so the contact interval and
pressure curve becomes skewed about the origin. This has the
additional effect that the maximum pressure occurs to the right
of the origin rather than at the origin.

We may more fully examine how the contact pressure, and in
particular, the location at which its maximum occurs is affected
by friction by examining how different values of g affect
one particular coating. The results depicted in Fig. 5 shows the con-
tact pressure curves produced for the hard coating satisfying



Fig. 8. Plots of the sub-surface stress fields produced using the contact pressure curves in Fig. 4 for the hard coating l1=l0 ¼ 2 and soft coating l1=l0 ¼ 0:5 subject to the
coating thickness h1=h2 ¼ 0:9 and friction coefficients given.
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l1=l0 ¼ 2 and the soft coating satisfying l1=l0 ¼ 0:5 of thickness
h1=h2 ¼ 0:1;0:9 subject to the friction coefficients g ¼ 0;0:1;0:2;
0:3; 0:4. It is clearly visible here that the value of g does affect both
the location of the maximum pressure and how much the contact
interval moves from left to right. We note however that the value
of the maximum pressure and the width of the contact interval are
completely unaffected by any increase in friction. This was also
noted by Ke and Wang (2007).
Another feature of interest in Fig. 5 is that the maximum con-
tact pressure obtained for the hard coating increases as the inter-
layer thickness decreases whilst the maximum pressure for the
soft coating decreases. This feature was observed by Chidlow and
Teodorescu (2013) for the case of frictionless contact.

These results allow us to deduce that the maximum normal
stress (ryy) that occurs on the surface of the coating will be much
larger for harder coatings than softer coatings. The friction



Fig. 9. The effect of increasing friction on the dimensionless maximum principal stress s1=ph for the coatings l1=l0 ¼ 3 (blue line), l1=l0 ¼ 2 (red line), l1=l0 ¼ 0:75 (green
line) and l1=l0 ¼ 0:5 (magenta line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Plots of the dimensionless maximum principal stress against h1=h2 for four different coating types subject to the values of g and h2=ah given. The blue line represents
l1=l0 ¼ 3, the red line depicts l1=l0 ¼ 2, the green line l1=l0 ¼ 0:75 and the magenta line l1=l0 ¼ 0:5. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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coefficient has no effect on this maximum value whereas the thick-
ness of the transition layer is highly significant. Decreasing the
transition layer thickness will increase the maximum stress whilst
increasing its thickness will ameliorate the maximum stress. It is
not clear however without applying a suitable test (e.g., Von Mises
yield criterion) whether or not the predicted increase in stress will
cause material failure.
6.2. Sub-surface stress fields

We now wish to compute the sub-surface stress fields corre-
sponding to the pressure curves produced in the previous section.
The principal stresses that we use throughout this work are of
Tresca type. This quantity is denoted s1 and computed from the
formula



Fig. 11. Plots of the maximum dimensionless prinicipal stress obtained within each region of the solid for the hard coating satisfying l1=l0 ¼ 2 subject to the parameter
values given. The blue diamonds represent the maximum stress within the coating, the red circles give the maximum stress within the interlayer and the black dotted line the
maximum stress within the substrate. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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s1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrxx � ryyÞ2 þ 4r2

xy

q
:

As the stresses within the solid are computed using the FFT, we
need to determine an appropriate range of x over which to evaluate
the sub-surface stress field. This is equivalent to determining a suit-
able value of L so that the interval �L 6 x 6 L accurately captures
the effects of the contact pressure.

Fig. 6 presents the maximum principal stresses obtained using a
range of values of L for the coatings satisfying l1=l0 ¼ 0:5;1;2 sub-
ject to the coating thickness h1=h2 ¼ 0:1 and the friction coeffi-
cients given. We see in each case that the predicted maximum
stress converges for L=H P 10 which is indicated by the lines flat-
tening out. We therefore take L ¼ 10H within this work.

The sub-surface stresses depicted in Fig. 7 corresponds to the
pressure curves presented in Fig. 4 for the hard coating
l1=l0 ¼ 2 and the soft coating l1=l0 ¼ 0:5 subject to the coating
thickness h1=h2 ¼ 0:1 and values of g given. We see that the posi-
tion of the maximum principal stress within the hard coating is
transient and moves progressively closer to the solid surface as g
increases. The maximum value additionally occurs to the left of
the origin for g non-zero. This corresponds to the maximum stress
appearing in front of the punch as it slides over the surface.

The position of the maximum principal stress within the soft
coating is also dependent on the friction coefficient g but does
not emulate the behaviour seen in the hard coating. In this situa-
tion, the location of the maximum stress does not move signifi-
cantly as the friction increases but we do note the appearance of
a region of high stress that occurs behind the punch as it slides.
This is an interesting phenomenon as it indicates that the material
puts up little resistance to the punch and thus will experience a
large surface deflection in front of the punch in comparison to a
hard coating.

The results presented in Fig. 8 depicts the sub-surface stress
fields produced for the same coatings subject to the coating/layer
thickness ratio h1=h2 ¼ 0:9 which corresponds to a thin interlayer.
We see again here that the hard coating experiences a region of
high stress close to its surface in front of the sliding punch whilst
the soft coating experiences a region of high stress close to its sur-
face behind the punch. It is observed in this example though that
the position of the maximum principal stress does not change as
g varies in both coatings.

The magnitude of the maximum stress produced here for the
hard coating is significantly higher than that given in Fig. 7. This
seems to indicate that harder coatings attain their maximum stress
when the transition layer is thin. The opposite seems to be true for
the soft coating as its maximum principal stress seems to be at-
tained when the coating is thin. It is however less conclusive where
the maximum occurs for the case of a thin interlayer.

We finally note in this section that the results produced in Fig. 8
are similar to those presented in King and O’Sullivan (1987) (their
Figs. 8 and 9). The differences between the presented results are
because the Tresca principal stress is used within this work whilst
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O’Sullivan and King use Von Mises stresses. These similarities fur-
ther verify that our model has the correct limiting behaviour as the
transition layer becomes increasingly thin.

6.3. The effects of increasing friction within the contact

The sub-surface stresses presented in Section 6.2 indicate that
the coating thickness and friction coefficient have a significant ef-
fect on the magnitude of the maximum principal stress. Our aim
within this section is to determine the effects of the friction coeffi-
cient on the maximum principal stress that results from the con-
tact problem. In order to do this, we consider how the maximum
stress obtained within the layered solid subject to the four coatings
satisfying l1=l0 ¼ 0:25; 0:5;2;3 varies as the friction coefficient in-
creases in magnitude. We take 0 6 g 6 0:3 in this example and
present results for the two representative coating thicknesses
h1=h2 ¼ 0:1;0:9. As before we set h2=ah ¼ 1. The notation

T ¼maxðs1Þ

will be used in the following sections for simplicity.
Fig. 9 depicts the results obtained for this problem. We can see

that when h1=h2 ¼ 0:1, the maximum stress obtained for each coat-
ing monotonically increases as g increases. The increase in stress in
the hard coatings is also much larger than that for the soft coatings
with a maximum dimensionless stress of approximately 0.4 pre-
dicted for l1=l0 ¼ 3 when g ¼ 0 and 0.7 predicted when g ¼ 0:3.
Conversely, the soft coating l1=l0 ¼ 0:25 experiences a maximum
dimensionless stress of approximately 0.25 when g ¼ 0 and 0.3
Fig. 12. Plots of the maximum dimensionless prinicipal stress obtained within each reg
values given. The key used here is the same as in Fig. 11.
when g ¼ 0:3. This indicates that hard coatings are more sensitive
to the value of the friction coefficient.

The results presented for the case h1=h2 ¼ 0:9 show that the
maximum stress within the soft coatings monotonically increase
with g as before. However, this is not true for the hard coatings.
The maximum stress within the hard coating l1=l0 ¼ 3 remains
constant until g > 0:2 and then begins to increase sharply. The
stress within the hard coating l1=l0 ¼ 2 remains constant for
g <� 0:22 and then increases slowly. It is interesting to note here
that the maximum stresses predicted for all four coatings are at-
tained when g ¼ 0:3 in both graphs and that these values are
approximately the same despite the change in interlayer thickness.
We conclude that whilst the maximum stress experienced for soft
coatings is sensitive to the friction coefficient, the same is not nec-
essarily true for hard coatings. Our results indicate that the ratio
h1=h2 significantly alters the sensitivity of hard coatings to the fric-
tion coefficient. It is observed that increasing the thickness of the
transition layer will help counteract the effects of friction when
g 6 0:2. Above this value, the thickness of the transition layer
seems to make little difference to the maximum stress.
6.4. The effects of coating/interlayer thickness

The results presented in the preceding sections suggest that the
coating/interlayer thickness ratio h1=h2 is highly important in
determining the magnitude of the maximum principal stress. We
therefore conclude this work with an investigation into how the
ion of the solid for the hard coating satisfying l1=l0 ¼ 3 subject to the parameter
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ratio h1=h2 effects the maximum principal stress that results from
the contact problem.

Within this section, we plot T=ph against h1=h2 for the four dif-
ferent coatings l1=l0 ¼ 0:25;0:5;2;3 subject to the two different
friction coefficients g ¼ 0:1;0:2 and dimensionless layer thick-
nesses h2=ah ¼ 0:5;1.

The results presented in Fig. 10 depicts the dimensionless max-
imum stresses obtained for the stated parameter values. We can
see here that the maximum principal stress experienced by the
hard coatings in these examples generally increase as the ratio
h1=h2 increases whilst the maximum stress within the soft coatings
decrease. These observations are in accord with our results in Sec-
tion 6.2. We also note that the value of T=ph produced for each
coating and different value of h1=h2 is relatively unaffected by
the change in the total layer thickness h2=ah.

The most interesting feature of the graphs in Fig. 10 is that the
maximum stress within the hard coatings sharply increases for
certain values of h1=h2. This is particularly noticeable for the harder
coating l1=l0 ¼ 3. In order to investigate what is causing this
behaviour, we consider how the maximum principal stress within
each region of the solid evolves as the ratio h1=h2 varies. We con-
centrate only on the hard coatings satisfying l1=l0 ¼ 2;3 and pro-
duce results for the parameter values given previously. These
results are presented in Figs. 11 and 12.

We observe in both figures that the location at which the global
maximum stress occurs is transient and depends on the ratio
h1=h2. The local stresses within the coating and transition layer
Fig. 13. Plots of the dimensionless location at which the maximum principal stress occurs
of the maximum stress for the case l1=l0 ¼ 3, the red line corresponds to l1=l0 ¼ 2, t
interpretation of the references to colour in this figure legend, the reader is referred to
possess local maxima and minima for different values of h1=h2

whilst in both examples considered here the maximum stress
within the substrate is monotonically increasing when
h2=ah ¼ 0:5 and relatively constant when h2=ah ¼ 1.

By comparing the results in Figs. 11 and 12 with those in Fig. 10,
we see that the sharp increases and decreases in the maximum
stress observed before correspond to the location of the maximum
stress changing between the transition layer and coating. For
example, in Figs. 11(a) and 12(a), the sharp increase in the maxi-
mum stress at h1=h2 ¼ 0:9 and h1=h2 ¼ 0:8, respectively corre-
spond to the maximum stress moving from the coating to the
transition layer.

To emphasise the transient nature of the maximum principal
stress, Fig. 13 depicts where the maximum principal stress occurs
within the solid for the four different coatings already considered
in this section. These results confirm our hypotheses from the pre-
vious figure and indicate that small changes in the coating thick-
ness can result in the maximum principal stress occurring in
different regions of the solid. They also suggest that the greater
the thickness of the layer, the less likely the maximum stress is
to occur in the substrate. This observation could potentially be very
useful in coating design as thicker coatings can theoretically min-
imise the stress experienced by the base material and hence pro-
vide a greater degree of protection. The ratio h1=h2 would still
need to be carefully controlled in this situation however as unde-
sirably large stresses could still occur in the coating/transition re-
gion and could cause material failure.
against h1=h2 for the results presented in Fig. 10. The blue line indicates the location
he green line corresponds to l1=l0 ¼ 0:75 and the magenta line l1=l0 ¼ 0:5. (For
the web version of this article.)
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7. Conclusions

We have presented a model that may be used to determine the
stresses and displacements induced within a layered material com-
prising a coating – FGM layer – substrate through contact with an-
other object. By initially considering the application of line forces
to the layered solid at the origin, the stresses and displacements
were computed in terms of the inverse Fourier transform and gen-
eralised to the case of normal and tangential tractions distributed
over the solid surface using the superposition principle. A discus-
sion of how to compute the stresses using the IFFT was also
presented.

An integral equation was formulated for both the normal and
tangential pressures applied to the solid surface and solved numer-
ically for the case of contact with a rigid parabolic punch under the
assumptions of Coulomb friction. The proposed model was then
validated against literature accepted results in two different limit-
ing cases.

The selection of numerical results produced for the full contact
problem indicate that whilst increased friction within the contact
makes little difference to the applied normal pressure, the resul-
tant sub-surface stresses are greatly affected by the presence of
friction. It was seen that the magnitude of the maximum principal
stress was highly dependent on the hardness of the coating (ratio
l1=l0), friction coefficient (g) and coating/interlayer thickness ra-
tio (h1=h2). In particular, it was observed that hard coatings are
particularly sensitive to the ratio h1=h2 as dramatic increases in
the maximum attained stress and the location at which it occurs
are observed as h1=h2 varies between 0 and 1. This sensitivity indi-
cates that hard coatings need to be carefully tailored to ensure that
they do not experience much larger stresses under pressure than
expected.
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Appendix A. Contact model derivation

This section defines the matrices that appear in (19)–(23).
Please note that all matrices are dependent only on the transform
variable n.

KðiÞj ¼
e�kjhi 0

0 e�kjþ2hi

 !
; ðA:1Þ

Nj ¼
1 1
kj kjþ2

� �
; ðA:2Þ

Mj ¼
FðkjÞ Fðkjþ2Þ
GðkjÞ Gðkjþ2Þ

� �
; ðA:3Þ

Hj ¼
1 �hj

jnj 1� jnjhj

� �
; ðA:4Þ

Jj ¼
1 �hj

�jnj 1þ jnjhj

� �
; ðA:5Þ
Gj ¼
n2 2ð1� mÞjnj � n2hj

�jnjn2 n2ðð1� 2mÞ þ jnjhjÞ

 !
; ðA:6Þ

Lj ¼
n2 �ð2ð1� mÞjnj þ n2hjÞ
jnjn2 n2ðð1� 2mÞ � jnjhjÞ

 !
; ðA:7Þ

U ¼ H0 � e�2jnjh1 J0ðJ1 � SW�1L1Þ
�1ðH1 � SW�1G1Þ; ðA:8Þ

S ¼ N1Kð1Þ1 � N2Kð1Þ2 T2Kð2Þ2

� ��1
T1Kð2Þ1 ; ðA:9Þ

W ¼ M1Kð1Þ1 �M2Kð1Þ2 T2Kð2Þ2

� ��1
T1Kð2Þ1 ; ðA:10Þ

Tj ¼ Nj � H2G�1
2 Mj ðA:11Þ

for i; j ¼ 1;2. The functions F and G appearing in (A.3) are further
defined as

FðkjÞ ¼ ð1� mÞk2
j þ mn2; ðA:12Þ

GðkjÞ ¼ ð1� mÞk3
j � að1� mÞk2

j � n2ð2� mÞkj � amn2: ðA:13Þ

Please note that the notation h0 ¼ 0 has been adopted in this
section.
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