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0. Introduction

We shall consider the quasilinear elliptic equation

div[A( |Du| ) Du]+ f (u)=0, x # Rn, n�2, (1)

where A( p) is a real positive continuous function defined for all p>0 and
f (u) is a real continuous function defined for all u�0. Our principal
concern will be with ground states of (1), namely non-negative non-trivial
continuously differentiable solutions u=u(x) which tend to zero as the
point x approaches infinity.

The special case where A#1, corresponding to the Laplace operator, is
well-known and takes the classical form

2u+ f (u)=0. (2)
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When the function f (u) is of class C1+= for u near zero, and when f (0)=0,
f $(0)<0, it has been shown by Gidas, Ni 6 Nirenberg that ground states
of (2) are necessarily radially symmetric. In addition, under further
appropriate conditions on f, the existence of radially symmetric ground
states has been established by Strauss, Coleman, Glazer 6 Martin,
Berestycki 6 Lions, Atkinson 6 Peletier, and Kaper 6 Kwong, while the
uniqueness of such ground states is further treated in papers of Coffman,
Corta� zar et al., Peletier 6 Serrin, McLeod 6 Serrin, Kaper 6 Kwong,
Kwong, Kwong 6 Zhang and Yanagida.

Ground states for the general equation (1) can in most cases be expected
to be radially symmetric, and we shall accordingly restrict our discussion
to that case. More specifically, we shall establish both existence and
uniqueness of radially symmetric ground states of (1) under appropriate
conditions on the operator A( p) and the function f (u), and we shall also
obtain a number of qualitative results concerning the behavior of solutions.
Finally, occasionally at the expense of somewhat longer proofs, we shall
always deal with the weakest hypotheses which we can treat.

Our results apply in particular to the important cases of the degenerate
Laplace operator A( p)=pm&2, m>1, the mean curvature operator
A( p)=(1+p2)&1�2, and more generally to A( p)=(1+p2)&s�2 pm&2, where
m and s are positive constants which satisfy suitable conditions (see below).
Equation (1) can also be viewed as the Euler�Lagrange equation corre-
sponding to the variational problem

$ | [G( |Du| )&F(u)] dx=0, (3)

where

f (u)=
dF
du

, F(u)=|
u

0
f (t) dt,

and

A( p)=
Gp( p)

p
, G( p)=|

p

0
\A(\) d\.

Section 1 deals with general properties of radial solutions and radial
ground states of (1), using ideas introduced by Peletier 6 Serrin in [PS1]
and [PS2]. In Section 2, we give our existence results. The approach here
is based on shooting methods, partially following work of Berestycki, Lions
6 Peletier and of Peletier 6 Serrin. It is also possible to develop variational
methods to obtain existence, as in the works of Berestycki 6 Lions and of
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Strauss; for several results in this direction, see the works of Citti and
Kichenassamy 6 Smoller. Further work on existence and non-existence of
solutions of (1), particularly for the case of the mean curvature operator,
can be found in [NS1], [NS2], [PS3], and [APS]. In addition some
related existence results for Monge�Ampe� re operators are proved in [F].

Section 3 is concerned with the uniqueness question for radial ground
states. The essential tools for this purpose are the monotone separation
theorem (see [PS1] and [PS2] for the case A#1) and a new identity for
radial solutions of (1). In general form, this identity appears in Lemma
3.1.3. For the mean curvature operator A( p)=1�- 1+p2, in particular, it
reduces to the striking relation

d
dr {r \ p2

1+p2+
2F(u)

- 1+p2
&F 2(u)+

1�2(n&1)

=
=\ p2

1+p2+
2F(u)

- 1+p2
&F 2(u)+

&(n&3�2)�(n&1)

\ p2+2

- 1+p2
F(u)&F 2(u)+ ,

where u=u(r) is a radial solution of (1) for this operator, and p=|u$(r)|.
Another remarkable formula occurs for the degenerate Laplace operator
A( p)=pm&2; namely for this case, radial solutions of (1) satisfy the
identity

d
dr {r \pm+

m
m&1

F(u)+
(m&1)�m(n&1)

=
=

m
m&1 \pm+

m
m&1

F(u)+
&(n&2+1�m)�(n&1)

F(u).

(Of course the above formulas are applicable only when they are meaningful,
that is when (1+p2)&1�2&F(u) # (0, 1) for the first, and pm+(m�(m&1)) F(u)
>0 for the second.)

We turn now to a more detailed statement of our assumptions and main
conclusions. Throughout the paper we shall assume, without further
comment, the following hypotheses concerning the function f (u) and the
operator A( p):

(H1) f is continuous on [0, �) and f (0)=0,

(H2) A is continuous on (0, �) and pA( p) � as p � 0,

(H3) pA( p) is strictly increasing for p>0.

The continuity assumptions in (H1) and (H2) are essentially minimal,
and indeed one of the purposes of the paper is just that, to work with mini-
mal hypotheses. The conditions on f at u=0 and on A as p � 0 are
required in order for a ground state to exist. Assumption (H3) is simply the
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condition that (1) be weakly elliptic or alternately that the integrand in (3)
be strictly convex in Du. Note also that (H2) and (H3) imply A>0 for
p>0.

It is easy to check that conditions (H2) and (H3) are satisfied both for
the Laplace operator and for the degenerate Laplace operator A=pm&2,
m>1. They also hold for the mean curvature operator and even for the
general operator (1+p2)&s�2 pm&2 when s�0, m>1, m�s+1.

In order to state our main existence theorems, we first define

H( p)=p2A( p)&|
p

0
\A(\) d\ for \>0, H(0)=0, (4)

or, equivalently, with

0( p)=pA( p) for p>0, 0(0)=0,

and with p(0) denoting the inverse of 0( p),

H( p)=|
0( p)

0
p(0) d0. (5)

If A( p) arises from the Euler�Lagrange equation of the variational
integrand G( p), as in (3), then H( p) becomes the Legendre transform of
G( p), that is

H( p)=pG$( p)&G( p). (6)

It is clear from (5) and (H3) that 0( p) and H( p) are strictly increasing
and positive for p>0. In turn we can define

0(�)= lim
p � �

0( p), H(�)= lim
p � �

H( p) (possibly infinite).

For the operator A=pm&2 we have in particular H=((m&1)�m) pm

and 0(�)=H(�)=�, while, for the mean curvature operator, H=
1&1�- 1+p2 and H(�)=1.

Our principal conclusion concerning existence, Theorem 1 in Section 2,
can now be stated.

Theorem A. Suppose that there exist constants ;>0 and #>;
(# possibly infinite) such that the following conditions hold:

(a) F(u)<0 for 0<u<;; F(;)=0,

(b) f (u)>0 for ;�u<#; f (#)=0 if #<�,
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(c) max
[0, ;]

|F(u)|+F(#)<H(�) if H(�)<�,

(d) lim inf
u � �

H&1(F(u))
u

=0 if H(�)=F(#)=�, 0(�)<�,

(e) lim inf
u � �

H&1(F(u))
u

<� if H(�)=0(�)=F(#)=�.

Then there exists a radially symmetric ground state u=u(r) of (1), with
central value u(0) # (;, #] if #<�, or u(0) # (;, �) if #=�. Moreover
u(r)�0 for all r�0.

In the statement of this theorem for the case #=� we define
F(#)=limu � � F(u), which certainly exists though possibly being infinite.
Clearly F(#)=� can occur only in the case #=�. Note also that H&1 is
well-defined since H is strictly increasing, and that H(�)=� whenever
0(�)=�.

As we shall see from Proposition 1 below, conditions (a), (b), and (c),
while not quite necessary for solutions to exist, are nevertheless nearly
necessary. On the other hand, neither smoothness nor even Lipschitz
continuity is required for the function f (u) in this proposition. Clearly, if
F(#)<� and H(�)=� then only the conditions (a), (b) are needed. The
appearance of the value H(�) in (c) and (d), and 0(�) in (e) is of inter-
est. For the Laplace operator or the degenerate Laplace operator H(�)
and 0(�) are both infinite, so conditions (c), (d) and (e) are not needed
if #<�, though, of course, (e) must be used when F(#)=�. On the other
hand, for the mean curvature operator we have H(�)=1. Therefore, in
consequence of (c), the function F(u) must be quite restricted in order to
obtain existence; see also Proposition 1 below.

For the case of the Laplace operator condition (e) takes the form

lim inf
u � �

F(u)
u2 <�

and for the degenerate Laplace operator

lim inf
u � �

F(u)
um <�.

Even for the Laplace operator this condition for existence when
#=F(�)=� seems to be new. In fact, for the Laplace operator in the case

lim inf
u � �

f (u)>0,
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(so also #=F(#)=�) it was shown in [KK4] that existence holds if (a),
(b) and

(e$)
f (u)
u&;

is nonincreasing for u>;

are satisfied, and f is Lipschitz continuous on (0, �). This result clearly
falls as a special case under (e) in Theorem A.

Various properties of ground state solutions of (1) are derived in
Section 1, several of which are worth noting here. We first observe that
radial solutions u=u(r) of (1) satisfy the differential equation

(A( |u$| ) u$)$+
n&1

r
A( |u$| ) u$+ f (u)=0, r>0.

Proposition 1. Let u=u(r) be a radially symmetric ground state of (1),
under the hypotheses (H1)�(H3) on f (u) and A( p). Then

(i) f (u(0))�0

(ii) F(u(0))>0

(iii) u$(r)�0 for 0<r<�

(iv) u$(r) � 0 as r � �.

If F(u)�0 for 0<u<; then also

(v) max
[0, ;]

|F |<H(�).

If F(u)�0 at every point u (in the range of a solution) where f (u)=0, then
equality cannot hold in (i), while (iii) can be improved to u$(r)<0 for all
r>0 such that 0<u(r)<u(0).

The asymptotic behavior (iv) can be considerably strengthened in case
conditions (A2) and (F1) below are satisfied; see Lemmas 3.2.1 and 3.2.2.

By condition (iii), if u(r� )=0 for some r� >0 then u(r)#0 for r>r� , so that
the solution has compact support. The next result gives a necessary and
sufficient condition for this situation to occur (see Section 1.3).

Proposition 2. Assume that constant c>1 and $>0 exist such that

f (u)�0 for 0<u<$, c |
p

0
\A(\) d\�p2A( p) for 0<p<$.
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Then radial ground states of (1) have compact support if and only if

|
0

1
H &1( |F(t)| )

dt<�.

The final section of the paper concerns the uniqueness of radially sym-
metric ground states. The situation here is quite delicate, and accordingly
we shall require further restrictions on the function f (u) and the operator
A( p):

(A1$) p30( p) 0$( p) is increasing (see Section 3, condition (A1), for a
more general hypothesis),

(A2) p2&mA( p) � 1 as p � 0, for some m>1,

(A3) 0$( p)�[0( p)]+ for all p near 0 and some + # [0, 2),

(F1) F(u)<0 for 0<u<;, F(;)=0,

(F2) f (u) is positive and non-increasing for ;<u<#,

(F3) f (u) is locally Lipschitz continuous on (;, #).

Theorem B. Assume n�2 and that A( p) is of class C 1 for p>0.
Suppose also that the hypotheses (A1$), (A2), (A3) and (F1), (F2), (F3) are
satisfied. Then equation (1) cannot have more than one radially symmetric
ground state u=u(r) such that u(0)<#.

Theorem C. Let the hypotheses of Theorem B hold, except that

(i) +=0 in (A3);

(ii) #<� in (F2), (F3);

(iii) (;, #) is replaced by (;, #] in (F3).

Then equation (1) cannot have more than one radially symmetric ground
state such that u(0)�#.

The requirement (F2) in Theorem B is fairly strong, and under
appropriate conditions on the operator A( p) can be significantly weakened.
In particular if A satisfies (A1$)�(A3) and also

(A2$) p2&&A is non-decreasing on (0, �), where &>1 is constant,

then it is enough to suppose that f satisfies (F1) and (F3) and, in place of
(F2), the weaker condition

(F2$) f (u)�(u&;)&&1 is positive and non-increasing for ;<u<#.

Note that (A2$), (F2$) reduce simply to (F2) when & � 1.
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For the Laplace operator (A#1) we can take m=2 in (A2) and +=0
in (A3), and also &=2 in (A2$). Then (F2$) becomes condition (S) in
[PS1]. Conditions (A2$) and (A3) also are obeyed by the degenerate
Laplace operator A#pm&2, with &=m and with +=0 for 1<m�2 and
+=(m&2)�(m&1) for m>2. For the mean curvature operator one can
take m=2 in (A2) and +=0 in (A3) exactly as for the Laplace operator.
On the other hand (A2$) is not satisfied for any &>1. Consequently (F2$)
cannot be directly used in this case (but see the footnote in the introduc-
tory part of Section 3). Finally, condition (A1$) holds for the degenerate
Laplace operator for all m>1 and n�2, and also for the mean curvature
operator��see the introduction to Section 3.

The fact that f in Theorem B needs to be Lipschitz continuous only on
(;, #) is worth noting, both because the natural expectation is that if
Lipschitz continuity is needed at all it should be for the whole range of
values (0, #) which a solution might encounter, and also because in
previous uniqueness results for equation (2) Lipschitz continuity or even
continuous differentiability were required at all values u # (0, #). Thus
Theorem B is, even for equation (2), a generalization of earlier work.
Similar comments apply also for Theorem C.

Even after giving up both hypothesis (A3) and the Lipschitz continuity
of f , a result of considerable interest still persists, describing the structure
of the set of all ground states when uniqueness fails.

Proposition 3. Assume n�2 and that A( p) is of class C 1 with
[ pA( p)]$>0 for p>0. Suppose hypotheses (A1$), (A2), (F1) and (F2) are
satisfied (or, in place of (F2), the conditions (A2$) and (F2$)). If u and v are
radially symmetric ground states of (1) with u(0), v(0)�#, then necessarily

u(0)=v(0).

Moreover if u�v then u(r){v(r) for all r>0 such that u(r) # (0, #). (If u and
v have compact support, then also inf[r>0; u(r)=0]{inf[r>0; v(r)=0].)

In other words, even if the radial ground state itself is not unique for a
given function f (u), its central value is. Note moreover that if either u or v
does not have compact support then u(r){v(r) for all r>0. Of course,
if one adds to the hypotheses of Proposition 3 the assumption that the
Cauchy problem for the equation satisfied by radial solutions of (1) has
only a unique solution, then the ground state is unique. This happens in
particular for Theorems B and C above.

Under the hypotheses of Theorem B, and with the help of Proposition 3,
it is clear that the only way there could be more than one radial ground
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state of (1) with central value u(0) in (0, #], #<�, is that there are no
radial ground states with u(0) # (0, #) and at least two radial ground states
with u(0)=#.

This remark is of particular importance for the degenerate Laplace
operator when m>2, since Theorem C cannot be applied in this case
because assumption (i) fails.

The examples of the Laplace operator, the degenerate Laplace operator
and the mean curvature operator are sufficiently important to be con-
sidered separately. By combining our previous conclusions of existence and
uniqueness we can state the following results for these cases.

Corollary 1. Suppose n�2. Assume conditions (a), (b) of Theorem A
are satisfied, and that, for some constant m>1,

(c) f (u)�(u&;)m&1 is non-increasing for ;<u<#.

There exists a radially symmetric ground state u=u(r) of the equation

div[ |Du|m&2 Du]+ f (u)=0

with the following properties (see Theorem A):

if #=�, then u(0) # (;, �),

if #<�, then u(0) # (;, #].

Suppose also that f is Lipschitz continuous on (;, #). Then if #=� the solution
is unique, and if #<� the solution is unique in the class where u(0)<#.

If f (u)�0 for small u, then the solution is positive for all r�0 if and only
if

|
0

|F(t)|&1�m dt=�.

Corollary 2. Let the preceding hypotheses hold, except that (c) is
replaced by

(c$) f is non-increasing for ;<u<#

(c") max
[0, ;]

|F(u)|+F(#)<1.

Then there exists a radially symmetric ground state u=u(r) of the equation

div \ Du

- 1+|Du| 2++ f (u)=0

with the same properties as in Corollary 1.
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If f (u)�0 for small u, then the solution is positive for all r�0 if and only
if

|
0

|F(t)| &1�2 dt=�.

In both corollaries the solutions have the general properties listed in
Propositions 1 and 2. Also, in the first corollary, when m=2, and in the
second corollary, all ground states are necessarily radially symmetric if
f # C1+= near u=0 and f $(0)<0. This follows at once from the symmetry
results of Gidas, Ni 6 Nirenberg and from work of Franchi 6 Lanconelli.

Corollary 1 also shows the possibility in certain cases of ground states
which are not radially symmetric, a point first raised by Kichenassamy 6
Smoller. That is, should a compact support radial ground state exist,
then two or more of these, with translated origins and disjoint supports,
would still constitute a ground state, but clearly not one which is radially
symmetric. All the more, in such a case the family of non-radially sym-
metric ground states is non-denumerable. To obtain existence of a compact
support ground state it is enough by Corollary 1 that the function f (u)
satisfy the condition

|
0

|F(t)|&1�m dt<�. (7)

In particular, in the natural case when f $(0) exists and is negative, condi-
tion (7) becomes simply m>2, as noted in [KS], Section 1 C (the argu-
ment there does not, however, quite conclusively demonstrate the existence
of the requisite compact support ground states, since the final hypothesis
of Theorem 1.2 is not easy to verify). Finally, remarkably enough, condi-
tion (7) can hold even for the Laplace operator, for example whenever

f (u)�&const .u1&=, =>0,

for small u, see [KK4]. This relation on course is not covered by the
Gidas�Ni�Nirenberg theorem, since f � C1+_([0, �)).

For the existence results of both Corollaries 1 and 2 we emphasize again
that there is no need to assume that f (u) is Lipschitz continuous, even
though such an assumption is certainly necessary for uniqueness. At the
same time, if the hypothesis of Lipschitz continuity is dropped in either of
the above corollaries, the partial uniqueness result of Proposition 3 still
remains true, and in particular the central value u(0) is still unique. The
weakening of the Lipschitz condition to the subinterval (;, #), and the
complete removal of this hypothesis in Proposition 3, are of course
improvements of previous results even for the case of the Laplace operator.
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A detailed table of contents is given at the beginning of the paper.
Chapters II and III, respectively covering existence and uniqueness, can be
read independently of each other. Chapter I, on the other hand, is
fundamental for all further results.

Since we shall be dealing throughout with radially symmetric solutions
of (1) it is possible to consider the dimension n simply as a real parameter
greater than 1; we shall consistently follow this point of view in the sequel.

Some particular cases of the above results were announced earlier in two
papers [FLS1] and [FLS2].

1. General Theory

1.1. Preliminary Results

A radially symmetric ground state u=u(r) of equation (1) can be
considered as a solution of the problem

(Au$)$+
n&1

r
Au$+ f (u)=0, r>0

(*)
u$(0)=0, u�0 for r>0; u � 0 as r � �; u�0,

where A=A( |u$| ) and n is the dimension, which for our purposes may be
considered any real number greater than 1.

As noted in the Introduction, we shall always maintain the hypotheses
(H1)�(H3) without further comment. Moreover, to avoid confusion we
shall specifically define the function Au$ to be 0 whenever u$=0.

Because of the possible singularity of A when u$=0 (which occurs in
particular for the degenerate Laplace operator, and equally because we do
not require the operator A( p) itself to be differentiable) it is necessary to
be precise concerning the meaning of a solution of the differential equation
in (*), namely

(Au$)$+
n&1

r
Au$+ f (u)=0, r>0. (1.1.1)

Here we shall treat classical solutions, with the precise meaning that
u # C1([0, �)) with u$(0)=0, and w=Au$ # C1((0, �)).

In this section we shall prove some simple but important identities for
non-negative classical solutions of the equation (1.1.1). For the moment we
shall not assume that u � 0 as r � �. Obvious specializations of these
results also hold when the domain [0, �) for u is replaced by some
subinterval of [0, �).
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Lemma 1.1.1. If u is a classical solution of (1.1.1), then w=Au$ #
C1([0, �)) and

w(r)= &|
r

0 \
t
r+

n&1

f (u(t)) dt, w(0)=0, w$(0)=&
1
n

f (u(0)).

Proof. Obviously w satisfies the equation

w$+
n&1

r
w+ f (u)=0, r>0, (1.1.2)

and w(0)=0 because u$(0)=0. Writing (1.1.2) in the form

(rn&1w)$=&rn&1 f (u), (1.1.3)

an easy integration now yields

rn&1w(r)=&|
r

0
tn&1 f (u(t)) dt,

whence also

w$(r)=& f (u(r))+
n&1

rn |
r

0
tn&1 f (u(t)) dt, r>0.

By l'Hopital's rule the right hand side approaches & f (u(0))�n as r � 0,
completing the proof.

Note further that

lim
r � 0

w(r)
r

=w$(0)=&
1
n

f (u(0))

so in particular w�r is bounded as r � 0.

Lemma 1.1.2. Suppose u is a classical solution of (1.1.1). Then for any
pair of numbers r0 , r�0 we have

H( p)+F(u)=H( p0)+F(u0)&(n&1) |
r

r0

Au$2 dr
r

, (1.1.4)

where H( p) is defined by (4),

F(u)=|
u

0
f (t) dt

is the primitive of f vanishing at u=0, and u=u(r), p=|u$(r)|, u0=u(r0),
p0=|u$(r0)|.
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Proof. We note first that Au$2�r=(w�r) u$, so this quantity is locally
integrable on [0, �). Now put

I(r)=H( p)+F(u)+(n&1) |
r

r0

Au$2 dr
r

.

We must show that dI�dr=0 when r>0. But

dF
dr

= f (u) u$,
d
dr |

r

r0

Au$2 dr
r

=
Au$2

r
,

and by (5)

dH
dr

=
d
dr |

0( p)

0
p(0) d0=u$w$=u$(Au$)$

since 0( p)=w sign u$, and so d0�dr=(dw�dr) sign u$. Hence, because u
satisfies (1.1.1) when r>0,

d
dr

I(r)=\(Au$)$+
n&1

r
Au$+ f (u)+ u$=0.

Lemma 1.1.3. Suppose n>1 and let u be a classical solution of (1.1.1).
If r� (�0) is a critical point of u, then either

u(r)�u(r� ) for r>r� , and f (u(r� ))�0

or

u(r)�u(r� ) for r>r� , and f (u(r� ))�0.

Proof. Let r� be a critical point of u. For contradiction, we suppose that
there exist r1 , r2�r� such that u(r1)>u(r� ) and u(r2)<u(r� ). Then we have
u(r� )=u(r~ ) for some r~ between r1 and r2 . Obviously u is non-constant on
[r� , r~ ]. Now, from (1.1.4) with r0=r� and r=r~ , we obtain

H( p~ )+(n&1) |
r~

r�

Au$2

r
dr=0.

Hence since n>1 and because H>0, A>0 for p>0 we get u$#0
on [r� , r~ ]. This contradiction proves that u(r)�u(r� ) for every r>r� or
u(r)�u(r� ) for every r>r� . In the first case it is easy to see that u$(r� )=0,
Au$=w(r� )=0, w$(r� )=(Au$)$�0. Hence by (1.1.2), or by the relation
w$(0)=&f (u(0))�n if r� =0, we have f (u(r� ))�0. In the same way it follows in
the second case that f (u(r� ))�0.
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1.2. Behavior of Solutions

In this section we shall obtain some elementary but useful results con-
cerning classical solutions of (*). We maintain always the hypotheses
(H1)�(H3).

Lemma 1.2.1. If u is a classical solution of (*) then

u$ � 0 as r � �

and

H( p)+F(u)=(n&1) |
�

r

Au$2

\
d\�0 (1.2.1)

(n&1) |
�

0

Au$2

r
dr=F(u(0)). (1.2.2)

Proof. Let r � � in (1.1.4). Since F(u) then tends to zero (recall u � 0
as r � �), and the integral tends to some limit, also H( p) tends to a limit.
Hence p � limit, which must necessarily be zero since u � 0 as r � �. This
proves the first part of the lemma. For (1.2.1), we again let r � � in
(1.1.4), and then for (1.2.2) we set r=0 in (1.2.1).

In view of (1.2.2) it is clear that F(u(0))>0 and so a fortiori u(0)>0.
Consequently if there exists a solution of (*) then necessarily

B=[u>0 | F(u)>0]{<

In the sequel we shall put ;=inf B. The lemma shows that u(0)>;.

Proposition 1.2.2. A necessary condition for Problem (*) to have a
solution is that

max
[0, ;]

|F |<H(�). (1.2.3)

Proof. Put r0=0 in (1.1.4); since H( p) is strictly increasing we get

F(u(0))&F(u)=H( p)+(n&1) |
r

0

Au$2

r
dr

<H(�)+(n&1) |
�

0

Au$2

r
dr=H(�)+F(u(0)),

by (1.2.2). Since the range of u(r) strictly includes (0, ;], the result follows
at once.
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Lemma 1.2.3. Let u be a classical solution of (*). If u(a)=0 for some
a>0 then u#0 for r�a.

Proof. Clearly u$(a)=0. Consequently (1.2.1) with r=a yields

|
�

a

Au$2

r
dr=0.

Hence u$#0 and u#0 for r�a.

Lemma 1.2.4. Let u be a classical solution of (*). Then r=0 is a
maximum of u and u$(r)�0 for r�0.

Proof. By Lemma 1.1.3, it is evident that the critical point r=0 must
be a maximum of u for otherwise the condition u � 0 at infinity would be
impossible.

Suppose that u$(\)>0 for some \>0. Since u(\)�u(0) by what was
just shown, it follows that there must be some minimum point r� contained
in (0, \). But then u(r)�u(r� ) for r>r� . If u(r� )>0 it would be impossible to
have u � 0 as r � �. If u(r� )=0 then u#0 for r�r� and so u$(\)=0, which
is again a contradiction.

Even more, by using Lemma 1.1.3 we get

Corollary 1.2.5. If u is a classical solution of (*) then f (u(0))�0.

The situation is somewhat simpler when f has the property that F(u)�0
at all points u (in the range of a solution) for which f (u)=0 (this is the
case, for example, when the conditions (a), (b) noted in the Introduction
are satisfied and u(0) # (0, #]). To begin with, the conclusion of Corollary
1.2.5 can be strengthened to f (u(0))>0. Indeed if f (u(0))=0, then
F(u(0))�0, contradicting (1.2.2).

The possibility u$(\)=0, u(\)>0 for some \>0 can also be ruled out
in Lemma 1.2.4. For if this happens, then by the result of Lemma 1.2.4 we
must have u(r)�u(\) for r<\ and u(r)�u(\) for r>\. Consequently
w$(\) can be neither positive nor negative. Hence w$(\)=0. That is,
w(\)=w$(\)=0 and so f (u(\))=0 by (1.1.2). But in this case again
F(u(\))�0. Hence by (1.2.1) we get (since u$(\)=0)

F(u(\))=(n&1) |
�

\

Au$2

r
dr=0

so that u$(r)#0, u(r)#u(\) for r�\, which contradicts the condition
u � 0 as r � �. We state this result as

Proposition 1.2.6. Let u be a classical solution of (*). Suppose that
F(u)�0 at all values u�u(0) for which f (u)=0. Then we have
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(i) u$(r)<0 for r>0 as long as u(r)>0,

(ii) f (u(0))>0.

1.3. Compact Support

In this section we prove a sufficient condition and a related necessary
condition for a solution of (*) to have compact support.

For the Laplace operator the result of Proposition 1.3.1 was obtained by
Peletier and Serrin [PS2], as well as a conclusion closely related to
Proposition 1.3.2.

Proposition 1.3.1. Let u be a classical solution of (*). If ;>0 and

|
0

1
H &1( |F(s)| )

ds<�, (1.3.1)

then u has compact support.

Proof. Let R be such that 0�u(r)<; for r�R. Then by (1.2.1) we
have p=|u$|>0 at all r�R for which u(r)>0. Hence by Lemma 1.2.3
either u#0 for all sufficiently large r or u>0 and u$<0 for r�R. In the
first case we are done. Otherwise, again by (1.2.1),

u$(r)<&H&1( |F(u(r))| ) for r�R.

Hence

|
u(R)

u(r)

ds
H&1( |F(s)| )

>r&R for r�R.

Since u(r) � 0 as r � �, this inequality implies

|
u(R)

0

ds
H &1( |F(s)| )

ds=�. (1.3.2)

The assertion is proved.

The next result is a partial converse.

Proposition 1.3.2. Assume that there exist constants c>1, $>0 and an
increasing function 8: [0, $) � R with 8(0)=0 such that

(i) |F(u)|�8(u) for every u # (0, $)

(ii) c � p
0 \A(\) d\�p2A( p) for p # (0, $).
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Let u be a classical solution of (*). Then u(r)>0 for every r>0 if

|
0

ds
H &1(8(s))

=�. (1.3.3)

Remarks. (a) Condition (i) is satisfied with 8=|F | if there exists $>0
such that f (u)�0 for 0�u�$.

(b) Condition (ii) holds with c=m for the degenerate Laplacian
(A( p)=pm&2, m>1) and with any c # (1, m) for the generalized mean
curvature operator (A( p)=(1+p2)&s�2 pm&2, m>1).

(c) Condition (ii) is equivalent to G( p)�const. H( p); see relations
(3) and (6) in the Introduction.

Proof of Proposition 1.3.2. For contradiction we assume u(r)=0 for
some r>0. From Lemmas 1.2.3 and 1.2.4 there exists a constant a>0 such
that u$(r)�0 and 0<u(r)�u(0) for 0<r<a, and u(r)#0 for r�a. Then
by (1.2.1)

H( p)=&F(u)+(n&1) |
a

r
Au$2 d\

\
, r<a.

Now by (4) and hypothesis (ii)

p2A( p)=H( p)+|
p

0
\A(\) d\�H( p)+

1
c

p2A( p),

so

p2A( p)�
c

c&1
H( p), (1.3.4)

provided of course that p # (0, $). It follows that if r0 is sufficiently close to
a then

H( p)�|F(u)|+
(n&1) c

c&1 |
a

r
H( p)

d\
\

�8(u)+c1 |
a

r
H( p) d\

for r0<r<a, where c1=(n&1) c�(c&1) r0 .
Applying Gronwall's inequality we obtain

H( p)�8(u)+c1 |
a

r
8(u(t)) ec1(t&r) dt.
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Now observe that t � 8(u(t)) is decreasing, because 8 is increasing and u
is decreasing. Thus for r0<r<a, we have

H( p)�8(u) \1+c1 |
a

r
ec1(t&r) dt+=ec1(a&r)8(u)�ec1(a&r0)8(u)=c2 8(u).

with c2>1. This inequality in turn yields

&u$�H &1(c28(u)), r0<r<a.

By the following Lemma 1.3.3 there exists a constant c3>0 such that

H&1(c2 q)�c3 H&1(q) for 0<q<8(u0), u0=u(r0).

Therefore

&u$
H&1(8(u))

�c3 , r0<r<a.

Integrating this inequality on (r1 , r2), r0<r1<r2<a, we obtain

|
u(r1)

u(r2)

ds
H&1(8(s))

�c3(r2&r1).

When r2 � a this yields

|
u(r1)

0

ds
H &1(8(s))

�c3(a&r1).

Because u(r1)>0, we have obtained a contradiction with the hypothesis
(1.3.3). The proof is complete.

Lemma 1.3.3. If the hypothesis (ii) of the preceding proposition is
satisfied, then for every fixed %>1 and q0>0, there exists a positive con-
stant d such that

H&1(%q)�dH&1(q) for every q # (0, q0).

Remark. For the special case A( p)=pm&2, m>1, we have
H( p)=(m�(m&1)) pm so that

H&1(%q)
H &1(q)

=\%q
q +

1�m

=%1�m

so we can take d=%1�m. For a general function A the proof is more com-
plicated.
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Proof. Put

.( p)=|
p

0
\A(\) d\.

For every p # (0, $) we have by hypothesis (ii)

.( p)�
1
c

p2A( p)=
1
c

p.$( p),

or equivalently, putting q=.( p),

(.&1)$ (q)
.&1(q)

�
1
cq

if 0<q<.($).

An integration on (q, *q), *>1, yields

log
.&1(*q)
.&1(q)

�
1
c

log * if 0<q<
.($)

*
. (1.3.5)

On the other hand, using (ii) and (1.3.4)

.( p)�
1
c

p2A( p)�
H( p)
c&1

=c$H( p), c$=
1

c&1
.

Therefore, putting q=.( p)�c$ we get

H&1(q)�.&1(c$q) if 0<q<.($)�c$. (1.3.6)

Moreover, since pA( p) is positive and increasing,

.( p)�|
p

p�2
\A(\) d\�\p

2+
2

A \p
2+�H \p

2+ ,

by (4). Hence, putting q=.( p),

H&1(q)� 1
2.&1(q). (1.3.7)

Then for 0<q<.($)�c$% we have from (1.3.6) and (1.3.7)

H&1(%q)
H &1(q)

�2
.&1(c$%q)

.&1(q)
.

If c$% � 1 then the last ratio is �1, while if c$% > 1 it is �(c$%)1�c

by (1.35). On the other hand H&1(%q)�H &1(q) is bounded for
.($)�c$%�q<q0 . Thus in all cases H&1(%q)�H &1(q) is bounded, which
completes the proof.
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Corollary. Assume ;>0 and that (i) in Proposition 1.3.2 holds.
Suppose also that p2&mA( p) � 1 as p � 0 for some m>1. Then u(r)>0 for
every r>0 if

|
0

ds
(8(s))1�m=�

and only if

|
0

ds
|F(s)| 1�m=�.

Proof. From (4) and L'Hopital's rule we get p&mH( p) � 1&1�m as
p � 0, and the results follow at once from Propositions 1.3.1 and 1.3.2.

If F(u) is monotone for all sufficiently small u, then by taking 8(s)=
|F(s)| we get necessary and sufficient conditions for compact support.

2. Existence

In this chapter, we consider the existence question for Problem (*).

Theorem I. Assume that, for suitable constants 0<;<#, #��,

(a) F(u)<0 for 0<u<;; F(;)=0,

(b) f (u)>0 for ;�u<#; f (#)=0 if #<�,

(c) F(#)+max
[0, ;]

|F |<H(�) if H(�)<�,

(d) lim inf
u � �

H&1(F(u))
u

=0 if H(�)=F(#)=� and 0(�)<�,

(e) lim inf
u � �

H&1(F(u))
u

<� if 0(�)=H(�)=F(#)=�.

Then (*) has a solution with u(0) # (;, #] and u$�0.

Remark. If 0(�)=� then necessarily H(�)=�. We will in fact see
in the sequel that

lim
p � �

H( p)
0( p)

=� if 0(�)=�
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(see (2.1.15)). We note explicitly that condition (d) is non-empty. Indeed it
is possible to have 0(�)<� and H(�)=�, as can be seen from the
example

A( p)=
1

1+- 1+p2
,

since in this case

H( p)=
1
2 _

p2

1+- 1+p2
&log

1+- 1+p2

2 & .

2.1. Existence for Regular Operators

In this section we prove Theorem I under the following extra conditions,

A is of class C1 in [0, �) and 0$=pA$+A>0 for all p�0;
(2.11)

f is Lipschitz continuous in [0, #] if #<� (in [0, �) if #=�).

Even this special case of Theorem I is new and of interest of itself.
Consider the Cauchy problem

(Av$)$+
n&1

r
Av$+ f (v)=0, r>0

(2.1.2)
v(0)=!, v$(0)=0

with ! # [;, #). The existence of a unique solution of this Cauchy problem,
at least in some neighborhood of r=0, follows from Propositions A.1 and
A.2 in the Appendix (here we make strong use of (2.1.1)). For convenience
we shall write w=Av$, so that w(0)=0 and w$(0)=& f (!)�n<0 (as in
Lemma 1.1.1). Thus v$<0 and v<! in some interval to the right of zero.
The solution can be continued either for all r>0, with v(r)>0 and
v$(r)<0, or else reaches a first point r=R where v(R)=0, v$(R)�0 or
where v$(R)=0 and v(R)>0. To prove this, note first that, by (1.1.4) and
the fact (see (b)) that F(u) is positive and increasing for u>;,

H( |v$| )�F(!)&F(v)�F(!)+max
[0, ;]

|F |=M(!) (2.1.3)

as long as v exists and 0�v�!. If H(�)=�, or by (c) if H(�)<�, we
have M<H(�). Hence (2.1.3) implies

|v$|�H &1(M) (2.1.4)

as long as v exists and 0�v�!. This being shown, the result now follows
by the standard continuation theory of ordinary differential equations. In
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what follows we shall assume, except where otherwise explicitly stated, that
v is continued exactly until a first point is reached where either v$=0, v>0
or v=0. If no such point occurs then we assume v is continued for all r>0
(of course with v$<0).

Now put

I+=[! # [;, #) | inf v>0]

I &=[! # [;, #) | v(R)=0 for some finite R>0].

Clearly I + and I & are disjoint. We shall show that both the sets I + and
I& are open in [;, #) and non-empty. Once this is done the theorem
follows at once, for then I+ _ I & cannot cover [;, #) and so there exists
some !� # [;, #) which is neither in I+ nor I &. The corresponding solution
v is decreasing, but neither reaches v=0 nor remains bounded from zero.
Consequently it must exist for all r>0 and be a (non-compact support)
solution of (*). The proof, then, consists of the following four steps:

Step 1. I& is open,

Step 2. I+ is open,

Step 3. I+ is non-empty,

Step 4. I& is non-empty.

Step 1. I& is open. Let !� # I&. Then the solution v� vanishes at r=R,
and by the uniqueness of the Cauchy problem for smooth functions A and
f, necessarily v� $(R)<0. The solution can be extended to values v� <0 by
defining f (u)#0 for u<0. Then for all nearby values of ! the solution also
must reach points where v<0. Clearly for these values of ! we have
v$(r)<0 for r>0. Consequently all such values are in I&, and I& is open.

Step 2. I+ is open. Let !� # I+. Then for the corresponding solution v�
either there exists R>0 such that v� (R)>0 and v� $(R)=0, or v� $(r)<0 on
0<r<� and limr � � v(r)>0. If v� has a vanishing derivative at r=R,
then necessarily w� (R)=0, w� $(R)>0 (if w� $(R)=0 we would have f (v� (R))=0
and v� #v� (R) by uniqueness). Hence v� can be continued to larger values of
r with v� $>0. Then for all nearby values of ! the solution also can be con-
tinued to reach values v$>0 before reaching v=0. In turn these solutions
must have some (possibly different) value R>0 such that v(R)>0,
v$(R)=0, and v$(r)<0 for 0<r<R. Consequently all such values are
in I+.

These remains the case that v� $(r)<0 on 0<r<�, with
limr � � v� (r)=l>0. As in the proof of Lemma 1.2.1, it is clear that
v� $(r) � 0 as r � �. Hence w� (r) � 0 as r � � and so by (1.1.2) also
w� $(r) � limit, necessarily zero, as r � �. Hence f (l )=0 by (1.1.2).
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Since f (u)>0 for ;�u<#, and since 0<l<!<#, it follows that
0<l<; and so F(l )<0 by (a).

By (1.1.4) applied to v� , with r0=0 and r1 � �, we get

(n&1) |
�

0

A� v� $2

r
dr+F(l )&F(!� )=0

where A� =A( |v� $| ). Choose R� >0 so large that

(n&1) |
�

R�

A� v� $2

r
dr<

1
4

|F(l )|.

In turn, choose $>0 so that when ! # [;, #) and |!&!� |<$ we have

(1) |F(!)&F(!� )|<
1
4

|F(l )|,

(2) the corresponding solution v exists at least for 0�r�R�
and satisfies v(r)>0 when 0�r�R� ,

(3) (n&1) } |
R�

0

Av$2&A� v� $2

r
dr }<1

4
|F(l )| .

Conditions (2) and (3) are possible because of the continuous dependence
of solutions of the Cauchy problem on the initial conditions, together with
the fact that w�r is uniformly bounded (see Proposition A3 in the
Appendix) and v$ is uniformly bounded (by (2.1.4)).

Now consider any ! # [;, #) with |!&!� |<$, and let v be the corre-
sponding solution of the Cauchy problem. For any r�R� for which v is
defined, we have by (1.1.4) with r0=0,

F(!)&F(v(r))�(n&1) |
r

0

Av$2

r
dr�(n&1) |

R�

0

Av$2

r
dr

�(n&1) |
R�

0

A� v� $2

r
dr&

1
4

|F(l )|

�(n&1) |
�

0

A� v� $2
r

dr&
1
2

|F(l )|

=F(!� )&F(l )&
1
2

|F(l )|�F(!)+
1
4

|F(l )|

Hence &F(v(r))� 1
4 |(F(l )| and therefore of course ! # I+, possibly with

v$(R)=0, v(R)>0 at some value R>R� . This completes Step 2.
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Step 3. I+{<. We shall show that ; # I+. Let v denote the corre-
sponding solution of the Cauchy problem. Applying (1.1.4) with r0=0
there results (since F(;)=0)

H( |v$(r)| )+(n&1) |
r

0

Av$2

r
dr+F(v(r))=0. (2.1.5)

Thus F(v(r))<0 and so v(r)>0 for all r for which v is defined.
If v$(R)=0, v(R)>0 for some R>0 then obviously ; # I+. Otherwise

v$<0 and v>0 for all r>0, and v � l, v$ � 0 as r � � (as before). Letting
r � � in (2.1.5) yields

F(l )=&(n&1) |
�

0

Av$2

r
dr<0

so that l>0. Thus again ; # I +, completing the proof of Step 3.

Step 4. I&{<. Consider any ! # [;, #). The corresponding solution v
is defined on an interval [0, R), with R=R! possibly infinite, and

lim
r � R

v=m�0, v$(r)<0 for r # (0, R).

We assert to begin with that f (m)�0. Indeed, if m>0 and R<� then
clearly v(R)=m, w(R)=0 and w$(R)>0. Hence by (1.1.2) we have
f (m)<0. If m=0 or R=� then f (m)=0 as in Step 2. It follows next from
(b) that m<; and F(m)�0.

Let ;� # (;, #) be fixed. Suppose !>;� , and define R� =R� (!) # (0, R) by

v(R� )=;� (note ;� >;>m).

Now suppose ! � I&. Then limr � R v$(r)=0 (since the case m=0, R<�
does not occur). Put M� =M� (!)=sup[R� , R] |v$|=|v$(R0)| where R0=
R0(!) # [R� , R). The identity (1.1.4) in [R0 , R] (or in [R0 , �) if R=�)
gives

H(M� )=F(m)&F(v(R0))+(n&1) |
R

R0

Av$2 d\
\

� sup
[0, ;]

|F |+(n&1)
0(M� )

R� |
R

R0

(&v$) d\

� sup
[0, ;]

|F |+(n&1)
0(M� )

R�
;� . (2.1.6)
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On the other hand, the same identity in [R� , R] gives

F(;� )=F(m)&H( |v$(R� )| )+(n&1) |
R

R�
Av$2 d\

\
�(n&1)

0(M� )
R�

;� . (2.1.7)

Defining

C=C(0)=max {0(2),
0(2)

0(2)&0(1)= (2.1.8)

we assert that

0( p)�C(1+H( p)) (2.1.9)

for every p>0. The relation (2.1.9) is obvious if 0<p�2. On the other
hand, if p�2,

H( p)�|
p

1
\ d0(\)�0( p)&0(1)�0( p) \1&

0(1)
0(2)+ .

as required. Now by (2.1.6) and (2.1.9) with p=M� ,

0(M� ) \1&C
(n&1) ;�

R� +�C(1+ sup
[0, ;]

|F | ) (2.1.10)

We can now prove the following important

Lemma 2.1.1. Suppose

R� (!)>2C
(n&1) ;�

m�
, (2.1.11)

where

m� =min[1, F(;� )�(1+ sup
[0, ;]

|F | )]. (2.1.12)

Then ! # I&.

Proof. If ! � I&, then by (2.1.10), (2.1.11) and (2.1.7) we get

0(M� )<2C(1+ sup
[0, ;]

|F | )<
F(;� ) R�

(n&1) ;�
�0(M� )

which is contradiction.
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When # is finite, the existence of a value ! satisfying (2.1.11) is an
obvious consequence of the continuous dependence of v on !. Indeed, in
this case v � # as ! � # uniformly on every bounded subset of [0, �), and
so there exists !0 # [0, #) such that (2.1.11) holds. Thus I &{< and
Theorem I for the regular case and for #<� is proved.

Next suppose that #=� and either (c) or (d) holds. From (1.1.4) with
r0=0, we obtain for any ! # [;, �)

H( |v$(r)| )<F(!) (2.1.13)

for every r in [0, R� ], because of course v(r)�;� when r # [0, R� ] and so
F(v(r))>0. Therefore, since

!&;�
R�

=
v(0)&v(R� )

R�
� sup

[0, R� ]

|v$|

and because F(!) < F(�) < H(�) in case (c), and H(�) = � in
case (d), we have

R� �
!&;�

H&1(F(!))
. (2.1.14)

Hence, by conditions (c) or (d), we can choose !0 # [;, �) such that
R� =R� (!0) is so large that (2.1.11) holds. Thus !0 # I& by the lemma.

The case (e).

Assume finally that #=� and (e) holds. In this case, the proof that
I&{< is quite long and will be divided into several steps. First, we need
the following result:

If 0(�)=�, then

lim
p � �

H( p)
0( p)

=�. (2.1.15)

In fact, let k>0 be fixed. For every fixed p>k we obtain from (5)

H( p)�|
p

k
\ d0(\)�k(0( p)&0(k)).

Then

lim inf
p � �

H( p)
0( p)

�k lim inf
p � � \1&

0(k)
0( p)+�k

for every k>0. This proves (2.1.15).
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In addition, a crucial role will be played by the following generalized
Hadamard inequality; the standard Hadamard inequality is in fact the
special case A#1, 0#p, H= 1

2 p2 (our attention was drawn to Hadamard's
inequality by the work of Kaper and Kwong [KK4]).

Lemma 2.1.2. Let u be a continuously differentiable function defined
on an interval I=[r0 , R), 0�r0<R��. Suppose 0(�)=�, w=
u$A( |u$| ) # C1(I ), u$<0 and u$(r) � 0 as r � R. Then

H(0&1(M))�DS. (2.1.16)

where

M=sup
I

|w|, S=sup
I

|w$|, D=u(r0)&u(R).

Proof. Let ' be a point on I such that |w(')|=M. For every r # I, r>',
we have

S(r&')�|
r

'
w$(s) ds=w(r)&w(')=M&|w(r)|,

and hence

|w(r)|�M&S(r&').

This inequality implies that R�'+M�S and

|u$|�0&1(M&S(r&')) if '<r<'+M�S.

Thus we obtain

D�|
'+M�S

'
|u$(s)| ds�|

'+M�S

'
0&1(M&S(r&')) dr

�|
M

0
0&1(t)

dt
S

=
1
S |

0&1(M)

0
p d0( p)=

H(0&1(M))
S

,

and the assertion is proved.
We can now go back to the solution v of the Cauchy problem (2.1.2).

First we prove the following assertion.

Let c*>0 be such that H&1(F(!))�!<c* and put r*=(2c*)&1. Then

v(r*)� 1
2!. (2.1.17)
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In fact, as long as v(r)>;, from (1.1.4) with r0=0 we obtain
H( p)�F(!), and hence p�H&1(F(!))�c*!. Then

v(r)=!+|
r

0
v$(s) ds�!&c*!r=!(1&c*r).

Hence (2.1.17) follows.
We are now able to prove an a priori estimate for v$ on the interval

[R� , R), where R� and R have been defined at the beginning of this step.
More precisely, we have the following result.

Suppose ! � I & and let d>0 be such that

H( p)>2(n&1) ;� c*0( p)+;� sup
[0, ;]

| f | for p>d (2.1.18)

(note that d exists, by (2.1.15)). Then if !�2;� and H&1(F(!))�!<c* we
have

sup
[R� , R)

|v$|�d. (2.1.19)

Indeed, from the equation (1.1.2)

w$+
n&1

r
w+ f (u)=0

we have

S�
n&1

R�
M+ sup

[0, ;]

| f |, (2.1.20)

where we have used the notation of Lemma 2.2.2 (with r0=R� ). Note that

D=v(R� )&v(r)�v(R� )=;� .

Hence, by Lemma 2.2.1, which clearly applies since ! � I &, we have

;� S�DS�H(0&1(M)).

Moreover ;� �!�2�v(r*), so that R� �r*=(2c*)&1; thus by (2.1.20),

;� S�;� [2(n&1) Mc*+ sup
[0, ;]

| f |].

Then, by (2.1.18) (with p=0&1(M)), we must have

0&1(M)�d,

and hence (2.1.19) follows since M=0(sup |v$| ).
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The last step is to show that if ! � I & then

1
2

!�;� +0&1 \\0(2d )+
1

(n&1) c*
sup
[0, ;]

| f |+ exp(2(n&1) c*R� )+ R� .

(2.1.21)

To prove (2.1.21), put N=2 sup[0, ;] | f | and consider the Cauchy problem

(Au$)$+
n&1

r*
Au$&N=0, r*�r�R�

(2.1.22)

u(R� )=v(R� ), u$(R� )=2v$(R� )

An easy comparison argument proves that

v�u on r*<r<R� . (2.1.23)

In fact v=u at r=r1 and v<u in a left neighborhood of R� (since
u$(r1)=2v$(r1)<v$(r1)<0). For contradiction suppose (2.1.23) does not
hold; then there exists a point r� # (r*, R� ) such that

u(r� )>v(r� ), u$(r� )=v$(r� )<0, u"(r� )�v"(r� ).

Consequently at r=r� we have

(Au$)$�(Av$)$,
n&1

r*
Au$�

n&1
r�

Av$, &N< f (v).

From the equation in (2.1.22) these inequalities imply

(Av$)$+
n&1

r�
Av$+ f (v)>0,

an obvious contradiction.
Now define

z=A( |u$| ) u$,

so that

z$+
n&1

r*
z&N=0, z(R� )=&0(2 |v$(R� )| ).
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Then, if we put

U=_0(2 |v$(R� )| )+
r*

n&1
N& exp((n&1) R� �r*), (2.1.24)

we have |z|�U and hence

|u$|�0&1(U). (2.1.25)

If we integrate (2.1.25) on the interval [r, R� ] there results

|u(r)&u(R� )|�0&1(U) R� ,

which implies

u(r)�u(R� )+0&1(U) R� =v(R� )+0&1(U) R� , r # [r*, R� ]. (2.1.26)

Combining (2.1.26) and (2.1.23) we get

v(r*)�v(R� )+0&1(U) R� =;� +0&1(U) R� . (2.1.27)

Then from (2.1.17), (2.1.27), (2.1.24) and (2.1.29) we obtain (2.1.21).

Lemma 2.1.3. Suppose

H&1(F(!))
!

<c* (2.1.28)

and

!
2

>;� +
2(n&1) C;�

m�
0&1 \U1 exp

4(n&1)2 Cc*;�
m� + , (2.1.29)

where U1=0(2d )+(1�((n&1) c*)) sup[0, ;] |F |. Then ! # I &.

Proof. If ! � I& then by Lemma (2.1.1) we get

R(!)�
2(n&1) C;�

m�

(here ;� is any fixed number greater than ;, while the numbers C, m� and
d are defined respectively by (2.1.8), (2.1.12) and (2.1.18)). Then (2.1.21)
contradicts (2.1.29).

To complete the proof of Theorem I in the case when A and f are regular
it is now enough to take

c*=2 lim inf
u � �

H&1(F(u))
u
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and then to choose !0 (sufficiently large) so that (2.1.28) and (2.1.29) are
satisfied. Then !0 # I & and I & is not empty.

Remark. The solution v we have just obtained has the property

;<v(0)<#. (2.1.30)

Moreover when #=� and either (c) or (d) holds, we can choose 1>;�
such that

H&1(F(1 ))

1&;�
<

m�

2(n&1) ;� C
(2.1.31)

where m� is defined by (2.1.12). Then by (2.1.14) the inequality (2.1.11) is
satisfied with R� =R� (1 ). Hence 1 # I&. Analogously, in the case (e) if we
choose 1 such that

H&1(F(1))
1

<c*

(2.1.32)
1
2

>;� +
2(n&1) C;�

m�
0&1(U1 exp(4(n&1)2 Cc*;� �m� )).

Then by Lemma 2.1.3 we have 1 # I &. Thus in all cases, recalling that
; # I +, this implies that there exists ! # (;, 1 ) such that ! � I+ _ I &. The
corresponding solution of the Cauchy problem (2.1.2) is then defined for all
r>0 and is a solution of (*) having the property

;<v(0)<1. (2.1.33)

Obviously, we also obtain a solution of (*) verifying (2.1.33) if in
Theorem I we assume either (2.1.31) and (2.1.32) holds for some values
;<;� <1 instead of either hypothesis (d) or (e), respectively.

2.2. Existence for General Operators

In this section we complete the proof of Theorem I without the extra
conditions on A and f assumed in Section 2.1. The importance of this step
lies not only in the minimal continuity behavior required of A and f, but
also in the fact that degenerate operators can be considered. For example,
the operator A( p)# | p|m&2, m>2, fails to have 0$>0 for p=0 and thus
does not satisfy (2.1.1) even though it is covered by Theorem I. Our proof
is not entirely simple, but this is perhaps to be expected in view of the
generality of the conclusion.

In what follows we may suppose without loss of generality that f is
extended to have values for all u # R, with f (u)#0 for u�0. We may also
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suppose without loss of generality that f (u)#0 for u�# if #<�. Con-
equently F(u)=0 for u�0 and F(u)=F(#) for u�# if #<�.

For every =>0 we define

0=( p)=|
R

0( p+=t) J(t) dt+=p, p # R

and

F=(u)=|
R

F(u+=(t&1)) J(t) dt, u # R

where 0(t)=tA( |t| ), t # R, and J is a C� function on R such that 0�J�1,
J(t)=0 if |t|�1, J(t)=J( |t| )>0 if |t|<1, and �R J(t) dt=1.

Clearly 0=( p) is an odd C � function on R, with 0$=( p)>0 and
0=( p) Z � as p � �. If we put

A=( p)=
0=( p)

p
if p{0, A=(0)= lim

p � 0

0=( p)
p

,

then A= is a C � function which verifies the hypotheses (H2) and (H3) (see
Introduction) and satisfies (2.1.1). In addition we have

d
du

F=(u)=|
R

f (u+=(t&1)) J(t) dt=|
R

f (u&=+=t) J(t) dt# f=(u);

clearly f= is a C� function and f=(0)=0. Moreover, since F=(0)=0,

F=(u)=|
u

0
f=(t) dt.

It is easy to show that, for every =>0 sufficiently small, there exist #=��
and ;= # (0, #=), such that F=(u)<0 for 0<u<;= , F=(;=)=0, f=(u)>0 for
;=�u<#= . Moreover ;= � ; as = � 0, while

if #<�, then #=<� and f=(u)#0 for u>#= ;

if #=�, then #==�.

Finally, if we put

H=( p)=|
p

0
\ d0=(\)#p0=( p)&|

p

0
0=(\) d\,

then since 0= � 0 as = � 0 uniformly on every compact subset of R, we
have H= � H as = � 0 uniformly on every compact subset of R. Moreover
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when H(�)=� it is clear that also H=( p) Z � as p � �, that is
H=(�)=�.

Now consider the problem

(A=u$=)+
(n&1)

r
A=u$=+ f=(u=)=0, r>0

(*)=

u$=(0)=0, u=(r)�0 for r>0; u=(r) � 0 as r � �; u={0.

If #=<�, i.e. the case #<�, then by the results proved in Section 2.1, this
problem has a positive solution u= , such that

;=<u=(0)<#= (2.2.1)

for every =>0 sufficiently small.
Next suppose #==�, and so of course #=�. In this case, by conditions

(c), (d) or (e), there exist constants 1>;� >; such that either (2.1.31) or
(2.1.32) holds. Of course also ;� >;= for every =>0 small enough.

Now let C==C(0=) as in (2.1.8) and let m� ==m� (F=) as in (2.1.12). If
either condition (c) or (d) holds, then clearly there exists =0>0 such that

H&1
= (F=(1 ))

1&;�
<

m� =

2(n&1) ;� C=

for every = in (0, =0), where 1 has been defined in (2.1.31). Therefore, from
the principal remark at the end of Section 2.1, the solution u= clearly has
the property

;=<u=(0)<1, = # (0, =0). (2.2.2)

If condition (e) holds, then the proof of the analogous a priori estimate
requires some further argument since in (2.1.32) the further quantities c*
and d also appear. Choose now d� >0 such that the following slightly
stronger version of (2.1.18) holds:

H( p)>4(n&1) ;� c*0( p)+;� sup
[0, ;]

| f | for p>d� .

Then, if p>2d� , so that p+=t>d� for |t|<1 and = small, we have

H=( p)=p0=( p)&|
p

0
0=(\) d\

=p {|R

0( p+=t) J(t) dt+=p=&|
p

0 \|R

0(\+=t) J(t) dt+=\+ d\

=|
R { p0( p+=t)&|

p

0
0(\+=t) d\= J(t) dt+

1
2

=p2
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=|
R {( p+=t) 0( p+=t)&|

p+=t

=t
0(\) d\

&=t0( p+=t)= J(t) dt+
1
2

=p2

=|
R {H( p+=t)&=t0( p+=t)+|

=t

0
0(\) d\= J(t) dt+

1
2

=p2

�|
R {(4(n&1) ;� c*&=) 0( p+=t)+;� sup

[0, ;=]

| f= |= J(t) dt+
1
2

=p2

�3(n&1) ;� c*0=( p)+;� sup
[0, ;=]

| f= |
1
2

=p( p&6(n&1) ;� c*)

�2(n&1) ;� c*0=( p)+;� sup
[0, ;=]

| f= |

if = is small. Hence we can repeat our previous arguments to show that
(2.2.2) holds for = small and with an obviously modified value for 1 (i.e.
with d replaced by 2d� in (2.1.32)).

We claim that there exists a positive constant M such that

&M�u$=(r)�0, r�0, (2.2.3)

for every = in (0, =0). The inequality u$=�0 follows from Lemma 1.2.4. On
the other hand, if #=� then by (1.1.4) and (2.2.2) we have

H=( |u$=(r)| )�F=(u=(0))&F=(u=(r))�F=(1 )+ sup
[0, ;=]

|F= |.

Hence, using condition (c) in case H(�)<�, we have H=( |u$= | )<H(�)
for every sufficiently small = in (0, =0). Choose M� so that

H=( |u$= | )�M� <H(�).

Thus u$=�&H&1
= (M� ). Clearly H&1

= (M� ) � H &1(M� ) as = � 0, and inequality
(2.2.3) therefore follows with M=H&1(M� )+1, changing, if necessary, the
choice of =0 . Next suppose #<�. In this case from (1.1.14) and (2.2.1) we
get

H=( |u$(r)| )�F=(#=)+ sup
[0, ;=]

|F |

and (2.2.3) is proved as before.
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It now follows from the Arzela� -Ascoli theorem that, for a suitable
sequence =j a 0 we have u=j � u uniformly on every compact subset of
[0, �). Therefore, because (see Lemma 1.1.1)

u$=A=( |u$= | )=&|
r

0
f=(u=(\)) \\

r+
n&1

d\, (2.2.4)

we see that

0=j ( |u$=j | )=|u$=j | A=j ( |u$=j | ) � g(r) for all r�0, (2.2.5)

where

g(r)=|
r

0
f (u(\)) \\

r+
n&1

d\.

Moreover, since 0=( p) � 0( p) uniformly on compact subsets of p�0, it
follows that

u$=j � &0&1(g(r)) for all r�0.

Hence from the relation

u=(r)=u=(0)+|
r

0
u$=(\) d\

together with (2.2.3), (2.2.5) and Lebesgue's dominated convergence
theorem we get

u(r)=u(0)&|
r

0
0&1(g(\)) d\;

thus u is continuously differentiable and a classical solution of (1.1.1). In turn
of course (2.2.5) and (2.2.4) supply the relations

u$=j � u$ and 0=j ( |u$=j | ) � 0( |u$| ) for all r�0. (2.2.6)

Obviously u�0, u$�0 and

;<u(0)�# (�1<� if #=�);

note that the possibility u(0)=; is ruled out by Lemma 1.2.1.
It remains only to be shown that u � 0 as r � �. Put l=limr � � u(r). As

in Step 2 of the proof in Section 2.1 we find easily that u$ � 0 as r � � and
f (l )=0. Of course also 0�l�# so that necessarily either

0�l<; or l=#,
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the second possibility occurring only in the case #<�. Now

0�|
�

R
A=u=$

2 d\
\

�
A=(M) M

R |
�

R
&u$=(\) d\=

A=(M) M
R

u=(R)

�
2A(M) M#

R \or
2A(M) M1

R
if #=�+ (2.2.7)

for every R>0.
On the other hand, by (1.2.2) applied to the solution u= ,

F=(u=(0))=(n&1) |
�

0
A=u=$

2 dr
r

.

Letting ===j � 0 and using (2.2.3), (2.2.4) to show that the integrand is
uniformly bounded, together with (2.2.6) and (2.2.7) and the dominated
convergence theorem, then gives

F(u(0))=(n&1) |
�

0
Au$2 dr

r
. (2.2.8)

In the case #<�, if l=# then u##, because u is decreasing function with
u(0)�#. In turn (2.2.8) gives

F(#)=0,

which however is impossible since (a), (b) imply F(#)>0. Thus in all cases
0�l<;. Finally, because u(r) � l and u$(r) � 0 as r � �, we obtain from
(1.1.4)

(n&1) |
�

0
Au$2 d\

\
=F(u(0))&F(l ).

From this result and (2.2.8) it now follows that F(l )=0, and so l=0 by
hypothesis (a). This completes the proof.

3. Uniqueness

In this section, we prove our main uniqueness results. We shall require
throughout that the operator A( p) be continuously differentiable on (0, �)
rather than simply continuous as in the hypothesis (H2). We recall from
the Introduction the definition

0( p)=pA( p), p>0; 0(0)=0.
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By hypothesis (H3) it is clear that 0( p)>0 for p>0 and 0$( p)�0. We
shall strengthen this in the sequel, requiring henceforth that

(H3$) 0( p)>0, E( p)=0$( p)>0 for p>0.

In terms of the variational integrand G( p) in the Introduction, these are
exactly the conditions G$( p), G"( p)>0 for p>0.

Theorem I. Suppose n>1, and assume also the following hypotheses:

(A1) S(l, p)>0 for 0<l<p, where

S(l, p)=M(l )&M( p)+
n&2
n&1

N(l)(N(l)&N( p))

and

M( p)=1�p300$, N( p)=1�p0.

(A2) p2&mA( p) � 1 as p � 0, for some constant m>1,

(A3) 0$( p)�[0( p)]+ for all p>0 near zero, where + is a constant in
[0, 2),

(F1) F(u)�0 for 0<u<;, F(;)=0,

(F2) f is positive and non-increasing on (;, #), where # # (;, �],

(F3) f is locally Lipschitz continuous on (;, #).

Then (*) has at most one solution u such that u(0)<#.

Theorem II. Let the hypotheses of Theorem I hold, with the following
exceptions:

(i) +=0 in condition (A3);

(ii) #<� in conditions (F2) and (F3);

(iii) (;, #) is replaced by (;, #] in condition (F3).

Then (*) has at most one solution u such that u(0)�#.

Theorem III. Suppose the hypotheses of Theorem I (or Theorem II)
hold, with the exception that condition (F2) is weakened to

(F2$) The function u � f (u)�(u&;)&&1 is positive and non-increasing
for ;<u<#, where & is a constant �1.
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Assume also

(A2$) p2&&A is non-decreasing on (0, �).1

Then (*) has at most one solution such that u(0)<# (or u(0)�#).

If #=� the condition u(0)<# is satisfied for any solution, and so can
be omitted from the statement of Theorem I. Similarly the condition
u(0)�# can be dropped in Theorem II if f satisfies the condition f (u)�0
for u>#. Indeed in this case, if u(0)># then (1.1.4) gives a contradiction
when applied to the interval (0, r0) where u(r) # (#, u(0)).

When conditions (A3) and (F3) are dropped from Theorems I�III, we still
obtain results of interest, as stated in Proposition 3 in the Introduction.

Condition (A2$) together with (A2) forces &�m. In the particular case
A( p)=pm&2 condition (A2) is trivially satisfied, while (A2$) holds with
&=m; similarly (A3) is valid for +=1.

Conditions (A2) and (A3) concern the behavior of A( p) and A$( p) near
p=0, whereas (A1) has a global character. Some simpler sufficient condi-
tions can be formulated in order that (A1) holds; in particular we have the
following result.

Lemma 3.0. The hypothesis (A1) is satisfied if either of the following
conditions holds:

(i) n>2 and M+
1
2

n&2
n&1

N2 is non-increasing;

(ii) n<2 and M+
n&2
n&1

N2 is non-increasing;

(iii) n=2 and M is decreasing.

Proof. Write 9( p)=M( p)+((n&2)�(n&1)) N2( p). Then

S(l, p)=9(l )&9( p)+
n&2
n&1

N( p)(N(l )&N( p))

and the conclusion for case (ii) follows at once since N is decreasing (by
(H3)). Condition (i) is proved in essentially the same way; that is, putting

9*( p)=M( p)+
1
2

n&2
n&1

N2( p)
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we get for 0<l<p,

S(l, p)=9*(l )&9*( p)+
1
2

n&2
n&1

[N(l )&N( p)]2

>9*(l )&9*( p)�0

since n>2. Condition (iii) is obvious.

It is clear that (i) and (iii) are most simply satisfied when M is decreasing.
This in turn is implied by condition (A1$) in the Introduction, as is the
condition 0$( p)>0 for p>0.

Remark. For the operator

A( p)=(1+p2)&s�2 pm&2, s�0,

we have

0( p)=(1+p2)&s�2 pm&1,

E( p)=0$( p)=(1+p2)&s�2&1 pm&2[(m&1)+(m&1&s) p2],

M( p)=(1+p2)s+1 p&2m[(m&1)+(m&1&s) p2]&1,

N2( p)=(1+p2)s p&2m.

Clearly (H3$) holds if and only if m�1+s, or m>1 if s=0. In this case,
moreover, it is easy to check that M is decreasing. Hence (A1) and (A1$)
are satisfied for n�2.

When 1<n<2 we write

9( p)=M( p)&
1

m&1
N 2( p)+\n&2

n&1
+

1
m&1+ N2( p).

Now

M( p)&
1

m&1
N2( p)=

s
m&1

(1+p2)s

p2(m&1)

1
(m+1)+(m&1&s)p2 .

This quantity is non-increasing provided

s�0, m�s+1 (or m>1 if s=0).

Hence 9( p) itself is non-increasing and (A1) holds if we suppose also that

n&2
n&1

+
1

m&1
�0, that is n�2&

1
m

.

(It is not hard to see that this condition is best possible).
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The following three sections contain introductory material, including a
discussion of the asymptotic behavior of solutions in Section 3.2 and a
monotone separation theorem in Section 3.3.

Theorems I�III are almost immediate corollaries of Proposition 3 in the
Introduction (with assumption (A1$) being replaced by (A1) and also with
n>1 rather than n�2). Consequently our principal effort can be devoted
to proving Proposition 3. The proofs of Theorems I and II are then given
at the end of Section 3.4, and the proof of Theorem III in Section 3.5.
Theorems A, B, C of the Introduction are the special cases of Theorems
I�III when n�2 and (A1) is replaced by the stronger condition (A1$).

The main Theorems I�III require the satisfaction of conditions (A1) and
(A2). These conditions can be avoided provided that other hypotheses are
suitably strengthened. This result is given in Theorem IV of Section 6. In
the final section of the paper we add several remarks concerning the
exterior Dirichlet problem.

3.1. Preliminary Results.

Denote by l=l(u, p) the positive function determined implicitly by the
equation

H(l )=H( p)+F(u)

on the domain

P=[(u, p): u, p>0, 0<H( p)+F(u)<H(�)].

Obviously l is well-defined and strictly positive since H is increasing.
Moreover (recall that H$( p)=pE( p) by (4) and that E( p)>0 for p>0).

�l
�u

=
f (u)
lE(l )

,
�l
�p

=
pE( p)
lE(l )

. (3.1.1)

We also define K(u, p) on P by the formula

K(u, p)=
(lA(l )):&1

l
[l 2A(l )&p2A( p)], :=1�(n&1).

Then the following result holds.

Lemma 3.1.1. Suppose (u, p) # P. Then

(i)
�
�p

[lA(l )]>0;

(ii)
�
�p {

K(u, p)
p =>0 if and only if S(l, p)>0.
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Moreover, if F(u)�0, then

(iii) K(u, p)�0.

Proof. The first relation is obvious since

�
�p

[lA(l )]=
�

�p
0(l )=E(l )

pE( p)
lE(l )

=
pE( p)

l
. (3.1.2)

The third result also follows at once since p2A( p) is increasing and l�p
when F(u)�0. Finally l=p and K=0 if and only if F(u)=0.

We turn to the second conclusion. By direct calculation, keeping in mind
(3.1.1) and (3.1.2), we have

�
�p {

K(u, p)
p ==

�
�p {(0(l )):&1 \0(l )

p
&

0( p)
l +=

=(:&1)(0(l )):&2 pE( p)
l \0(l )

p
&

0( p)
l +

+(0(l )):&1 \&
0(l )
p2 +

0( p)
l 2

pE( p)
lE(l ) +

=(0(l )): p0( p) E( p) S(l, p),

and (ii) is proved.

We next introduce an important identity (Lemma 3.1.3) for solutions
of (*). We begin by showing that the solution u is twice differentiable
whenever u${0.

Lemma 3.1.2. Suppose u${0 at some point r>0. Then at this point u"
exists and satisfies (1.1.1) in the form

E( p) u"+
n&1

r
A( p) u$+ f (u)=0 where p=|u$|. (3.1.3)

Proof. Suppose u$(r)<0. By virtue of Lemma 1.1.1

u$(r)= &0&1 \|
r

0 \
t
r+

n&1

f (u(t)) dt+ (3.1.4)
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Since A is continuously differentiable and 0$=E, it follows that 0&1 is
differentiable and (0&1)$=1�E, when p>0. Hence from (3.1.4) we see that
u" exists and

u"= &
1

E( p) { f (u(r))&|
r

0

n&1
r \t

r+
n&1

f (u(t)) dt=
=

1
E( p) {& f (u)+

n&1
r

0( p)= ,

as required. The proof when u$>0 is similar.

Lemma 3.1.3. If u is a solution of (*) such that u(r)>0 and F(u(r))�0
on (r0 , r1) we have

(i) (u(r), |u$(t)| ) # P for any r # (r0 , r1).

Moreover, if we write p=p(r)=|u$(r)| and l=l(r)=l(u(r), p(r)), then

(ii) r(lA(l )): | r1
r0

=|
r1

r0

K(u, p) dr, :=
1

n&1
. (3.1.5)

Proof. (i) It is obvious from (1.2.1) that H( p)+F(u)>0 on (r0 , r1).
Since F(u)�0 we get in turn that p>0 and H( p)+F(u)�H( p)<H(�).
Thus (i) follows from the definition of P.

(ii) If r # (r0 , r1) we have

d
dr

[r(lA(l )):]=(lA(l )):+:r(lA(l )):&1 E(l ) { �l
�u

u$+
�l
�p

p$=
=(lA(l )):+:r(lA(l )):&1 u$[ f (u)+E( p) u"] l &1

=
(lA(l )):&1

l
[l 2A(l )&p2A( p)]=K(u, p),

where (3.1.1) was used at the second step and equation (3.1.3) at the third
(recall that p>0 in (r0 , r1) by (i)). Integrating over (r0 , r1) completes the
proof.

3.2. Asymptotic Behavior.

We can now obtain the following important results concerning the
asymptotic behavior of a solution of (*).
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Lemma 3.2.1. Suppose (F1) holds and let u be a solution of (*). Then

(i) if u>0 for all r>0 there exists *�0 such that

rn&1lA(l ) � * as r � �, (3.2.1)

(ii) lim
r � �

rn&1 |
�

r
Au$2 d\

\
=0.

Proof. (i) By Lemma 3.1.3 we get

(rn&1l(r) A(l(r))):=(Rn&1 l(R) A(l(R))):+|
r

R
K(u, p) d\ (3.2.2)

for r>R, where R is so large that u(r)<; for r>R; see (F1).
The right hand side of (3.2.2) goes to a limit *� as r � �, since K(u, p)�0

by Lemma 3.1.2 (ii). Obviously *� # [&�, �). On the other hand, the left
hand side is �0. Hence *� �0 and there exists *�0 such that (3.2.1) holds.
Note that this proof shows also that K(u, p) # L1((r, �)) for any r>0.

(ii) It is enough to consider the case when u>0 for all r>0. By
Lemma 1.2.1 and the definition of l we have

(n&1) |
�

r
Au$2 d\

\
=H( p)+F(u)=H(l ).

On the other hand, by equation (4) in the introduction,

rn&1H(l )=rn&1 \l 2A(l )&|
l

0
\A(\) d\+�rn&1l 2A(l ) � 0

since l � 0 (0<l<p) and rn&1lA(l) � * as r � �.

In the proof of the following lemma we use an ingenious idea of Kaper
6 Kwong [KK2].

Lemma 3.2.2. Suppose hypotheses (A2) and (F1) are satisfied and let u
be a positive solution of (*). Then, with * defined as in (3.2.1), we have

(i) *=0 when n�m;

(ii) when n>m

r(n&m)�(m&1)u(r) �
m&1
n&m

*1�(m&1) as r � �.
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Proof. (i) Since l � 0 and rn&1lA(l ) � * as r � �, from (A2) it
follows that

r(n&1)�(m&1)l=(rn&1lA(l ))1�(m&1) (l 2&mA(l ))&1�(m&1) � *1�(m&1) (3.2.3)

as r � �. Therefore since 0<l<p for large r,

lim inf
r � �

r(n&1)�(m&1)p(r)�*1�(m&1).

Because p=p(r)=|u$(r)|=&u$(r) is integrable on [0, �), the last
inequality implies *=0 if n�m.

(ii) The proof for the case n>m lies much deeper. By (3.2.3), l is
integrable on (R, �), where R>0 is such that u(r)<; for every r>R.
Moreover F(u(r))<0 for r>R by (F1), so that also

H( p(r))=H(l(r))+|F(u(r))| for r>R.

In particular, because H is strictly increasing we obtain

l<p=H&1(H(l )+|F(u)| ) for r>R. (3.2.4)

Now, from (4) and (A2) it follows easily that p&mH( p) � (m&1)�m as
p � 0. Thus since m>1 we see that for every =>0 there exists r=�R such
that

p<\1+
=
2+{

m
m&1

H( p)=
1�m

=\1+
=
2+{

m
m&1

(H(l )+|F(u)| )=
1�m

�(1+=) {l m+
m

m&1
|F(u)|=

1�m

�(1+=) \l+\ m
m&1

|F(u)|+
1�m

+ (3.2.5)

on (r= , �). Therefore we obtain from (3.2.4) and (3.2.5)

|
�

r
l(\) d\<|

�

r
p(\) d\

<(1+=) \|
�

r
l(\) d\+const. |

�

r
|F(u(\))| 1�m d\+ (3.2.6)

for every r>r= .
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We estimate the second integral on the right side by using Ho� lder's
inequality, namely

|
�

r
|F(u)| 1�m d\

�\|
�

r
B(l ) |F(u)| d\+

1�m

} \|
�

r
(B(l ))&1�(m&1) d\+

1&1�m

, (3.2.7)

where B(l )=((lA(l )):&1�l. Since l<p and r>r= ,

|F(u)|=H( p)&H(l)=p2A( p)&l 2A(l )&|
p

0
\A(\) d\+|

l

0
\A(\) d\

�p2A( p)&l 2A(l )=
|K(u, p)|

B(l )
.

Then, from the fact that K(u, p) # L1 we get

B(l ) F(u) # L1. (3.2.8)

On the other hand, by (3.2.1), (3.2.3), and a direct computation using
L'Hopital's rule, the quantity

r(n&m)�(m&1) \|
�

r
(B(l ))&1�(m&1) d\+

1&1�m

tends to a finite limit as r � �. In fact it is enough to show that

B(l )&1�(m&1)

r&m(n&m)�(m&1)2&1

tends to a limit, or equivalently that

B(l )
rm(n&m)�(m&1)+(m&1)

tends to a limit. But

B(l )=[lA(l )](2&n)�(n&1)�l

while by (3.2.1) and (3.2.3)

rn&1lA(l ) � limit, lr(n&1)�(m&1) � limit.
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The conclusion now follows immediately, since

m(n&m)
m&1

+(m&1)=(n&2)+
n&1
m&1

.

From (3.2.7) and (3.2.8) we then get

r(n&m)�(m&1) |
�

r
|F(u)| 1�m d\ � 0 as r � �. (3.2.9)

Finally, again by (3.2.3) and L'Hospital's rule,

r(n&m)�(m&1) |
�

r
l d\ �

m&1
n&m

*1�(m&1). (3.2.10)

From (3.2.6), (3.2.9) and (3.2.10) we obtain the assertion since
��

r p d\=u(r).

3.3. Monotone Separation Theorems

Our purpose is to study the separation properties of pairs of solutions of
Problem (*).

Let u and v be two solutions of (*), which we assume throughout to
satisfy the conditions

u(0)�#, v(0)�#.

By Lemma 1.2.6, in view of (F1) and (F2), it is clear that

u$(r)<0 whenever r>0 and u(r)>0;

v$(r)<0 whenever r>0 and v(r)>0.2

Thus both u and v possess inverses on the domain where they are positive.
We denote by r and s the inverses of u and v, defined respectively on the
intervals (0, u(0))] and (0, v(0)]. Note also the principal fact that

u(0) and v(0) must exceed ;,

by virtue of Lemma 1.2.1 and (F1).

Lemma 3.3.1. Assume that (F1), (F2) hold. If r(u)&s(u)>0 on some
open interval I of the domain of r and s, then r(u)&s(u) can have at most
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one critical point on I. Moreover if such a point exists it must be a strict
maximum.

Proof. By Lemma 3.1.2, equation (1.1.1) can be written in the form
(3.1.3). Then it is immediately verified that the function r=r(u) satisfies the
equation

E \} 1
ru }+ ruu&

n&1
r

A \} 1
ru }+ r2

u&r3
u f (u)=0

for u # I (clearly r>0 and ru<0). A similar equation also holds for s=s(u).
Now suppose r&s has a critical point in I. Then ru=su<0 and r>s>0

at this point. Consequently by subtraction we find

(r&s)uu=(n&1)
A
E \1

r
&

1
s+ r2

u<0

which proves the assertion.

Lemma 3.3.2. Suppose (A1) and (F1) are satisfied. If r&s has two zeros
in (0, ;], say !0 and !1 , then r&s=0 for all u between !0 and !1 .

Proof. Suppose the conclusion is false. Then without loss of generality
we can assume that !0<!1 and r&s>0 for all u # [!0 , !1].

In the open interval (!0 , !1) the difference r&s can have at most one
critical point by Lemma 3.3.1, and at the same time at least one, since it
vanishes at the endpoints. If follows that there exists a point !2 # (!0 , !1)
such that ru=su at u=!2 , while

ru<su for u # (!2 , !1).

Now put r1=r(!1), r2=r(!2), l1=l(r1), l2=l(r2). By (3.1.5) we have

r2(l2 A(l2)):&r2(l2A(l2)):=|
r2

r1

K(u, p) dr=|
!1

!2

K(u, p)
du
p

,

where p denotes the function p(r(u))=|u$(r(u))|.
A similar identity naturally holds for the solution v. In analogy with the

preceding notation, we denote by s1 , s2 , m1 , m2 the quantities relative to v
corresponding to the quantities r1 , r2 , l1 , l2 for u.

Subtracting the two identities, and using the fact that r1=s1 and l2=m2

(because ru(!2)=su(!2)), we obtain

(r2&s2)[l2A(l2)]:&r1[(l1A(l1)):&(m1A(m1)):]

=|
!1

!2
\K(u, p)

p
&

K(u, q)
q + du, (3.3.1)
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where, by analogy with the above notation, q=q(s(u))=|v$(s(u))|. Note
particularity that p>q for u # (!2 , !1) since ru<su .

Now let

�
�p \

K(u, p)
p +=D(u, p).

Then by the mean value theorem, for any fixed u # (!2 , !1),

K(u, p)
p

&
K(u, q)

q
=D(u, p~ )( p&q)

where p~ # ( p, q). Let l� =l(u, p~ ), see Section 3.1. By the definition of l and the
fact that H( } ) is strictly increasing it is clear that l� �p~ , with l� =p~ if and
only if F(u)=0 (recall F(u)�0 for u # (!2 , !1))/(0, ;].

By Lemma 3.1.2 (ii) we have D(u, p~ )>0 if S(l� , p~ )>0, so by (A1) also
D(u, p~ )>0 if l� <p~ . Thus

K(u, p)
p

&
K(u, q)

q
<0 if l� <p~ .

On the other hand, if l� =p~ then D(u, p~ )=S(l� , p~ )=0 and K(u, p)�p=
K(u, q)�q. Hence the right hand side of (3.3.1) is non-positive.

But also r2>s2 and l1�m1 because ru�su at u=!1 . Thus the left hand
side of (3.3.1) is strictly positive, a contradiction.

Lemma 3.3.3. Suppose hypotheses (F1) and (F2) are satisfied. If
r(u)&s(u)>0 on an interval I=(0, a), then (r&s)$<0 on I.

Proof. By Lemma 3.3.1 either r(u)&s(u) is everywhere decreasing on I,
or r(u)&s(u) is increasing for u near zero. In the first case we are done, so
let us assume for contradiction that ru&su>0 in some interval 0<u<$.
As in the previous lemma, we put r=r(u), p=p(u)=|u$(r(u))|. Then equa-
tion (1.2.1) becomes

H( p)+F(u)=(n&1) |
u

0

Ap
r

dt, 0<u<$.

A similar identity holds for the solution v, replacing p by
q=q(u)=|v$(s(u))|.

Now writing A=A( p), B=A(q) and subtracting the two identities we
get

H( p)&H(q)=(n&1) |
u

0 \
Ap
r

&
Bq
s + dt. (3.3.2)
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Define

.=.(u)=|
u

0 \
Ap
r

&
Bq
s + dt.

Since su<ru<0 on (0, $) we have p>q for 0<u<$. Hence, because H is
strictly increasing, (3.3.2) gives

(n&1) .=H( p)&H(q)>0, 0<u<$. (3.3.3)

Also, since r>s,

qs.$=qs \Ap
r

&
Bq
s +<q(Ap&Bq)=q |

p

q
d(\A(\))

<|
p

q
\d(\A(\))=H( p)&H(q)=(n&1) .,

by (5).
Now we integrate the inequality

.$

.
<

(n&1)
qs

,

obtaining for 0<u<u� <$,

log
.(u� )
.(u)

<(n&1) |
u�

u

1
qs

dt=(n&1) |
s(u)

s(u� )

ds
s

=(n&1) log
s(u)
s(u� )

.

Hence

(s(u� ))n&1 .(u� )<(s(u))n&1 .(u). (3.3.4)

On the other hand, since r>s and Bq>0, we have

0<(s(u))n&1 .(u)<(r(u))n&1 .(u)<(r(u))n&1 |
u

0

Ap
r

dt=rn&1 |
�

r
Au$2 d\

\
.

Thus by Lemma 3.2.1 (ii), it follows that (s(u))n&1 .(u) � 0 as u � 0. From
(3.3.4) we then deduce that .(u� )�0, which contradicts (3.3.3).

3.4. Uniqueness Theorem I

In this section we shall prove Theorem I. We first obtain several
preliminary results, of interest in themselves.
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Theorem 3.4.1. Suppose hypotheses (F1) and (F2) are satisfied and let
u and v be two solutions of (*) satisfying u(0), v(0)�#. Then there exists a
value R�0 such that u(R)=v(R)>0.

Theorem 3.4.2. Suppose hypotheses (A1), (A2) and (F1) are satisfied.
Let u and v be two solutions of (*) such that u(R)=v(R) # (0, ;] for some
R>0. Then u(r)#v(r) whenever u(r)�;.

Theorem 3.4.3 Suppose hypothesis (F2) is satisfied. Let u and v be two
solutions of (*) such that u(R)=v(R) # [;, #] for some R�0. Then either
u(r)#v(r) whenever u(r)�;, or u(0)=v(0) and u(r){v(r) whenever r>0
and u(r)�;.

In the following proofs, we shall retain the notation of Section 3.3, with
r(u) and s(u) respectively denoting the inverses of u and v.

Proof of Theorem 3.4.1. Suppose for contradiction that r(u)>s(u) for
each u # (0, v(0)]. By Lemma 3.3.3, we get r$(u)<s$(u) on (0, v(0)), which
is impossible since s$(u) � &� as u � v(0), while r$(v(0)) is finite since
r(v(0))>s(v(0)).

Proof of Theorem 3.4.2. If the conclusion of the theorem does not hold,
then by Lemma 3.3.2 it is easy to verify that either there exists u1 # (0, ;)
such that

u(r)#v(r) when u(r)�u1 ,

or there exists U # (0, ;] such that

r(u){s(u) for u # (0, U)
(3.4.1)

r(U)=s(U)=R (say).

If the first alternative holds, then we consider the inverse functions r(u)
and s(u), which satisfy

r(u1)=s(u1), r$(u1)=s$(u1).

We shall show that in fact r(u)#s(u) whenever u # (0, ;]. To do this, first
write equation (1.1.2) as a first order system

w$=
n&1

r
w+ f (u)

u$= &0&1(|w| ),
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where we use the fact that u$<0, w<0 whenever u(r)�;; see footnote 2
in Section 3.3.

We now consider the inverse function r(u) on the interval u # [u1 , ;],
and similarly define

w(u)=w(r(u)).

Then one finds at once that

r$(u)= &
1

0&1(w)

w$(u)=\n&1
r

w+ f (u)+<0&1(w),

and of course the same first order system is satisfied by the inverse func-
tions s(u) and z(u)=w(s(u)).

Clearly we have as well that

r(u1)=s(u1), w(u1)=z(u1).

We can now apply the standard uniqueness theorem for the Cauchy initial
value problem to this system, noting that 0&1(w) is of class C 1 (since w<0
and 0&1 # C1 from (H3$)) and that f (u) is continuous in the independent
variable u. Hence r(u)=s(u) and w(u)=z(u) for u # (0, ;], which in turn
implies that u(r)#v(r) whenever u(r)�;.

Thus to prove the theorem it is enough to show that the second
possibility, namely (3.4.1), cannot happen. Therefore suppose for contradic-
tion that (3.4.1) holds, say with r(u)>s(u) for u # (0, U). Hence r$&s$<0
on (0, U) by Lemma 3.3.3. Keeping in mind (3.2.1), from (3.1.5) we get3

R(LA(L)):&*:=&|
U

0

K(u, p)
p

du (:=1�(n&1)),

where L=l(R) and p=p(u)=|u$(r(u))|. An analogous formula holds for
the function v. Then, with an obvious meaning for the symbols, we obtain
by subtraction

R[(LA(L)):&(MA(M)):]&(*:&+:)

=|
U

0 \K(u, q)
q

&
K(u, p)

p + du. (3.4.2)
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Evidently L�M by (3.1.1) since p<q for u # (0, U). Moreover, by Lemma
3.2.2 we have *�+ when u>v>0 on (R, �). On the other hand, if v has
compact support then correspondingly we have +=0, and one sees again
that *�+.

Hence the left hand side of (3.4.2) is non-positive. Moreover, exactly as
in the proof of Lemma 3.3.2, the right hand side is non-negative (note that
K(u, p) and K(u, q) are interchanged in (3.4.2) from (3.3.1)). It follows now
that both sides of (3.4.2) vanish, which implies that

L=M, *=+

and l� =p~ for each u # (0, U) (recall here that p~ # ( p, q) is obtained as in the
proof of Lemma 3.3.2 by use of the mean value theorem). The relation l� =p~
in turn shows that F(u)#0 for all u # (0, U).

This being shown, also f (u)#0 for u # (0, U). However the condition
L=M implies r$(U)=s$(U). Hence, using the uniqueness argument of the
first alternative once again, we get r#s for u # (0, ;), an obvious contra-
diction.

Proof of Theorem 3.4.3. If u(0){v(0), then we can suppose u(0)>v(0)
(say); hence, without loss of generality,

u(r)>v(r) for 0�r<R
(3.4.3)

u(R)=v(R)�;.

Now put w1=A( |u$| ) u$, w2=A( |v$| ) v$ and |=w1&w2 . Then, since

;<v<u<u(0)�# on (0, R),

from (1.1.3) and the hypothesis (F2) follows

|$+
n&1

r
|= f (v)& f (u)�0, 0<r<R.

Consequently rn&1| is non-decreasing on (0, R), so that |(r)�0 for
0�r�R because |(0)=0. But then u$(r)�v$(r) because pA( p) is
increasing. By integration, u(R)&u(0)�v(R)&v(0), so from (3.4.3) in turn
u(0)�v(0), a contradiction.

In the remaining case u(0)=v(0). If the theorem fails, then there will
exist u0 # (;, u(0)) such that

u(r)=v(r) whenever u(r) # [u0 , u(0)]
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or there will exist points 0�r1<r2 such that (say)

u(r)>v(r), r1<r<r2 ,

u(r1)=v(r1), (3.4.4)

u(r2)=v(r2)�;.

If the first alternative holds, then again we consider the inverse functions
r(u) and s(u), which satisfy

r(u0)=s(u0), r$(u0)=s$(u0).

As in the proof of Theorem 3.4.2, the uniqueness of the Cauchy problem
for the first order system in the variable u applies. Consequently r(u)#s(u)
for u # [;, u(0)], as required.

In the second case, namely (3.4.2), it is clear that that |(r1)�0, while
rn&1|(r) is non-decreasing on (r1 , r2). Hence |(r)�0 and u$(r)�v$(r) on
(r1 , r2). But u(r2)=v(r2), so in fact u$(r)#v$(r) on (r1 , r2), which con-
tradicts the fact that u>v on this interval.

Proposition 3 (First part). Suppose all the hypotheses of Theorem I
hold, except (A3) and (F3). Then if u and v are two solutions of (*) with
u(0), v(0)�#, we have necessarily

u(0)=v(0).

Moreover if u�v then u(r){v(r) for all r>0 where u(r)>0. (If u and v
have compact support, then also inf[r>0; u(r)=0]{inf[r>0; v(r)=0].)

Remark. In particular, if u�v then necessarily either u�v for all r>0
or u�v for all r>0.

Proof. By Theorems 3.4.2 and 3.4.3, it is evident that either u(r)#v(r)
or else u(r){v(r) for all r>0 such that u(r)>0. In the latter case,
Theorem 3.4.1 implies that u(0)=v(0). The final part of the theorem is a
consequence of Lemma 3.3.3 (the monotone separation theorem).

We can now prove Theorem I. Let u and v be two solutions of (*) such
that u(0), v(0)<#. By Proposition 3 if the solutions are not identical, then
u(0)=v(0) but u(r){v(r) for small r>0.

On the other hand, by (A3), (F3) and the uniqueness conclusions of the
Appendix (Proposition A.4) we have u#v for all suitably small r (where
u(r)�;). This contradiction completes the proof.

Theorem II is proved in the same way as Theorem I except that we use
Proposition A.2 instead of Proposition A.4 of the Appendix.
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3.5. Uniqueness Theorem II

In the previous section we considered the case when condition (F2)
holds. Here we shall study the case in which the hypothesis (F2) is replaced
by (A2$), (F2$).

We begin with the following analogue of Theorem 3.4.3.

Theorem 3.5.1. Suppose (A2$) and (F2$) are satisfied. Let u and v be
two solutions of (*) such that u(0){v(0) but u(R)=v(R)�; for some
R>0. Then u(R)=v(R)=; and

(i) u(r){v(r) when r # [0, R),

(ii) u$(R){v$(R).

Proof. As in the demonstration of Theorem 3.4.3 the problem reduces
to the case where (3.4.3) holds. Define

u� =u&;, v� =v&;, %= sup
0�r<R

u� (r)
v� (r)

,

so that obviously %>1. Clearly

v� (r)�u� (r)�%v� (r) for 0�r�R,

and moreover there will necessarily be a first point ' # [0, R] where the
second equality holds:

u� (')=%v� (').

As before, we put

w1=u$A( |u$| ), w2=v$A( |v$| ),

and also introduce the function

|=w1&%&&1w2

(no confusion should result from this slightly different definition for |).
Then by (1.1.3) we get

(rn&1|)$=rn&1(%&&1 f (v)& f (u)).
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Now, for 0�r�R,

%&&1 f (v)& f (u)=(%v� )&&1 f (v)
(v&;)&&1&u� &&1 f (u)

(u&;)&&1

�
f (u)

(u&;)&&1 [(%v� )&&1&u� &&1]�0,

by (F2$) and the fact that v<u and u� �%v� . Hence, since |(0)=0 we get
|(r)�0 for 0�r�R. This implies that

u$(r)�%v$(r). (3.5.1)

Indeed, let p=|u$(r)|, q=|v$(r)| and suppose for contradiction that p>%q
(recall u$<0). Then

0�|=%&&1qA(q)&pA( p)=(%q)&&1 A(q)
q&&2&p&&1 A( p)

p&&2

<p&&1 {A(q)
q&&2&

A( p)
p&&2=�0

since, by (A2$) the quantity A( p)�p&&2 is non-decreasing, while p>%q>q.
This is a contradiction, proving (3.5.1).

Now integrate the relation (3.5.1) from ' to R, assuming that '<R. We
get

u(R)&u(')�%(v(R)&v('))

and since u� (')=%v� (') it follows that

u� (R)�%v� (R), (3.5.2)

a result which also trivially holds if '=R.
Since u(R)=v(R), the inequality (3.5.2) yields

u(R)&;�%(u(R)&;). (3.5.3)

This is clearly impossible unless u(R)=v(R)=;.
Thus suppose finally that this last condition holds. We must show that

u$(R){v$(R). First if '<R, then the proof of (3.5.2) equally shows that
u� (r)�%v� (r) for '<r�R. But by definition u� �%v� , so that u� #%v� for
'<r�R. Hence u$(R)=%v$(R), as required.

On the other hand, if '=R then we use the fact that u� (r)<%v� (r) for
0�r<R. In this case, surely u� $(R)�%v� $(R), while at the same time the
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inequality u� $(R)>%v� $(R) contradicts the definition of %. Hence again
u� $(r)=%v� $(R){v� $(R). This completes the proof.

Theorem 3.5.2. Suppose (A2$) and (F2$) are satisfied. Let u and v be
two solutions of (*) such that u(0)=v(0) and u(R)=v(R)�; for some
R>0. Then u(r)#v(r) whenever u(r)�;.

Proof. As in the proof of Theorem 3.4.3, if the theorem fails, there will
be points 0�r1<r2 such that

u(r)>v(r), r # (r1 , r2),

u(r1)=v(r1),

u(r2)=v(r2)�;.

Modifying slightly the proof of Theorem 3.5.1, we let

%= sup
r1�r<r2

u� (r)
v� (r)

.

The previous proof then leads to the same result as before, e.g.

u(r2)&;�%(v(r2)&;). (3.5.3$)

Note however that equality cannot hold in (3.5.3$) as it did in (3.5.3).
This is because we have

%v&1 f (v)& f (u)=(%&&1&1) f (u)>0 at r1 ,

so that the integration leading to (3.5.1) yields instead the modified result

u$(r)>%v$(r), r1<r<r2 . (3.5.1$)

This being the case, (3.5.3$) now contradicts the earlier condition
u(r2)=v(r2)�;, completing the proof.

Remark. A result similar to Theorems 3.5.1 and 3.5.2, but restricted to
the degenerate Laplace operator and to the function f (u)�(u&;)m&1 being
decreasing (rather than non-increasing), was recently obtained by Diaz and
Saa. They also required Lipschitz continuity for the function f (u).

Proposition 3 (Second part). Suppose all the hypotheses of Theorem
III hold, except (A3) and (F3). Then the conclusion is the same as for the
first part of the Proposition 3 in Section 3.4.

Proof. By Theorems 3.5.1. and 3.5.2 there can be only the following
three cases:
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(i) u(r){v(r) for all r>0 such that u(r)>0

(ii) u(0)=v(0) and u(r)#v(r) for r>0

(iii) u(0){v(0) and u(r)#v(r) when u(r)�;; u(R)=v(R)=;,
u$(R){v$(R).

In case (i), by Theorem 3.4.14 we get u(0)=v(0). On the other hand, case
(iii) clearly can't happen because we would then have both u$(R)=v$(R)
and u$(R){v$(R).

To obtain Theorem III, we argue exactly as at the end of Section 4 for
the case of Theorem I.

3.6. Uniqueness Theorem IV

The main Theorems I�III require the strong assumptions (A1) and (A2),
though at the same time conditions (F1) and (F2$) are quite general. The
purpose of this Section is to show that (A1), (A2) can be avoided as prin-
cipal hypotheses, provided on the other hand the conditions (F1), (F2$)
and (F3) are considerably strengthened.

The alternative result is of particular importance for the degenerate
operator A( p)=p2&m in the case when 1<n<2. Indeed we have earlier
noted in the remarks following Proposition 3.0 that (A1) fails for this
operator precisely when

1<n<2&
1
m

.

The appropriately strengthened versions of (F1), (F2$), (F3) are the
following:

(G1) f (u)�0 for 0<u<:, for some :>0.

(G2) The function u � f (u)�(u&:)v is positive and non-increasing
for :<u<#, where v is the constant in (A2$).

(G3) f is locally Lipschitz continuous on (:, #).

Conditions (G1), (G2) imply that f (:)=0 and f (u)>0 for :<u<#. Even
more, by (G2), the indeterminate form

lim
u a :

f (u)
(u&:)&

must exist, either positive or infinite.
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Theorem IV. Suppose n>1 and assumes hypotheses (A2$), (A3) and
(G1), (G2), (G3). Then (*) has at most one solution u such that u(0)<#.

As we have already noted in the Introduction, conditions (A3) and (G3)
can be omitted and an interesting conclusion still retained. That is, if u and
v are two solutions of (*) and (A2), (G1), (G2) are satisfied, then the conclu-
sions of Proposition 3 hold, with ; replaced by :. We shall in fact prove only
this result, since, as in Sections 4 and 5, the result of Theorem IV is then
an immediate corollary.

A result corresponding to Theorem II can also be obtained, but can be
left to the reader.

The proof will follow the outline of those already given, and accordingly
we can omit many of the details. We begin with an important lemma.

Lemma 3.6.1. Let (G1) hold and let u be a solution of (*) with u(0)<#.
Then there exists a number *� �0 ( finite) such that

rn&1pA( p) � *� as r � �, (3.6.1)

where p=|u$(r)|.

The proof follows immediately from the identity (see (1.1.3))

rn&1pA( p)&rn&1
1 p1 A( p1)=|

r

r1

\n&1f (u) d\ (3.6.2)

and the fact that f (u)�0 for 0<u<:. For a similar argument, see also
[PS2], Lemma 5 (i).

Lemma 3.6.2. Suppose u and v are two solutions of (*) with
u(0), v(0)<#. If u�v for all sufficiently large r, then *� �+~ (here +~ is the
limit value in (3.6.1) for the function v).

Proof. Let 0( p)=pA( p) for p>0. Suppose for contradiction that
*� <+~ . Then for all sufficiently large r we have q>0 (since +~ >0), and
moreover by Lemma 3.6.1,

lim
r � �

0( p)
0(q)

=
*�
u~

<1.

Hence p<q for all large r. But then

u(r)=|
�

r
p(\) d\<|

�

r
q(\) d\=v(r),
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contradicting the hypothesis of the lemma. (A similar but less general result
is given in [PS2], Lemma 8).

The following stages of the proof follow those in Sections 3�5. It is
convenient here to introduce the condition

(G2$) f (u)>0 for :<u<#.

This is an obvious consequence of (G2). Moreover, we note that if (G1),
(G2$) hold, then the hypothesis of Lemma 1.2.6 is satisfied, so that for any
solution of (*) we have u$(r)<0 for r>0 as long as u(r)>0.

Lemma 3.6.3. Let (G1), (G2$) hold. Then the conclusion of Lemma 3.3.1
remains true.

The proof is exactly the same as for Lemma 3.3.1. The next result is the
analogue of Lemma 3.3.2.

Lemma 3.6.4. Suppose (G1) is satisfied. If r&s has two zeros in (0, :],
say !0 and !1 , then r&s#0 for all u between !0 and !1 .

Proof. We argue by contradiction as in the proof of Lemma 3.3.2, but
replacing ; by : throughout. Moreover, instead of the identity (3.3.2), we
have from (3.6.2)

rn&1
2 0( p2)&rn&1

1 0( p1)=|
!1

!2

rn&1 f (u)
p

du.

In turn, in place of (3.3.3) we get, in an obvious notation,

(rn&1
2 &rn&1

1 ) 0( p2)&rn&1
1 (0( p1)&0(q1))

=|
!1

!2
{r(u)n&1

p
&

s(u)n&1

q = f (u) du�0, (3.6.3)

since p<q and r>s (recall that f (u)�0 for 0<u�:). On the other hand,
as in the proof of Lemma 3.3.2, the left side of (3.6.3) is strictly positive, a
contradiction.

Lemma 3.6.5. Suppose (G1), (G2$) hold. Then the conclusion of Lemma
3.3.3 remains true.

The proof is exactly the same as before, as is also the case for the
following

Theorem 3.6.6. Suppose (G1), (G2$) are satisfied. Then the conclusion
of Theorem 3.4.1 remains true.

235QUASILINEAR EQUATIONS IN Rn



File: 607J 148460 . By:CV . Date:02:02:00 . Time:16:22 LOP8M. V8.0. Page 01:01
Codes: 2387 Signs: 1448 . Length: 45 pic 0 pts, 190 mm

Theorem 3.6.7. Suppose hypothesis (G1) is satisfied. Let u and v be
two solutions of (*) such that u(R)=v(R) # (0, :] for some R>0. Then
u(r)#v(r) whenever u(r)�:.

Proof. We proceed as in the proof of Theorem 3.4.2, but replacing ; by
: throughout and basing our identities on (3.6.2) rather than (3.1.5). There
results (see (3.6.3))

Rn&1(0( p~ )&0(q~ ))&(*� &+~ )=&|
u~

0 {
r(u)n&1

p
&

s(u)n&1

q = f (u) du. (3.6.4)

Continuing as in the proof of Theorem 3.4.2, we have p~ �q~ , p<q for
u # (0, u~ ) and *� �+~ by Lemma 3.6.2. Thus the only possibility for main-
taining (3.6.4) is

p~ =q~ , *� =+~ , f (u)#0 for u # (0, u~ ).

Integration of (1.1.3) then gives u#v for r�R, a contradiction.

Theorem 3.6.8. Suppose (A2$) and (G2) are satisfied. Let u and v be
two solutions of (*) such that u(0){v(0), but u(R)=v(R)�: for some
R>0. Then u(R)=: and

(i) u(r){v(r) when 0�r<R,

(ii) u$(R){v$(R).

The proof is exactly the same as that of Theorem 3.5.1, except that ; is
replaced by :. The same is the case for the following Theorem 3.6.9, the
analogue of Theorem 3.5.2.

Theorem 3.6.9. Suppose (A2$) and (G2) are satisfied. Then Theorem
3.5.2 holds with ; replaced by :.

We can now prove

Proposition 3 (Third part). Suppose that (G1), (G2) and (A2$) hold.
Then if u and v are two solutions of (*) with u(0), v(0)�#, we have
necessarily

u(0)=v(0).

Moreover if u�v then u(r){v(r) for all r>0 where u(r)>0. (If u and v
have compact support, then also inf[r>0; u(r)=0]{inf[r>0; v(r)=0].)
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This is obtained in exactly the same way as the second part of Proposi-
tion 3, with only the following differences:

Theorem 3.6.6 replaces 3.4.1

Theorem 3.6.7 replaces 3.4.2

Theorem 3.6.8 replaces 3.5.1

Theorem 3.6.9 replaces 3.5.2.

3.7. Remarks on the Exterior Problem

The work of this paper carries over without essential change to the study
of the following exterior Neumann problem for the equation (1.1):

div(A( |Du| ) Du)+ f (u)=0, x # B

Du=0 on �B, u(x) � 0 as |x| � �,

where B is the exterior of a ball of radius b>0 in Rn, n>1, and where we
are concerned with non-negative, non-trivial solutions. Just as for the
ground state problem for equation (1.1), solutions of the above problem
can be expected to be radially symmetric with respect to the center of the
ball, and according we restrict discussion to that case.

Thus we consider the following direct analogue of the problem (*)
introduced in Section 1.1,

(Au$)$+
n&1

r
Au$+ f (u)=0, r�a

(*)
u$(b)=0, u�0 for r�b; u � 0 as r � �; u�0.

We treat classical solutions of (**), with the precise meaning that
u # C1([b, �)) and also w=Au$ # C1([b, �)).

The discussion exactly parallels that already given, the only exception
being that the role of r=0 in the ground state problem is here played by
the point r=b. This in fact simplifies the argument in several places, since
the problem is no longer singular at the initial point b. The main results are
then the same as before, namely: the principal properties of solutions given
in Section 1.2; the compact support theorems of Section 1.3; the Existence
Theorem of Chapter 2; and the Uniqueness Theorems I�IV of Chapter 3.

Appendix: The Cauchy Problem

The initial value problem at r=0 for equation (1.1.1) is singular due to
the term (n&1)�r as well as the possible singularity of A( p) when p=0. We
state here the main results which are required in the paper.
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Consider the initial value problem

(Au$)$+
n&1

r
Au$+ f (u)=0, r>0

(P)
u(0)=!>0, u$(0)=0

for a classical solution u (see Section 1.1).

Proposition A1. Suppose the hypotheses (H1)�(H3) are satisfied. Then
problem (P) has a classical solution in a neighborhood of the origin.

Proof. Put 0( p)=pA( | p| ) for p{0, 0(0)=0.5 Existence of a solution
is proved by applying the Schauder fixed point theorem to the operator

(Tu)(r)=!&|
r

0
0&1 \|

\

0
f (u(t)) \ t

\+
n&1

dt+ d\;

see [NS].

Proposition A2. Suppose that A is of class C1 on (0, �) and that f (u)
is Lipschitz continuous for u # J, where J is a subinterval of (0, �) containing
!. Assume also that the derivative of the (increasing) function 0 is bounded
from zero on every bounded subset of (0, �). Then the solution of (P) is
unique as long as it exists and remains in J.

Proof. Suppose that u and v are two different solutions of (P) whose
values lie in J. Then the function

|=0(u$)&0(v$)

is a solution of the Cauchy problem

|$+
n&1

r
|=�(r), |(0)=0,

where �(r)= f (v(r))& f (u(r)). It follows that

||(r)|=|
r

0
�(t) \t

r+
n&1

dt�
r
n

sup
[0, r]

|�(t)|. (1)

On the other hand, since f is Lipschitz continuous on J, we obtain, for
appropriate values r0 , M>0,

|�(r)|�M |u(r)&v(r)| for r # [0, r0].
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Hence recalling that u(0)=v(0), the principal hypothesis of the proposition
yields

|�(r)|�M |
r

0
|u$(s)&v$(s)| ds�

M
k |

r

0
||(s)| ds, (2)

where k>0 is the infimum of the derivative of 0( p) on the set (0, p0), and
p0 is a bound for |u$(r)| and |v$(r)| on the interval [0, r0]; here we recall
that both u$ and v$ are zero when r=0, and are also continuous.

Combining (1) and (2) yields

||(r)|�
1
n

M
k

r |
r

0
||(s)| ds

for r�r1 . It now follows from Gronwall's inequality that |#0 for r�r1 .
Consequently 0(u$)#0(v$), and u$#v$ for r�r1 . With the initial point
r=r0 replaced by r=\>0, for an appropriate value \, the same proof can
be reapplied as often as necessary to give uniqueness of any continuation
of the solution whose values lie in J.

Proposition A3. Suppose that the hypotheses of Proposition A2 are
satisfied. Then solutions of problem (P) depend continuously on the initial
data !.

Proof. We proceed in essentially the same way as in the demonstration
of Proposition A2. Let u(0)=!, v(0)=!+h. Then on any compact subset
of values r for which the solutions are defined, we have

|u(r)&v(r)|�h+|
r

0
|u$(s)&v$(s)| ds

(it can be assumed that h>0). Consequently (2) can be replaced by

|�(r)|�M \h+
1
k |

r

0
||(s)| ds+ ,

with the constants M, k as before. In turn

||(r)|�
1
n

Mr \h+
1
k |

r

0
||(s)| ds+ ,

so by Gronwall's inequality

||(r)|�
M
n

rh exp \ M
2nk

r2+ .
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This gives

|u$&v$|�
M
nk

rh exp \ M
2nk

r2+ ,

and

|u&v|�h exp \ M
2nk

r2+ ,

completing the proof.

Proposition A2 does not apply to the important case when A( p)=pm&2

and m>2, since then 0$( p)=(m&1) pm&2 is not bounded from zero on
bounded subsets of (0, �). Therefore it is important to have the following
extension of its validity.

Proposition A4. Suppose A is of class C1 on (0, �) and that f (u) is
non-vanishing and Lipschitz continuous for u # J, where J is a subinterval of
(0, �) containing !. Assume also that 0$( p)>0 for p{0 and

0$( p)�|0( p)|+ (3)

for all sufficiently small p{0, where + is a fixed exponent in [0, 2). Then the
solution of (P) is unique as long as it exists and remains in J.

Condition (3) clearly holds when A( p)=pm&2, with +=0 if m�2
and +=1 (and p�m&1) if m>2. It is also satisfied when A( p)=
(1+p2)&s�2 pm&2 for s�0, m>1, as one easily checks. We are indebted to
L. Veron for the idea of the proof.

Proof of Proposition A4. It can be assumed that f (u)>0 for u # J, the
opposite case being treated similarly. We proceed now as in the proof of
Proposition A.2, until relation (2). Here the estimate

|u$(s)&v$(s)|�
1
k

||(s)|, s # (0, r0)

must be replaced by

|u$(s)&v$(s)|�
1

inf 0$( p~ )
||(s)|, s # (0, r0), (4)

where the infimum is taken over all intermediate values p~ between |u$(s)|
and |v$(s)|. Note, for this estimate, that necessarily u$(r), v$(r) are negative
for r>0 because f (u)>0 when u # J, see Lemma 1.1.1 or the proof of
Proposition A1.
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Obviously, for any solution of (P)

0(u$)=&|
r

0
f (u(t))(t�r)n&1 dt.

Therefore supposing without loss of generality that |u$(s)|�|v$(s)| in (4),
we find that

0( p~ )>0( |u$| )=&|
s

0
f (u(t))(t�s)n&1 dt�

s
2n

f (u(0))=
s

2n
f (!),

provided that r0 is chosen even smaller, if necessary, so that f (u(r))�
1
2 f (u(0)) for 0�r�r0 . Using (3) and the fact that +�0, we get

0$( p~ )�\ s
2n

f (!)+
+

, s # (0, r0),

and of course the same holds when |v$(s)|�|u$(s)|. Hence from (4) and the
first inequality of (2) follows

|�(r)|�M |
r

0 \
2n

sf (!)+
+

||(s)| ds.

In turn, using (1) for r # (0, r0) there holds

||(r)|�Cr |
r

0

||(s)|
s+ ds,

where C=Mn+&1(2�f (!))+.
One can now apply Gronwall's lemma (for this purpose, it is convenient

to replace | by |�r), with the conclusion

}|(r)
r }�C |

t

0

||(s)|
s+ ds } exp \C |

r

t

ds
s+&1+

for any t # (0, r). Of course ||(s)�s| is bounded on (0, r0) by (1). Hence,
recalling that +<2 and letting t � 0, we get |(r)#0 for r # (0, r0). The
procedure can of course be repeated as often as necessary, proving the
theorem.

Remark. The condition that f (u(0))>0 is essential for the validity of
Proposition A.4. Indeed, consider the equation

((u$)3)$+
n&1

r
(u$)3+8(1&u)=0,
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that is, the case A( p)=p2 and f (u)=8(1&u). If we take !=1, then
f (!)=0, and the solution of the Cauchy problem (P) is in fact not unique,
there being at least the three solutions,

u#1, u=1&at2, u=1+at2,

where a=- 1�(n+2).
One can restore uniqueness in case f (!)=0 by appropriately strengthening

the Lipschitz condition at u=!, but (for once) we shall not pursue this
further.
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