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There exist many simple tools for jointly capturing variability and incomplete information
by means of uncertainty representations. Among them are random sets, possibility distri-
butions, probability intervals, and the more recent Ferson’s p-boxes and Neumaier’s clouds,
both defined by pairs of possibility distributions. In the companion paper, we have exten-
sively studied a generalized form of p-box and situated it with respect to other models.
This paper focuses on the links between clouds and other representations. Generalized
p-boxes are shown to be clouds with comonotonic distributions. In general, clouds cannot
always be represented by random sets, in fact not even by two-monotone (convex)
capacities.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

There exist many different tools for representing imprecise probabilities. Usually, the more general, the more difficult
they are to handle. Simpler representations, although less expressive, usually have the advantage of being more tractable.
Over the years, several such representations have been proposed. Among them are possibility distributions [20], probability
intervals [5], and more recently p-boxes [12] and clouds [15,16]. Comparing their respective expressive power is a natural
task. Finding formal relations between such representations also facilitates a unified handling of uncertainty.

In the first part of this paper [8], a generalized notion of p-boxes is studied and related to representations mentioned
above. It is shown that any generalized p-box is representable by a pair of possibility distributions, and that generalized
p-boxes are special cases of random sets. Fig. 1 recalls the connections established in the companion paper between the stud-
ied representations, going from the most (top) to the least (bottom) general.

The present paper completes Fig. 1 by adding clouds to it, making one step further towards the unification of uncertainty
models. Clouds, encoded by a pair of fuzzy sets, were recently introduced by Neumaier [15] as a means to cope with impre-
cision while remaining computationally tractable, even in high dimensional spaces. A recent application [13] to space shuttle
design problem demonstrate some of the potential of the representation. Moreover, as clouds are syntactically equivalent to
interval-valued fuzzy sets with some boundary conditions, analyzing their connection with respect to other uncertainty fra-
meworks also provides some insight about how interval-valued fuzzy sets can be interpreted by such frameworks. As we will
see, generalized p-boxes, studied in the companion paper, constitute a bridge between clouds, possibility distributions and
usual p-boxes.
. All rights reserved.
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Fig. 1. Relationships among representations. A ? B: A generalizes B. A --? B: B is representable by A.
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The paper is divided into four main sections: Section 2 studies the formalism of clouds and relates them to pairs of pos-
sibility distributions, to generalized p-boxes and to probability intervals. It is shown that generalized p-boxes are equivalent
to a particular subfamily of clouds, named here comonotonic clouds. Section 3 studies non-comonotonic clouds. Since the
lower probability they induce are in general even not two-monotone, simpler outer and inner approximations are proposed.
Section 4 extends some of our results to the case of continuous models defined on the real line, since such models are often
encountered in applications. The particular case of thin clouds, for which both upper and lower distributions coincide is
emphasized, as they have non-empty credal sets in the continuous setting.

To make the paper easier to read, longer proofs have been moved to the Appendix. We will often refer to useful results
from the companion paper [8], where basics about other representations and frameworks considered here can be found.
Some definitions are recalled in footnotes. In the first four sections, we consider that our uncertainty concerns the value that
a variable could assume on a finite set X containing n elements.

2. Clouds

Clouds were introduced by Neumaier [15] as a probabilistic generalizations of intervals.

Definition 2.1. A cloud ½d;p� is defined as a pair of mappings d : X ! ½0;1� and p : X ! ½0;1� from the set X to the unit interval
[0,1], such that:

� d is pointwise less than or equal to p (i.e., d 6 p).
� pðxÞ ¼ 1 for at least one element x in X.
� dðyÞ ¼ 0 for at least one element y in X.

d and p are, respectively, the lower and upper distributions of a cloud.

As mappings d; p are mathematically equivalent to two nested fuzzy membership functions, a cloud ½d;p� is mathemat-
ically equivalent to an interval-valued fuzzy set (IVF)[19] with boundary conditions (pðxÞ ¼ 1 and dðyÞ ¼ 0). More precisely,
it is mathematically equivalent to an interval-valued membership function whereby the membership value of each element
x of X lies in ½dðxÞ;pðxÞ�. Since a cloud is equivalent to a pair of fuzzy membership functions, at most 2jXj � 2 values (notwith-
standing boundary constraints on d and p) are needed to fully determine a cloud on a finite set. Two subcases of clouds con-
sidered by Neumaier [15] are the thin and fuzzy clouds. A thin cloud is defined as a cloud for which d ¼ p, while a fuzzy cloud
is a cloud for which d ¼ 0.

Neumaier defines the credal set1 P½d;p� induced by a cloud ½d;p�, as
1 A c
P½d;p� ¼ fP 2 PX jPðfx 2 XjdðxÞP agÞ 6 1� a 6 Pðfx 2 XjpðxÞ > agÞg; ð1Þ
where PX is the set of probability measures on X. Interestingly enough, this definition gives a means to interpret IVF sets in
terms of credal sets, or in terms of imprecise probabilities, eventually ending up with a behavioral interpretation of IVF by
using Walley’s [18] theory of coherent lower previsions.
redal set P is a closed convex set of probability distributions, here described by constraints on probabilities of some events.



Fig. 2. Cloud ½d;p� of Example 2.2.
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Let 0 ¼ c0 < c1 < � � � < cM ¼ 1 be the ordered distinct values taken by both d and p on elements of X, then denote the
strong and regular cuts as
2 A p
1� a 6
B�ci
¼ fx 2 XjpðxÞ > cig and Bci

¼ fx 2 XjpðxÞP cig ð2Þ
for the upper distribution p and
C�ci
¼ fx 2 XjdðxÞ > cig and Cci

¼ fx 2 XjdðxÞP cig ð3Þ
for the lower distribution d. Note that in the finite case, B�ci
¼ Bciþ1

and C�ci
¼ Cciþ1

, with cMþ1 ¼ 1, and also
; ¼ B�cM � B�cM�1 # � � � # B�c0 ¼ X; ; ¼ CcM
# CcM�1

# � � � # Cc0
¼ X;
and since d 6 p, this implies that Cci
# Bci

, hence Cci
# B�ci�1 , for all i ¼ 1; . . . ;M. In such a finite case, a cloud is said to be dis-

crete. In terms of constraints bearing on probabilities, the credal set P½d;p� of a finite cloud is equivalently defined by the finite
set of inequalities:
i ¼ 0; . . . ;M; PðCci
Þ 6 1� ci 6 PðB�ci

Þ; ð4Þ
under the above inclusion constraints. Note that some conditions, in addition to boundary ones advocated in Definition 2.1,
must hold for P½d;p� to be non-empty in the finite case. In particular, distribution d cannot be equal to p (i.e., d–p). Otherwise,
we have Cci

¼ B�ci�1
ð¼ Bci

Þ, that is p and d have a common ci-cut, and there is no probability distribution satisfying the con-
straint 1� ci�1 6 PðCci

Þ 6 1� ci since ci�1 < ci. So, thin finite clouds induce empty credal sets.

Example 2.2. This example illustrates the notion of a cloud and will be used in the next sections to illustrate various results.
Let us consider a space X ¼ fu; v;w; x; y; zg and the cloud ½d;p� pictured in Fig. 2 and whose values on X are summarized in
Table 1.

The values ci corresponding to this cloud are
0 6 0:5 6 0:75 6 1;
c0 6 c1 6 c2 6 c3:
Constraints associated to this cloud and corresponding to Eq. (4) are
PðCc3
¼ ;Þ 6 1� 1 6 PðB�c3 ¼ ;Þ;

PðCc2
¼ fwgÞ 6 1� 0:75 6 PðB�c2 ¼ fv;wgÞ;

PðCc1
¼ fu; v;w; xgÞ 6 1� 0:5 6 PðB�c1 ¼ fu; v;w; x; ygÞ;

PðCc0
¼ XÞ 6 1� 0 6 PðB�c0 ¼ XÞ:
2.1. Clouds in the setting of possibility theory

To relate clouds with possibility distributions,2 first consider the case of fuzzy clouds ½d;p�. In this case, d ¼ 0 and Cci
¼ ; for

i ¼ 1; . . . ;M, which means that constraints given by Eq. (4) reduce to 1� ci 6 PðB�ci
Þ for i ¼ 0; . . . ;M which, by using Proposition

2.5 of the companion paper [8], induces a credal set Pp equivalent to the one induced by the possibility distribution p. This
shows that fuzzy clouds are equivalent to possibility distributions. The following proposition is a direct consequence of this
observation:

Proposition 2.3. Uncertainty modeled by a cloud ½d;p� is representable by the pair of possibility distributions 1� d and p, and we
have:
P½d;p� ¼ Pp \P1�d:
Proof of Proposition 2.3. Consider a cloud ½d;p� and the constraints inducing the credal set P½d;p�. As for generalized p-boxes,
these constraints can be split into two sets of constraints, namely, for i ¼ 0; . . . ;M, PðCci

Þ 6 1� ci and 1� ci 6 PðB�ci
Þ. Since B�ci

are strong cuts of p, then by Proposition 2.5. in [8] we know that these constraints define a credal set equivalent to Pp.
ossibility distribution is a mapping p : X ! ½0; 1�, with pðxÞ ¼ 1 for at least one element, and inducing a credal set Pp such that P 2 Pp iff
Pðfx 2 XjpðxÞ > agÞ for all a 2 ½0; 1�.



Table 2
Possibility distributions representing cloud of Example 2.2

u v w x y z

p 0.75 1 1 0.75 0.75 0.5
1� d 0.5 0.5 0.25 0.5 1 1

Table 1
Values of cloud distributions ½d;p� of Example 2.2

u v w x y z

p 0.75 1 1 0.75 0.75 0.5
d 0.5 0.5 0.75 0.5 0 0
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Note then that PðCci
Þ 6 1� ci is equivalent to PðCc

ci
ÞP ci (where Cc

ci
¼ fx 2 Xj1� dðxÞ > 1� cig). By construction, 1� d is

a normalized possibility distribution. Interpreting these inequalities in the light of Proposition 2.5. in [8], we see that they
define the credal set P1�d. By merging the two set of constraints, we get Pd;p ¼ Pp \P1�d. h

This proposition shows that, as for generalized p-boxes, the credal set induced by a cloud is representable by a pair of possi-
bility distributions [11]. This analogy between generalized p-boxes and clouds is studied in Section 2.3. This result also confirms
that a cloud ½d;p� is equivalent to its mirror cloud ½1� p;1� d� (1� p becoming the lower distribution, and 1� d the upper one).

Example 2.4. Possibility distributions p; 1� d representing the cloud of Example 2.2 are summarized in Table 2.
2.2. Clouds with non-empty credal sets

We now explore under which conditions a cloud ½d;p� induces a non-empty credal set P½d;p�. Using the fact that clouds are
representable by pairs of possibility distributions, and applying Chateauneuf’s [2] characteristic condition
ð8A � X; Bel1ðAÞ þ Bel2ðAcÞ 6 1Þ under which the credal sets associated to two belief functions Bel1 and Bel2 have a non-
empty intersection, the following necessary and sufficient condition obtains:

Proposition 2.5. A cloud ½d;p� has a non-empty credal set if and only if
8A # X; max
x2A

pðxÞP min
yRA

dðyÞ:
Proof. Chateauneuf’s condition applied to possibility distributions p1 and p2 reads 8A # X; P1ðAÞ þP2ðAcÞP 1. Choose
p1 ¼ p and p2 ¼ 1� d. In particular P2ðAcÞ ¼ 1�minyRAdðyÞ. h

A naive test for non-emptiness based on Proposition 2.5 would have exponential complexity, but in the case of clouds, it
can be simplified as follows: suppose the space X ¼ fx1; . . . ; xng is indexed such that pðx1Þ 6 pðx2Þ 6 . . . 6 pðxnÞ ¼ 1 and con-
sider an event A such that maxx2ApðxÞ ¼ pðxiÞ. The tightest constraint of the form maxx2ApðxÞ ¼ pðxiÞP minyRAdðyÞ is when
choosing A ¼ fx1; . . . xig. Checking non-emptiness then comes down to checking the following set of n� 1 inequalities:
j ¼ 1; . . . ;n� 1; pðxiÞP min
j>i

dðxjÞ: ð5Þ
This gives us an efficient tool to check the non-emptiness of a given cloud on a finite set, or to build a non-empty cloud from
the knowledge of either d or p. For instance, knowing d, the cloud ½d;p� such that pðxiÞ ¼minj>idðxjÞ; j ¼ 1; . . . ;n� 1 is the
most restrictive non-empty cloud one may build, assuming the ordering pðx1Þ 6 pðx2Þ 6 . . . 6 pðxnÞ ¼ 1 (changing this
assumption yields another non-empty cloud).

Now, consider the extreme case of a cloud for which Cci
¼ B�ci

for all i ¼ 1; . . . ;M in Eq. (4). In this case,
PðB�ci

Þ ¼ PðCci
Þ ¼ 1� ci for all i ¼ 1; . . . ;M. Suppose distribution p takes distinct values on all elements of X. Ordering ele-

ments of X by increasing values of pðxÞ ð8i; pðxiÞ > pðxi�1ÞÞ enforces dðxiÞ ¼ pðxi�1Þ, with dðx1Þ ¼ 0. Let dp be this lower dis-
tribution. The (almost thin) cloud ½dp;p� satisfies Eq. (5), and since PðB�ci

Þ ¼ 1� ci, the induced credal set P½dp ;p� contains the
single probability measure P with distribution pðxiÞ ¼ pðxiÞ � pðxi�1Þ for all xi 2 X, with pðx0Þ ¼ 0. So if a finite cloud ½d;p� is
such that if d > dp, it induces an empty credal set P½d;p�; and if d 6 dp, then the induced credal set P½d;p� is not empty.

Eq. (5) can be extended to the case of any two possibility distributions p1; p2 for which we want to check whether
Pp1 \Pp2 is empty or not. This is meaningful because the setting of clouds does not cover all pairs p1; p2 such that
Pp1 \Pp2 –;. To check it, first recall that for any two possibility distributions p1; p2, we do have Pminðp1 ;p2Þ #Pp1 \Pp2 ,
but, in general, the converse inclusion [10] does not hold. From this remark, we have:

� Pp1 \Pp2 –; as soon as minðp1;p2Þ is a normalized possibility distribution.
� Not all pairs p1; p2 such that Pp1 \Pp2 –; derive from a cloud ½1� p2;p1�. Indeed, the normalization of minðp1;p2Þ does

not imply that 1� p2 6 p1.
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2.3. Generalized p-boxes as a special kind of clouds

We remind [8] that a generalized p-box ½F; F� is defined by two comonotonic mappings F : X ! ½0;1�, F : X ! ½0;1� with
F 6 F and FðxÞ ¼ FðxÞ ¼ 1 for at least one element x of X. They induce a pre-order 6½F;F� on X such that x6½F;F�y if
FðxÞ 6 FðyÞ and FðxÞ 6 FðyÞ, and elements of X are here indexed such that i 6 j implies xi6½F;F�xj. A generalized p-box ½F; F� in-
duces the following credal set:
3 A ra
such th
P½F;F� ¼ fP 2 PX ji ¼ 1; . . . ;n; ai 6 PðAiÞ 6 big; ð6Þ
where Ai ¼ fx1; . . . ; xig, ai ¼ FðxiÞ and bi ¼ FðxiÞ are lower and upper confidence bounds on set Ai. Note that A1 # � � � # An,
a1 6 � � � 6 an and b1 6 � � � 6 bn. The proposition below lays bare the nature of the relationship between such generalized
p-boxes and clouds:

Proposition 2.6. Let ½d;p� be a cloud defined on X. Then, the three following statements are equivalent:

(i) The cloud ½d;p� can be encoded as a generalized p-box ½F; F� such that P½d;p� ¼ P½F;F�.
(ii) d and p are comonotonic ðdðxÞ < dðyÞ ) pðxÞ 6 pðyÞÞ.

(iii) Sets fB�ci
;Ccj
ji; j ¼ 0; . . . ;Mg form a nested sequence (i.e., are completely (pre-)ordered with respect to inclusion).

Proof of Proposition 2.6. We use a cyclic proof to show that statements (i)–(iii) are equivalent.
(i)) (ii) From the assumption, d ¼ 1� pF and p ¼ pF . Hence, using Proposition 3.3 in [8] and the definition of a

generalized p-box, d and p are comonotone, hence (i)) (ii).
(ii)) (iii) We will show that if (iii) does not hold, then (ii) does not hold either. Assume sets fB�ci ;Ccj

ji; j ¼ 0; . . . ;Mg do not
form a nested sequence, meaning that there exists two sets Ccj

; B�ci with j < i s.t. Ccj
å B�ci and B�ci å Ccj

. This is equivalent to
asserting 9x; y 2 X such that dðxÞP cj, pðxÞ 6 ci, dðyÞ < cj and pðyÞ > ci. This implies dðyÞ < dðxÞ and pðxÞ < pðyÞ, and that
d; p are not comonotonic.

(iii)) (i) Assume the sets B�ci and Ccj
form a globally nested sequence whose current element is Ak. Then the set of

constraints defining a cloud can be rewritten in the form ak 6 PðAkÞ 6 bk, where ak ¼ 1� ci and bk ¼minf1� cjjB�ci # Ccj
g if

Ak ¼ B�ci ; bk ¼ 1� ci and ak ¼maxf1� cjjB�cj # Cci
g if Ak ¼ Cci

. Since 0 ¼ c0 < a1 < � � � < aM ¼ 1, these constraints are
equivalent to those describing a generalized p-box (Eq. (6)). This ends the proof. h

Proposition 2.6 indicates that only those clouds for which d and p are comonotonic can be encoded by generalized p-
boxes, and from now on, we will call such clouds comonotonic. Using Proposition 3.3 of the companion paper [8] and given
a comonotonic cloud ½d;p�, we can express this cloud as the following generalized p-box F; F defined for any x 2 X:
FðxÞ ¼ pðxÞ and FðxÞ ¼minfdðyÞjy 2 X; dðyÞ > dðxÞg: ð7Þ
Conversely, note that any generalized p-box ½F; F� can be encoded by a comonotonic cloud, simply taking d ¼ 1� pF and
p ¼ pF (see Proposition 3.3 in [8]). This means that generalized p-boxes are special cases of clouds, and that comonotonic
clouds and generalized p-boxes are equivalent representations. Also note that a comonotonic cloud ½d;p� and the equivalent
generalized p-box ½F; F� induce the same complete pre-order on elements of X, that we note 6½F;F� to remain coherent with the
notations of the companion paper [8]. We consider that elements x of X are indexed accordingly, as already specified.

In practice, this means that all the results that hold for generalized p-boxes also hold for comonotonic clouds, and con-
versely. In particular, comonotonic clouds are special cases of random sets,3 in the sense that, for any comonotonic cloud ½d;p�,
there is a belief function Bel such that P½d;p� ¼ PBel. Adapting Eq. (13) of the companion paper [8] to the case of a comonotonic
cloud ½d;p�, this random set is such that, for j ¼ 1; . . . ;M:
Ej ¼ fx 2 XjðpðxÞP cjÞ ^ ðdðxÞ < cjÞg;
mðEjÞ ¼ cj � cj�1:

(
ð8Þ
Note that in the formalism of clouds this random set can be expressed in terms of the sets fB�ci
;Cci
ji ¼ 0; . . . ;Mg. Namely, for

j ¼ 1; . . . ;M:
Ej ¼ B�cj�1
n Ccj

¼ Bcj
n Ccj

;

mðEjÞ ¼ cj � cj�1:

(
ð9Þ
Example 2.7. From the cloud in Example 2.2, Cc3
� Cc2

� B�c2 � Cc1
� B�c1 � B�c0 , and the constraints defining P½d;p� can be

transformed into
ndom set is a non-negative mapping m : }ðXÞ ! ½0;1� such that
P

E�X mðEÞ ¼ 1; mð;Þ ¼ 0. It is also completely characterized by the belief function Bel
at 8A � X, BelðAÞ ¼

P
E # AmðEÞ. The credal set PBel induced by such a random set is PBel ¼ fP 2 PX j8A # X; BelðAÞ 6 PðAÞg.



Fig. 3. Generalized p-box ½F; F� corresponding to cloud of Example 2.2.

Table 3
Generalized p-box equivalent to the cloud of Example 2.2

u v w x y z

F 0.75 1 1 0.75 0.75 0.5
F 0.5 0.75 1 0.5 0.5 0
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0 6 Cc2
¼ fwg 6 0:25;

0:25 6 B�c2 ¼ fv;wg 6 0:5;
0:25 6 Cc1

¼ fu; v;w; xg 6 0:5;
0:5 6 B�c1 ¼ fu; v;w; x; yg 6 1:
They are equivalent to the generalized p-box ½F; F� pictured on Fig. 3 and whose values are summarized in Table 3.
The following ordering is compatible with the two distributions (see Fig. 3):
z<½F;F�y<½F;F�x¼½F;F�u<½F;F�v<½F;F�w;
and the corresponding random set, given by Eqs. (9) or (8), is:
mðfx5; x6gÞ ¼ 0:25; mðfx2; x3; x4; x5gÞ ¼ 0:25; mðfx1; x2gÞ ¼ 0:5:
Comonotonic clouds being special cases of clouds, we may wonder if some of the results presented in this section extend
to clouds that are not comonotonic (and called non-comonotonic). In particular, can uncertainty modeled by a non-comono-
tonic cloud be exactly modeled by an equivalent random set? Before addressing this issue in Section 3, we will discuss the
relation between clouds and probability intervals, using above results to do so.
2.4. Clouds and probability intervals

As for generalized p-boxes and possibility distributions, there is no direct relationship between clouds and probability
intervals [5]. Nevertheless, we can study how to transform a set of probability intervals into a cloud. Such transformations
can be useful when one wishes to work with clouds but information is given in terms of probability intervals. There are
mainly two paths that can be followed to do this transformation:

� The first consists in exploiting the fact that clouds are representable by pairs of possibility distributions (Proposition 2.3),
and in extending existing transformations of probability intervals into a single possibility distribution.

� The second consists in exploiting the equivalence between generalized p-boxes and comonotonic clouds (Proposition 2.6).

The first path can be followed by considering the method developed by Masson and Denoeux [14] to build a possibility
distribution pL outer-approximating a given probability interval L. We have shown [7] that this method can be suitably ex-
tended in order to build a second possibility distribution p0L, so that the pair ½1� p0L;pL� form a cloud outer-approximating the
probability interval L (i.e., PL #P½1�p0L ;pL �).

Since generalized p-boxes and comonotonic clouds are equivalent representations, an alternative is to directly use trans-
formations of probability intervals into generalized p-boxes (using Eq. (14) in [8]) to get an outer-approximating comono-
tonic cloud. Then, by Proposition 3.8 of the companion paper [8], we known that we can recover the information modeled by
any probability interval L by means of at most jXj=2 clouds built by this method.

Using the first method, it is in general impossible to recover the information provided by the original probability interval.
This shows that the first method can be very conservative. This is mainly due to the fact that even if it considers every pos-
sible ordering of elements, it is only based on the partial order induced by the probability interval. If a natural ordering of
elements exists, the second method seems to be preferable. Otherwise, it is harder to justify the fact of considering one par-
ticular order rather than another one, and the first method should be applied. In this case, one has to be aware that a lot of
information can be lost in the process. One may also find out the ordering inducing the most precise comonotonic cloud, but
this question remains open.



Fig. 4. Cloud ½d;p� of Example 3.1.

Table 4
Non-comonotonic cloud of Example 3.1

v w x y z

p 1 1 0.5 0.5 0.25
d 0 0.5 0.25 0 0

670 S. Destercke et al. / International Journal of Approximate Reasoning 49 (2008) 664–677
3. The nature of non-comonotonic clouds

When ½d;p� is a non-comonotonic cloud, Proposition 2.3 linking clouds and possibility distributions still holds, but Prop-
osition 2.6 does not hold any longer. As we will see, non-comonotonic clouds appear to be less interesting, at least from a
practical point of view, than comonotonic ones.

3.1. Characterization

One way of characterizing an uncertainty model is to find the maximal natural number n such that the lower probability4

induced by this uncertainty model is always n-monotone (see [8] or Chateauneuf and Jaffray [3] for further details on n-mono-
tonicity5). This is how we will proceed with non-comonotonic clouds: let ½d;p� be a non-comonotonic cloud, and P½d;p� the in-
duced credal set. The question is: what is the (minimal) n-monotonicity of the associated lower probability P induced by P½d;p�?
To address this question, let us start with an example:

Example 3.1. Consider a set X with five elements fv;w; x; y; zg and the following non-comonotonic cloud ½d;p� pictured on
Fig. 4 and summarized in Table 4. This cloud is non-comonotonic, since pðvÞ > pðxÞ and dðvÞ < dðxÞ. The credal set P½d;p� can
also be defined by the following constraints:
4 The
5 Her
PðCc2
¼ fwgÞ 6 1� 0:5 6 PðB�c2 ¼ fv;wgÞ;

PðCc1
¼ fw; xgÞ 6 1� 0:25 6 PðB�c1 ¼ fv;w; x; ygÞ
with c2 ¼ 0:5 and c1 ¼ 0:25. Now, consider the events B�c2 ; Cc
c1
; B�c2 \ Cc

c1
, B�c2 [ Cc

c1
. We can check that:
PðB�c2 Þ ¼ 0:5; PðCc
c1
Þ ¼ 0:25;

PðB�c2 \ Cc
c1
¼ fvgÞ ¼ 0; PðB�c2 [ Cc

c1
¼ fv;w; y; zgÞ ¼ 0:5;
since at most a 0.5 probability mass can be assigned to x. Then the inequality PðB�c2 \ Cc
c1
Þ þ PðB�c2 [ Cc

c1
Þ < PðB�c2 Þ þ PðCc

c1
Þ

holds, indicating that the lower probability induced by the cloud is not two-monotone.

This example shows that at least some non-comonotonic clouds induce lower probability measures that are not two-
monotone. The following proposition gives a general characterization of a large family of such non-comonotonic clouds:

Proposition 3.2. Let ½d;p� be a non-comonotonic cloud and assume there is a pair of events B�ci ; Ccj
in the cloud s.t.

B�ci \ Ccj
R fB�ci ;Ccj

; ;g and B�ci [ Ccj
–X (i.e., B�ci ; Ccj

are just overlapping and do not cover the whole set X). Then, the lower
probability measure of the credal set Pd;p is not two-monotone.

The proof of Proposition 3.2 can be found in the Appendix. It comes down to showing that for any non-comonotonic cloud
with a pair B�ci

; Ccj
of events satisfying the proposition, the situation exhibited in the above example always occurs, namely

the existence of two subsets of the form B�ci
and Cc

cj
for which two-monotonicity fails. This indicates that random sets do not

generalize such non-comonotonic clouds. It suggests that such non-comonotonic clouds are likely to be less tractable when
processing uncertainty: for instance, simulation of such clouds via sampling methods will be difficult to implement, and the
computation of lower/upper expectation too (since Choquet integral and lower expectation do not coincide when lower
probability fails two-monotonicity).

Note that comonotonic clouds and clouds described by Proposition 3.2 cover a large number of possible discrete clouds,
but that there remains some ‘‘small” subfamilies, i.e., those non-comonotonic clouds for which 8i; j; B�ci

\ Ccj
2 fB�ci

;Ccj
; ;g, or

B�ci
[ Ccj

¼ X. As such families are very peculiar, we do not consider them further here.
lower probability P induced by a credal set P is PðAÞ ¼ minP2PPðAÞ for any A # X.
e we only need two-monotonicity: a set-function g with domain 2X is two-monotone if and only if 8A;B # X; gðAÞ þ gðBÞ 6 gðA [ BÞ þ gðA \ BÞ.
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3.2. Outer approximation of a non-comonotonic cloud

We provide, in this section and the next one, some practical means to compute guaranteed outer and inner approxima-
tions of the exact probability bounds induced by a non-comonotonic cloud, eventually leading to an easier handling of such
clouds.

Given a cloud ½d;p�, we have proven that P½d;p� ¼ Pp \P1�d, where p and 1� d are possibility distributions. As a conse-
quence, the upper and lower probabilities of P½d;p� on any event can be bounded from above (resp. from below), using the
possibility measures and the necessity measures induced by p and �p ¼ 1� d. The following bounds, originally considered
by Neumaier [15], provide, for all event A of X, an outer approximation of the range of PðAÞ:
maxðNpðAÞ;N1�dðAÞÞ 6 PðAÞ 6 PðAÞ 6 PðAÞ 6 minðPpðAÞ;P1�dðAÞÞ; ð10Þ
where PðAÞ; PðAÞ are the lower and upper probabilities induced by P½d;p�. Remember that probability bounds generated by
possibility distributions alone are of the form ½0; b� or ½a;1�. Using a cloud and applying Eq. (10) lead to tighter bounds of
the form ½a; b� � ½0;1�, while remaining simple to compute. Nevertheless, these bounds are not, in general, the tightest ones
enclosing PðAÞ induced by P½d;p�, as the next example shows:

Example 3.3. Let ½d;p� be a cloud defined on a set X, such that distributions d and p takes up to four different values on
elements x of X (including 0 and 1). These values are such that 0 ¼ c0 < c1 < c2 < c3 ¼ 1, and the distributions d; p are such
that:
pðxÞ ¼
1 if x 2 B�c2 ;

c2 if x 2 B�c1 n B�c2 ;

c1 if x R B�c1 ;

8><
>: dðxÞ ¼

c2 if x 2 Cc2
;

c1 if x 2 Cc1
n Cc2

;

0 if x R Cc1
:

8><
>:
Since PðB�c1 ÞP 1� c1 and PðCc2
Þ 6 1� c2, from Eq. (4), we can check that PðB�c1 n Cc2

Þ ¼ PðB�c1 \ Cc
c2
Þ ¼ c2 � c1. Now, by defi-

nition of a necessity measure, NpðB�c1 \ Cc
c2
Þ ¼ minðNpðB�c1 Þ;NpðCc

c2
ÞÞ ¼ 0 since PpðCc2

Þ ¼ 1 because Cc2
# B�c1 and PpðB�c1 Þ ¼ 1.

Considering distribution d, we can have N1�dðB�c1 \ Cc
c2
Þ ¼minðN1�dðB�c1 Þ;N1�dðCc

c2
ÞÞ ¼ 0 since N1�dðB�c1 Þ ¼ DdðBc

�c1
Þ ¼ 0 and

Cc1
# B�c1 (which means that the elements x of X that are in Bc

�c1
are such that dðxÞ ¼ 0). Eq. (10) can thus result in a trivial

lower bound (i.e., equal to 0), different from PðB�c1 \ Cc
c2
Þ.

Bounds given by Eq. (10) are the main motivation for clouds, after Neumaier [15]. Since these bounds are, in general, not
optimal, Neumaier’s claim that they are only vaguely related to Walley’s previsions or to random sets is not surprising. Eq.
(10) appears less useful in the case of comonotonic clouds, for which optimal lower and upper probabilities of events can be
more easily computed (see Remark 3.7 in [8]).
3.3. Inner approximation of a non-comonotonic cloud

The previous outer approximation is easy to compute and allows to clarify some of Neumaier’s claims. Nevertheless, it is
still unclear how to practically use these outer bounds in subsequent treatments (e.g., propagation, fusion). The inner
approximation of a cloud ½d;p� proposed now is a random set, which is easy to exploit in practice. This inner approximation
is obtained as follows:

Proposition 3.4. Let ½d;p� be a non-comonotonic cloud defined on X. Let us then define, for j ¼ 1; . . . ;M, the following random set:
Ej ¼ fx 2 XjðpðxÞP cjÞ ^ ðdðxÞ < cjÞg;
mðEjÞ ¼ cj � cj�1;

(

where 0 ¼ c0 < � � � cj < � � � < cM ¼ 1 are the distinct values taken by d; p on elements of X, Ej are the focal elements with masses
mðEjÞ of the random set. This random set is an inner approximation of ½d;p�, in the sense its credal set PBel is included in P½d;p�.

In the case of non-comonotonic clouds satisfying Proposition 3.2, the inclusion is strict. This inner approximation appears
to be a natural candidate, since on events of the type fB�ci

; Cci
; B�ci

n Ccj
ji ¼ 0; . . . ;M; j ¼ 0; . . . ;M; i 6 jg, it gives optimal

bounds, and it is exact when the cloud ½d;p� is comonotonic.
4. Continuous clouds on the real line

It often happens that uncertainty is defined on the real line. It is thus important to know if results obtained so far can be
extended to continuous settings. In the following, we consider clouds defined on a bounded interval ½r;�r�.

First, let us recall that, as in the discrete case, a cloud ½d;p� defined on the real line is a pair of distributions such that, for
any element r 2 R, ½dðrÞ;pðrÞ� is an interval and there is an element r for which dðrÞ ¼ 0, and another r0 for which pðr0Þ ¼ 1.
Thin clouds ðp ¼ dÞ and fuzzy clouds ðd ¼ 0Þ have the same definition as in the case of finite set. The credal set P½d;p� induced by
a cloud on the real line is such that:



A B C

Fig. 5. Illustration of comonotonic (A), weakly comonotonic (B) and non-comonotonic clouds (C) on the real line.
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P½d;p� ¼ fPjPðfr 2 R; dðrÞP agÞ 6 1� a 6 Pðfr 2 R;pðrÞ > agÞg; ð11Þ

where P is a r-additive probability distribution.6

4.1. General results

As Proposition 2.5 in [8] has been proven for very general spaces [4], results whose proof is based on this proposition di-
rectly extend to models on the real line. Similarly, the proof of Proposition 2.6 extends directly to continuous models on the
real line. Hence, the following statements still hold:

� If ½d;p� is a cloud, 1� d; p are possibility distributions, and P½d;p� ¼ P1�d \Pp.
� If ½F; F� is a generalized p-box defined on the reals, then P½F;F� ¼ PpF \Pp

F
with, for all r 2 R:
pFðrÞ ¼ FðrÞ
and
pFðrÞ ¼ 1� supfFðr0Þjr0 2 R; Fðr0Þ < FðrÞg
with pFðrÞ ¼ 0.
� Generalized p-boxes and comonotonic clouds are equivalent representation.

Note that, for clouds on the real line, we can define a weaker notion of comonotonicity: a (continuous) cloud ½d;p� is said to be
weakly comonotonic if the sign of the derivative of distributions d; p is the same in every point r of the real line R. Being weakly
comonotonic is not sufficient to be equivalent to a generalized p-box, since if p and d are only weakly comonotonic, then it is
possible to find two values r and r0 such that dðrÞ < dðr0Þ and pðrÞ > pðr0Þ. In this case, the (pre-)ordering jointly induced by
the two distributions is not complete, and the definition of comonotonicity is not satisfied. Fig. 5A–C, respectively, illustrate
the notion of comonotonic, non-comonotonic and weakly comonotonic clouds on the reals. Fig. 5A illustrates a comonotonic
cloud (and, consequently, a generalized p-box) for which elements are ordered according to their distance to the mode q
(i.e., for this particular cloud, two values x; y in R are such that x<½F;F�y if and only if jq� xj > jq� yj). Note that Fig. 5A is a good
illustration of the potential use of a generalized p-box, as already noticed (see beginning of Section 3 in the companion paper [8]).

We can now extend the propositions linking clouds and generalized p-boxes with random sets. In particular, the follow-
ing result extends Proposition 3.2 to the continuous case:

Proposition 4.1. Let the distributions ½d;p� describe a continuous cloud on the reals and P½d;p� be the induced credal set. Then, the
random set defined by the Lebesgue measure on the unit interval a 2 ½0;1� and the multimapping a! Ea such that:
Ea ¼ fr 2 RjðpðrÞP aÞ ^ ðdðrÞ < aÞg;

defines a credal set PBel inner-approximating Pp;d ðPBel #Pp;dÞ.

The proof can be found in the Appendix. It comes down to using sequences of discrete clouds outer- and inner-approx-
imating ½d;p� and converging to it, and then to consider inner-approximations of those discrete clouds given by Proposition
3.4. This proposition has two corollaries:

Corollary 4.2. Let ½d;p� be a comonotonic cloud with continuous distributions on the real line. Then the credal set P½d;p� is also the
credal set of a continuous random set with uniform mass density, whose focal sets are of the form, for a 2 ½0;1�:
Ea ¼ fr 2 RjðpðrÞP aÞ ^ ðdðrÞ < aÞg:
To obtain the result, simply observe that the inner-approximation of Proposition 3.4 becomes exact for discrete
comonotonic clouds, which are special cases of random sets. In particular, this is true for the sequences of discrete
comonotonic clouds outer- and inner-approximating ½d;p� and converging to it. So, this sequence of random sets
avoid mathematical subtleties that would require special care, we restrict ourselves to r-additive probability distributions rather than considering
additive ones.



Fig. 6. Representation relationships: completed summary with clouds. A ? B: B is a special case of A. A --? B: B is representable by A.
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converge to a continuous random set at the limit. Another interesting particular case is the one of uniformly continuous
p-boxes.

Corollary 4.3. The credal set P½F;F� described by two continuous and strictly increasing cumulative distributions F; F forming a
classical p-box on the reals is equivalent to the credal set described by the continuous random set with uniform mass density, whose
focal sets are sets of the form ½xðaÞ; yðaÞ� where xðaÞ ¼ F�1ðaÞ and yðaÞ ¼ F�1ðaÞ.

This is because strictly increasing continuous p-boxes are special cases of comonotonic clouds (or, equivalently, of generalized
p-boxes). To check that, in this case, Ea ¼ ½xðaÞ; yðaÞ�, it suffices to consider the possibility distributions pF ; pF and to check that
inf rfpFðrÞP ag ¼ xðaÞ and that suprf1� pFðrÞ < ag ¼ yðaÞ. The strict increasingness property can be relaxed to intervals where
the cumulative functions are constant, provided one consider pseudo-inverses when building the continuous random set.

These results are interesting, for they can make the computation of lower and upper expectations over continuous gen-
eralized p-boxes easier. Another interesting point is that the framework developed by Smets [17] concerning belief functions
on the reals can be applied to comonotonic clouds. Also note that above results extend and give alternative proofs to other
results given by Alvarez [1] concerning continuous p-boxes.

4.2. Thin clouds

The case of thin clouds, for which p ¼ d, is interesting. In this case, constraints (4) defining the credal set P½d;p� reduce to
PðpðxÞP aÞ ¼ PðpðxÞ > aÞ ¼ 1� a for all a 2 ð0;1Þ. As noticed earlier, when X is finite, thin clouds define empty credal sets,
but is no longer the case when it is defined on the real line, as the following proposition shows:

Proposition 4.4. If p is a continuous possibility distribution on the real line, then the credal set P½p;p� ¼ Pp \P1�p is not empty.

Proof of Proposition 4.4. Let FðxÞ ¼ Pðð�1; x�Þ, with x 2 R. F is the distribution function of a probability measure Pp such
that for all a 2 ½0;1�, Ppðfx 2 RjpðxÞ > agÞ ¼ 1� a, where the sets fx 2 RjpðxÞ > ag form a continuous nested sequence (see
[9, p. 285]). Such a probability lies in Pp. Moreover,
Ppðfx 2 RjpðxÞ > agÞ ¼ Ppðfx 2 RjpðxÞP agÞ;
due to uniform continuity of p. We also have Ppðfx 2 RjpðxÞ > agÞ ¼ 1�Pðfx 2 RjpðxÞP agcÞ ¼ 1� Dðfx 2 RjpðxÞP agÞ
again due to uniform continuity. Since 1� Dðfx 2 RjpðxÞP agÞ ¼ supxjpðxÞPa1� pðxÞ, this means Pp 2 P1�p. h

A thin cloud is a particular case of comonotonic cloud. It induces a complete pre-ordering on the reals. If this pre-order is
linear, it means that for any a 2 ½0;1�, there is only one value r 2 R for which pðrÞ ¼ a, and that Pp \P1�p contains only one
probability measure. In particular, if the order is the natural order of real numbers, this thin cloud reduces to an usual cumu-
lative distribution. When the pre-order has ties, it means that for some a 2 ½0;1�, there are several values in r 2 R such that
pðrÞ ¼ a. Using Corollary 4.2, we can model the credal set Pp 2 P1�p by the random set with uniform mass density, whose
focal sets are of the form
Ea ¼ fr 2 RjpðrÞ ¼ ag:
In this case, we can check that Belðfr 2 RjpðrÞP agÞ ¼ 1� a, in accordance with Eq. (4).
Finally, consider the specific case of a thin cloud modeled by an unimodal distribution p (formally, a fuzzy interval). In

this case, each focal set associated to a value a is a doubleton fxðaÞ; yðaÞg where fxjpðxÞP ag ¼ ½xðaÞ; yðaÞ�. Noticeable prob-
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ability distributions that are inside the credal set induced by such a thin cloud are the cumulative distributions Fþ and F�
such that for all a in ½0;1� F�1

þ ðaÞ ¼ xðaÞ and 1� F�1
� ðaÞ ¼ yðaÞ (they respectively correspond to a mass density concentrated

on values xðaÞ and yðaÞ). All probability measures with cumulative functions of the form k � Fþ þ ð1� kÞ � F� also belong to
the credal set (for k ¼ 1

2, this distribution is obtained by evenly dividing mass density between elements xðaÞ and yðaÞ). Other
distributions inside this set are considered by Dubois et al. [9].

5. Conclusion

In this paper, Neumaier clouds are compared to other uncertainty representations, including generalized p-boxes intro-
duced in the companion paper [8]. Properties of the cloud formalism are explained in the light of other representations. We
are now ready to complete Fig. 1 with clouds. This completed picture is given by Fig. 6. New relationships and representa-
tions coming from this paper and its companion are in bold lines.

The next step is to explore computational aspects of each formalism as done by de Campos et al. [5] for probability inter-
vals. In particular, we need to answer the following questions: how do we define operations of fusion, marginalization, con-
ditioning or propagation for each of these models? Are the representations preserved after such operations, and under which
assumptions? What is the computational complexity of these operations? Can the models presented here be easily elicited or
integrated? If many results already exist for random sets, possibility distributions and probability intervals, few have been
derived for generalized p-boxes or clouds, due to their novelty. The results presented in this paper and its companion can be
helpful to perform such a study. Recent applications of clouds to engineering design problems [13] indicate that this model
can be useful, and that such a study should be done to gain more insight about the potential of such models. In particular, the
mathematical properties of comonotonic clouds appear to be quite attractive. Our study thus indicates how clouds and gen-
eralized p-boxes can be interpreted in other frameworks designed to handle uncertainty.

Another issue is to extend presented results to more general spaces, to general lower/upper previsions or to cases not
considered here (e.g., continuous clouds with some discontinuities), possibly by using existing results [6,17].
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Appendix

We first recall a useful result by Chateauneuf [2] concerning the intersection of credal sets induced by random sets. Consider
two random sets fðFi; qi�Þji ¼ 1; . . . kg and fðGj; q�jÞjj ¼ 1; . . . lg on X, with Fi; Gj the focal elements, qi�; q�j the corresponding
masses and PF and PG the induced credal sets. Consider then the set Q of all random sets Q of the form fðFi \ Gj; qijÞji ¼ 1;
. . . k; j ¼ 1; . . . lg, with Fi \ Gj the focal sets and qij the masses such that qi� ¼

Pl
j¼1qij and q�j ¼

Pk
i¼1qij with the constraint that

qij ¼ 0 whenever Fi \ Gj ¼ ;. Then the lower probability induced by the credal set PF \PG is
PðAÞ ¼ min
P2P1\P2

PðAÞ ¼min
Q2Q

BelQ ðAÞ 8A # X;
where BelQ is the belief function induced by the random set Q.

Proof of Proposition 3.2. We first state a short lemma allowing us to emphasize the idea behind the proof of the latter
proposition.

Lemma 5.1. Let ðF1; F2Þ; ðG1;G2Þ be two pairs of sets such that F1 � F2, G1 � G2, G1 6 # F2 and G1 \ F1–;. Let also pF ; pG be two
possibility distributions such that the corresponding belief functions are defined by mass assignments mFðF1Þ ¼ mGðG2Þ ¼ k,
mFðF2Þ ¼ mGðG1Þ ¼ 1� k. Then, the lower probability of the non-empty credal set P ¼ PpF \PpG is not two-monotone.

Proof of Lemma 5.1. Chateauneuf’s result is applied to the possibility distributions defined in Lemma 5.1. The main idea is
to exhibit two events and computing their lower probabilities, showing that two-monotonicity is violated. Consider the set
M of matrices M of the form

where
m11 þm12 ¼ m22 þm12 ¼ k;

m21 þm22 ¼ m21 þm11 ¼ 1� k;X
mij ¼ 1:
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Each such matrix is a normalized (i.e., such that mð;Þ ¼ 0) joint mass distribution for the random sets induced from possi-
bility distributions pF ; pG, viewed as marginal belief functions. Following Chateauneuf [2], for any event E # X, the lower
probability PðEÞ induced by the credal set P ¼ PpF \PpG is
PðEÞ ¼min
M2M

X
ðFi\GjÞ�E

mij: ð12Þ
Now consider the four events F1; G1; F1 \ G1; F1 [ G1. Studying the relations between sets and the constraints on the values
mij, we can see that:
PðF1Þ ¼ k; PðG1Þ ¼ 1� k; PðF1 \ G1Þ ¼ 0:
For F1 \ G1, just consider the matrix m12 ¼ k; m21 ¼ 1� k. To show that the lower probability is not even two-monotone, it is
enough to show that PðF1 [ G1Þ < 1. To achieve this, consider the following mass distribution:
m11 ¼ minðk;1� kÞ; m21 ¼ 1� k�m11;

m12 ¼ k�m11; m22 ¼minðk;1� kÞ:
It can be checked that this matrix is in the set M, and yields
PðF1 [ G1Þ ¼ m12 þm11 þm21 ¼ m11 þ k�m11 þ 1� k�m11 ¼ 1�m11 ¼ 1�minðk;1� kÞ ¼maxð1� k; kÞ < 1;
since ðF2 \ G2Þ 6 # ðF1 [ G1Þ (due to the fact that G1 6 # F2). Then the inequality PðF1 [ G1Þ þ PðF1 \ G1Þ < PðF1Þ þ PðG1Þ violates
two-monotonicity. h

To prove Proposition 3.2, we again use the result by Chateauneuf [2], and we exhibit a pair of events for which two-mono-
tonicity fails. Chateauneuf results are applicable to clouds, since possibility distributions are equivalent to nested random
sets. Consider a finite cloud described by Eq. (4) and the following matrix Q of weights qij

Respectively, call Bel1 and Bel2 the belief functions equivalent to the possibility distributions, respectively, generated by the
collections of sets fB�ci

ji ¼ 0; . . . ;M � 1g and fCc
ci
ji ¼ 1; . . . ;Mg. Using the fact that possibility distributions can be mapped into

random sets, we have m1ðB�ci
Þ ¼ ciþ1 � ci for i ¼ 0; . . . ;M � 1, and m2ðCc

cj
Þ ¼ cj � cj�1 for j ¼ 1; . . . ;M. As in the proof of Lemma

5.1, we consider every possible joint random set such that mð;Þ ¼ 0 built from the two marginal belief functions Bel1; Bel2.
Following Chateauneuf, let Q be the set of matrices Q s.t.
qi� ¼
XM

j¼1

qij ¼ ci � ci�1;

q�j ¼
XM

i¼1

qij ¼ cj � cj�1;

if i; j s:t: B�ci
\ Cc

cj
¼ ; then qij ¼ 0
and the lower probability of the credal set P½d;p� on event E is such that:
PðEÞ ¼min
Q2Q

X
ðB�ci
\Cc

cj
Þ�E

qij: ð13Þ
Now, by hypothesis, there are at least two overlapping sets B�ci
;Ccj

i > j that are not included in each other (i.e.,
B�ci
\ Ccj

R fB�ci
;Ccj

; ;g). Let us consider the four events B�ci
; Cc

cj
; B�ci

\ Cc
cj
; B�ci

[ Cc
cj

, which are all different by hypothesis. Consid-
ering Eq. (13), the matrix Q and the relations between sets, inclusions B�cm � � � � � B�c0 , Cc

c0
� � � � � Cc

cm
and, for i ¼ 0; . . . ;m,

Cci
� B�ci

imply:
PðB�ci
Þ ¼ 1� ci; PðCc

cj
Þ ¼ cj; PðB�ci

\ Cc
cj
Þ ¼ 0:
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For the last result, just consider the mass distribution qkk ¼ ck�1 � ck for k ¼ 1; . . . ;m.
Next, consider event B�ci

[ Cc
cj

(which is different from X by hypothesis), and let them play the role of events F1; G1 in Lem-
ma 5.1. Suppose all masses are such that qkk ¼ ck�1 � ck, except for masses (in boldface in the matrix) qjj; qðiþ1Þðiþ1Þ. Then,
Cc

cj
� Cc

ciþ1
, B�ci

� B�cj�1
, Cc

cj
6 # B�cj�1

by definition of a cloud and B�ci
\ Cc

cj
–; by hypothesis. Finally, using Lemma 5.1, consider

the mass distribution:
qðiþ1Þðiþ1Þ ¼ ciþ1 � ci � qðiþ1Þj; qðiþ1Þj ¼minðciþ1 � ci; cj � cj�1Þ;
qjðiþ1Þ ¼minðciþ1 � ci; cj � cj�1Þ; qjj ¼ cj � cj�1 � qðiþ1Þj:
It always gives a matrix in the set Q. By considering every subset of B�ci
[ Cc

cj
, we thus get the following inequality:
PðB�ci
[ Cc

cj
Þ 6 cj�1 þ 1� ciþ1 þmaxðciþ1 � ci; cj � cj�1Þ:
And, similarly to what was found in Lemma 5.1, we get:
PðB�ci
[ Cc

cj
Þ þ PðB�ci

\ Cc
cj
Þ < PðB�ci

Þ þ PðCc
cj
Þ;
which shows that the lower probability is not two-monotone.

Proof of Proposition 3.4. First, we know that the random set given in Proposition 3.4 is equivalent to
Ej ¼ B�cj�1
n Ccj

¼ Bcj
n Ccj

;

mðEjÞ ¼ cj � cj�1:

(

Now, if we consider the matrix given in the proof of Proposition 3.2, this random set comes down, for i ¼ 1; . . . ;M to assign
masses qii ¼ ci � ci�1. Since this is a legal assignment, we are sure that for all events E # X, the belief function of this random
set is such that BelðEÞP PðEÞ, where P is the lower probability induced by the cloud. The proof of Proposition 3.2 shows that
this inclusion is strict for clouds satisfying the latter proposition (since the lower probability induced by such clouds is not
two-monotone). h

Proof of Proposition 4.1. We build outer and inner approximations of the continuous random set that converge to the belief
measure of the continuous random set, while the corresponding clouds of which they are inner approximations themselves
converge to the uniformly continuous cloud.

First, consider a finite collection 0 ¼ a0 < a1 < � � � < an ¼ 1 of equidistant levels ai ðai�1 � ai ¼ 1=n; 8i ¼ 1; . . . ;nÞ. Then,
consider the following discrete non-comonotonic clouds ½dn;pn�, ½�dn; �pn� that are, respectively, outer and inner approxima-
tions of the cloud ½d;p�: for every value r in R, do the following transformation:
pðrÞ ¼ a with a 2 ½ai�1;ai� then take pnðrÞ ¼ ai and �pnðrÞ ¼ ai�1;

dðrÞ ¼ a0 with a0 2 ½aj�1;aj� then take dnðrÞ ¼ aj�1 and �dnðrÞ ¼ aj:
This construction is illustrated in Fig. 7 for the particular case when both p and d are unimodal. In this particular case, for
i ¼ 1; . . . ;n,
Fig. 7. Inner and outer approximations of a non-comonotonic clouds.
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fx 2 RjpðxÞP ag ¼ ½xðai�1Þ; yðai�1Þ� with a 2 ½ai�1;ai�;
fx 2 RjdðxÞ > ag ¼ ½uðaiÞ; vðaiÞ� with a 2 ½ai�1;ai�;

fx 2 Rj�pðxÞP ag ¼ ½xðaiÞ; yðaiÞ� with a 2 ½ai�1;ai�;
fx 2 Rj�dðxÞ > ag ¼ ½uðai�1Þ; vðai�1Þ� with a 2 ½ai�1;ai�:
Given the above transformations, PðpnÞ � PðpÞ � Pð�pnÞ, and limn!1PðpnÞ ¼ PðpÞ and also limn!1Pð�pnÞ ¼ PðpÞ. Similarly,
Pð1� dnÞ � Pð1� dÞ � Pð1� �dnÞ, limn!1Pð1� �dnÞ ¼ Pð1� dÞ and limn!1Pð1� dnÞ ¼ Pð1� dÞ. Since the set of probabilities
induced by the cloud ½d;p� is PðpÞ \Pð1� dÞ, the two credal sets PðpnÞ \Pð1� dnÞ and Pð�pnÞ \Pð1� �dnÞ, are, respectively,
inner and outer approximations of PðpÞ \Pð1� dÞ. Moreover,
lim
n!1

PðpnÞ \Pð1� dnÞ ¼ PðpÞ \Pð1� dÞ;

lim
n!1

Pð�pnÞ \Pð1� �dnÞ ¼ PðpÞ \Pð1� dÞ:
The random sets that are inner approximations (by Proposition 3.4) of the finite clouds ½dn;pn� and ½dn;pn� converge to the
continuous random set defined by the Lebesgue measure on the unit interval a 2 ½0;1� and the multimapping a! Ea such
that:
Ea ¼ fr 2 RjðpðrÞP aÞ ^ ðdðrÞ < aÞg:
In the limit, it follows that this continuous random set is an inner approximation of the continuous cloud. h
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