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Staphylococcus hominis is a predominantmember of the human skinmicrobiome.Wehere report on the genomic
analysis of Staphylococcus hominis strain Hudgins that was isolated from thewrist area of human skin. The partial
genome assembly of S. hominisHudgins consists of 2,211,863 bp of DNAwith 2174 protein-coding genes and 90
RNA genes. Based on the genomic analysis of KEGG pathways, the organism is expected to be a versatile hetero-
troph potentially capable of hydrolyzing the sugars glucose, fructose, mannose, and the amino acids alanine,
aspartate, glutamate, glycine, threonine, cysteine,methionine, valine, isoleucine, leucine, lysine, arginine, phenyl-
alanine, tyrosine, and tryptophan for energy production through aerobic respiration, with occasional lactate and
acetate fermentation. Evidence for poly-gamma glutamate capsule and type IV Com systempili were identified in
the genome. Based on COG analysis, the genome of S. hominis Hudgins clusters away from the previously
published S. hominis genome ZBW5.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Staphylococcus hominis strain Hudgins was isolated from the surface
of human skin in Stillwater, OK as part of the Student InitiatedMicrobial
Discovery (SIMD) project (introduced in [1]). The genus Staphylococcus
is a phylogenetically and physiologically diverse genus with members
ubiquitously found as part of the skin microbiome [2–4]. Infections
have been reported in patients with lowered immunity [3,5,6]. Mem-
bers of Staphylococcus hominiswere previously isolated fromhuman-as-
sociated [7] and animal-associatedmicrobiomes [8], as well as from the
environment [9]. Genomic analysis of strains belonging to the Staphylo-
coccus hominis can contribute to our understanding of the molecular
mechanisms of opportunistic pathogenesis. Such knowledge could po-
tentially help reduce the occurrence and the severity of such infections
in the future. Herewe report on the draft genomic sequence, and thede-
tailed annotation and analysis of Staphylococcus hominis strain Hudgins
with an emphasis on its virulence factors.
. This is an open access article under
2. Materials and methods

2.1. Genome sequencing information

2.1.1. Genome project history
The draft assembly and annotation were completed in 2015–2016.

Table 1 shows the genome project information.
2.1.2. Growth conditions and genomic DNA preparation
S. hominis Hudgins was isolated from wrist skin on Tryptic soy agar

(TSA) and repeatedly streaked (three times) to obtain a pure culture.
To have enough biomass for DNA extraction, the strainwas grown over-
night at 30 °C on TSA plates. Genomic DNA of high sequencing quality
was isolated using the MPBio PowerSoil® DNA extraction kit according
to manufacturer's instructions. Negative stain TEM micrographs were
obtained using the services of the Oklahoma State University Microsco-
py Lab. Briefly, the sample was placed on a carbon film TEM grid and
allowed to incubate for 2 min, after which the excess liquid was wicked
off. Phosphotungestic acid (PTA; 2% w/v) was then added to the grid
followed by a 45-second incubation. Excess PTA was wicked off
and the grid was allowed to dry before it was visualized using JOEL
JEM-2100 transmission electron microscope.
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Project information.

MIGS ID Property Term

MIGS 31 Finishing quality Draft
MIGS-28 Libraries used 2 × 300 paired end chemistry
MIGS 29 Sequencing platforms Illumina
MIGS 31.2 Fold coverage 300×
MIGS 30 Assemblers Velvet
MIGS 32 Gene calling method Prodigal

Genbank ID MAYR00000000
GenBank Date of Release July 2016
GOLD ID Gp0126757
BIOPROJECT PRJNA327386

MIGS 13 Project relevance Environmental

Fig. 1. Negative stain TEMmicrographs of S. hominis Hudgins.

Table 2
S. hominis strain Hudgins 16S rRNA gene percentage similarity to other Staphylococcus
species.

Staphylococcus species Type strain Hudgins strain % similarity

S. agnetis DSM 23656T 97.40%
S. argensis DSM 29875T 94.60%
S. argenteus DSM 28299T 97.90%
S. arlettae ATCC 43957T 97.80%
S. aureus ATCC 12600T 97.90%
S. auricularis ATCC 33753T 97.90%
S. capitis ATCC 27840T 98.20%
S. caprae ATCC 35538T 98.30%
S. carnosus ATCC 51356T 97.30%
S. caseolyticus ATCC 13548T 93.70%
S. chromogenes ATCC 43764T 97.60%
S. cohnii ATCC 29974T 98.00%
S. condimenti DSM 11674T 97.30%
S. delphini ATCC 49171T 97.10%
S. devriesei LMG 25332T 98.90%
S. epidermidis ATCC 14990T 98.50%
S. equorum ATCC 43958T 97.50%
S. felis ATCC 49168T 96.90%
S. fleurettii DSM 13212T 96.60%
S. gallinarum ATCC 35539T 97.80%
S. haemolyticus ATCC 29970T 98.70%
S. hominis ATCC 27844T 99.90%
S. hyicus ATCC 11249T 97.30%
S. intermedius ATCC 29663T 97.00%
S. jettensis DSM 26618T 99.20%
S. kloosii ATCC 43959T 97.90%
S. lentus ATCC 29070T 96.80%
S. lugdunensis ATCC 43809T 98.70%
S. lutrae ATCC 700373T 96.80%
S. massiliensis 5402776T 96.70%
S. microti DSM 22147T 97.40%
S. muscae ATCC 49910T 97.80%
S. nepalensis DSM 15150T 97.40%
S. pasteuri ATCC 51129T 98.70%
S. petrasii CCM 8418T 99.10%
S. pettenkoferi B3117T 97.60%
S. piscifermentans ATCC 51136T 97.40%
S. pseudintermedius ON 86T 97.10%
S. pulvereri ATCC 51698T 94.20%
S. rostri DSM 21968T 97.30%
S. saccharolyticus ATCC 14953T 98.10%
S. saprophyticus ATCC 15305T 98.10%
S. schleiferi ATCC 43808T 97.10%
S. schweitzeri DSM 28300T 97.00%
S. sciuri ATCC 29062T 97.00%
S. simiae CCM 51256T 98.10%
S. simulans ATCC 27848T 97.20%
S. stepanovicii CCM 7717T 96.60%
S. succinus ATCC 700337T 97.70%
S. vitulinus ATCC 3T 96.80%
S. warneri ATCC 27836T 98.40%
S. xylosus ATCC 29971T. 98.00%
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2.1.3. Genome sequencing and assembly
The genome of S. hominisHudginswas sequenced using the Illumina

MiSeq platform at the University of Georgia Genomics Facility using
2 × 300 paired end chemistry and an average library insert size of
700 bp. Quality filtered sequence data were assembled with the short
read de brujin graph assembly program Velvet [10]. The assembly set-
tings were a kmer value of 101 bp and a minimum contig coverage
value of 7×. The genome project is deposited in GOLD (Genomes On-
Line Database) and this Whole Genome Shotgun (WGS) project has
been deposited in GenBank under the accession MAYR00000000. The
version described in this paper is version MAYR01000000.

2.1.4. Genome annotation
Gene models were created using the prokaryotic gene calling soft-

ware package prodigal [11], and as a result a total of 2270 gene models
were predicted with average gene size of 877 bp. Translated protein se-
quences were functionally annotated using a combination of NCBI Blast
C++ homology search and HMMER 3.0 [12] hmmscan against the
PFAM 26.0 database [13]. Additional gene analysis and functional anno-
tation were carried out through the Integrated Microbial Genomes Ex-
pert Review (IMG-ER) platform.

2.2. Phylogenetic analysis

A maximum likelihood phylogenetic tree was constructed using
multiple sequence alignments of 16S rRNA genes sequences. Multiple
sequence alignment was conducted in Mega using ClustalW, as were
the selection of the best substitution model, and the maximum likeli-
hood analysis [14]. The tree was obtained under Kimura 2- parameter
model with evolutionary rate difference among sites (+G, α shape =
0.1836). The substitution rate for transitions were 0.172, and for
transversions were 0.039. Escherichia coli isolate ECSD9 was used as
the outgroup. Bootstrap values, in percent, are based on 100 replicates.

2.3. Comparative genomics

Previous reports of genomic sequences from human skin-associated
Staphylococcus hominis include strain ZBW5 [7]. We sought to compare
the genome of Staphylococcus hominis strain Hudgins to several Staphy-
lococcus hominis (including strain ZBW5) as well as Staphylococcus
haemolyticus genomes (n = 16, IMG IDs: 2648501332, 2657245414,
2617271042, 2617271041, 2609460194, 2602041636, 2657245129,
642555160, 2548876781, 2582580999, 2648501918, 651285007,
2548877063, 2623620554, 2654587786, 643886039, 2540341024).
We used the “Genome clustering” function on the IMG-ER analysis plat-
form to conduct genomic comparisons based on the COG profile. We
also used principal component analysis to compare the genomes
based on several genomic features including the genome size, the num-
ber of genes, the number of transporters identified, the GC content, the
number of non-coding bases, the number of genes belonging to COG
categories, as well as the number of genes belonging to each COG
category. The PCA analysis was conducted using the “princomp” func-
tion in the labdsv library of R [15]. The results were visualized using a
biplot,where genomeswere represented by stars, and genomic features
or COG categories used for comparison were represented by arrows.
Further comparative genomics were conducted on strain Hudgins ge-
nome and five other S. hominis genomes (strains C80, ZBW5, RIT-PI-K,



Table 3
Classification and general features of Staphylococcus hominis strain Hudgins [26].

MIGS ID Property Term Evidence codea

Classification Domain Bacteria TAS [27]
Phylum Firmicutes TAS [27]
Class Bacilli TAS [27]
Order Bacillales TAS [27]
Family Staphylococcaceae TAS [27]
Genus Staphylococcus TAS [27]
Species hominis TAS [27]
(Type) strain: Hudgins TAS [27]

Gram stain Positive TAS [27]
Cell shape coccus TAS [27]
Motility non-motile TAS [27]
Sporulation Non-spore forming TAS [27]
Temperature range Mesophile, 28–40 °C TAS [27]
Optimum temperature 35 °C TAS [27]
pH range; Optimum Unknown
Carbon source ND

MIGS-6 Habitat skin
MIGS-6.3 Salinity Up to 7.5% TAS [27]
MIGS-22 Oxygen requirement Facultative anaerobe TAS [27,28]
MIGS-15 Biotic relationship free-living IDA
MIGS-14 Pathogenicity ND
MIGS-4 Geographic location Stillwater, OK IDA
MIGS-5 Sample collection March 2015 IDA
MIGS-4.1 Latitude 36.1157 IDA
MIGS-4.2 Longitude -97.0586 IDA
MIGS-4.4 Altitude 1 M IDA

a Evidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement
(i.e., a direct report exists in the literature); NAS: Non-traceableAuthor Statement (i.e., not
directly observed for the living, isolated sample, but based on a generally accepted prop-
erty for the species, or anecdotal evidence). These evidence codes are from the Gene On-
tology project [29].
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SK119, and VCU122) and included computing the genomic average nu-
cleotide identity (gANI), alignment fraction (AF) [16], and bidirectional
best hits using the nucleotide similarity scanner NSimScan [17], as well
as gene homology comparisons using Blastn.

3. Results and discussion

3.1. Classification and features

Cells of strain Hudgins appear to be Gram positive, non-motile aero-
bic cocci that were arranged in tetrads, pairs, aswell as singles and clus-
ters (Fig. 1). Colonies on TSA agar were beige in color.
Fig. 2.Maximum likelihoodphylogenetic tree constructedusingmultiple sequence alignments o
and Genbank accession numbers are given in parentheses. The tree was obtained under Kim
0.1836). The substitution rate for transitions were 0.172, and for transversions were 0.039. E
replicates and are shown for branches with N50% bootstrap support. Multiple sequence alignm
Within the genus Staphylococcus, 52 species are described with val-
idly published names. Strain Hudgins shares 93.7–99.9% 16S rRNA gene
identities with other species in the Staphylococcus genus (Table 2).
When compared to other Staphylococcus hominis strains with se-
quenced genomes, strainHudgins shares 100% 16S rRNA gene similarity
with S. hominis strain C80 (Genbank accession number
ACRM01000000), and 99% similarity with strains H69 (Genbank acces-
sion number LVVO00000000), RIT-PI-K [18], ZBW5 [7], and ShAs1,
ShAs2, and ShAs3 [8].

Phylogenetic analysis based on the 16S rRNA gene placed Staphylo-
coccus hominis strain CV21 as the closest taxonomic relative of Staphylo-
coccus hominis strain Hudgins (Table 3, and Fig. 2).

3.2. Genome properties

The genome assembly process produced a contig N50 of
1,549,674 bp with a total genome size of 2,211,863 bp. The GC content
was 31.31%. There are 96 RNA genes including 15 ribosomal RNA and
60 tRNAgenes. Since all rRNA operons identified in the genomewere ei-
ther located at the start or the endof a contig, the organization of the full
ribosomal RNA operon could not be deciphered from the existing as-
sembly. However in some of these operons the 5S and 23S rRNA genes
were followed by several tRNA genes. Of the 2270 genes detected,
2174 were protein-coding, of which 79.07% had a function prediction,
73.44% represented a COG functional category, and 2.69% were predict-
ed to have a signal peptide. PSORT [19] classified proteins as 51.3% cyto-
plasmic, 0.015% extracellular, and 25.99% associated with the
membrane. Based on the presence of 139 single copy genes [20], the ge-
nome is predicted to be 84.9% complete. Genome statistics are shown in
Table 4. The distribution of genes into COG functional categories is
shown in Table 5.

3.3. Insights from the genome sequence

Genome analysis of S. hominis Hudgins identified a microorganism/
bacteriumwith a typical Grampositive cell wall structure.We identified
genes encoding for the biosynthesis of the polar lipid cardiolipin in the
genome. Further genomic analysis suggested that strain Hudgins is a
metabolically versatile microorganismwith the capability to utilize glu-
cose, fructose, and mannose, alanine, asparagine, glutamine, glycine,
serine, cysteine, and proline as carbon and energy sources based on
the presence of complete catabolic KEGG pathways in the genome. Aer-
obic respiration capability was evidenced by the presence of a complete
f 16S rRNA genes. S. hominisHudgins is shown inbold. Reference sequences are also shown
ura 2- parameter model with evolutionary rate difference among sites (+G, α shape =
scherichia coli was used as the outgroup. Bootstrap values, in percent, are based on 100
ent, model selection, and maximum likelihood analysis were carried out in Mega [14].

Image of Fig. 2


Table 4
Genome statistics.

Attribute Value % of total

Genome size (bp) 2,211,863 100.00%
DNA coding (bp) 1,916,307 86.64%
DNA G + C (bp) 692,578 31.31%
DNA scaffolds 14 100.00%
Total genes 2270 100.00%
Protein coding genes 2174 95.77%
RNA genes 96 4.23%
Pseudo genes 0 0
Genes in internal clusters 417 18.37%
Genes with function prediction 1795 79.07%
Genes assigned to COGs 1669 73.52%
Genes with Pfam domains 1878 82.73%
Genes with signal peptides 61 2.69%
Genes with transmembrane helices 556 24.49%
CRISPR repeats 1
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TCA cycle and electron transport chain with P/V/-type ATPase subunits
confirming the aerobic nature of the microorganism. Facultative fer-
mentation capability was also identified in the genome where genes
for lactate and fermentation were present. Genomic analysis suggested
auxotrophy for asparagine, serine, proline, histidine, vitamin B6, biotin,
and lipoic acid. However, 113 ABC and 115 secondary transporters were
identified in the genome via comparison of the protein-coding genes
against the transporter database [21]. Some of the identified trans-
porters could potentially address these auxotrophies. The above results
were not based on biochemical tests and are only suggested by the ge-
nomic data available.

Genomic analysis also revealed the absence of genes encoding a
complete flagellar assembly in line with the electron micrographs of
the organism (Fig. 1). Other structures suggested by genomic analysis
that could potentially contribute to the virulence of strain Hudgins in-
clude the type IV pili Com operon (comGA-GB-GC-GD-GE-GF) known
to exist in Gram positive bacteria [22] in addition to homologues of
the Gram positive sortase that would potentially be employed for acti-
vation and pilin polymerization [22,23]. The genome also harbors evi-
dence for the biosynthesis of a poly-gamma glutamate capsule where
Table 5
Number of genes associated with general COG functional categories.

Code Value %age Description

J 185 9.94% Translation, ribosomal structure and biogenesis
A 0 0 RNA processing and modification
K 125 6.72% Transcription
L 93 5% Replication, recombination and repair
B 0 0 Chromatin structure and dynamics
D 26 1.4% Cell cycle control, Cell division, chromosome partitioning
V 36 1.93% Defense mechanisms
T 64 3.44% Signal transduction mechanisms
M 97 5.21% Cell wall/membrane biogenesis
N 4 0.21% Cell motility
U 18 0.97% Intracellular trafficking and secretion
O 71 3.82% Posttranslational modification, protein turnover,

chaperones
C 100 5.37% Energy production and conversion
G 117 6.29% Carbohydrate transport and metabolism
E 169 9.08% Amino acid transport and metabolism
F 78 4.19% Nucleotide transport and metabolism
H 124 6.66% Coenzyme transport and metabolism
I 76 4.08% Lipid transport and metabolism
P 134 7.2% Inorganic ion transport and metabolism
Q 35 1.88% Secondary metabolites biosynthesis, transport and

catabolism
R 165 8.87% General function prediction only
S 132 7.09% Function unknown
– 601 26.48% Not in COGs

The total is based on the total number of protein coding genes in the genome.
a cap locus was identified in the genome with homologues of the four
essential genes capB-capC-capA-capE [24]. The poly-gamma glutamate
capsule is likely tethered to the cell wall based on the presence of the
anchorage gene capD encoding for a gamma-glutamyl transpeptidase
[24]. The halo around strain Hudgins cells in Fig. 1 could potentially be
due to the presence of such capsule. Several other virulence factors are
possible as well since comparison of the Hudgins genome against the
virulence factor database [25] identified 475 virulence factor hits
(21.8% of the protein-coding genes).

3.4. Insights from comparative genomics

We compared the genome of Staphylococcus hominis strain Hudgins
to several Staphylococcus hominis (including the previously sequenced
Staphylococcus hominis strain ZBW5) as well as Staphylococcus
haemolyticus genomes. Based on their COG profile, the genomes clus-
tered in agreement with their phylogeny. However, strain Hudgins ge-
nome clustered away from the ZBW5 genome (Fig. 3A). A closer look
at the COG function profile of S. hominis strain Hudgins in comparison
to only S. hominis strains is shown in Table S1. Further analyses using ge-
nomic features (including the genome size, the number of genes, the
number of transporters identified, the GC content, the number of non-
coding bases, the number of genes belonging to COG categories, as
well as the number of genes belonging to each COG category) cluster
Staphylococcus hominis strain Hudgins genome close to S. hominis ge-
nomes SK119, RIT-PI-K, C80 and VCU122 and away from the ZBW5 ge-
nome, likely due to the enrichment in the number of transporters
identified in the former genomes in comparison to the ZBW5 genome
(Fig. 3B). Compared to other S. hominis genomes, strain Hudgins ge-
nome shared 97.8–99.4% genome average nucleotide identity and
0.89–0.93 alignment fraction. UsingNSimScan, 1920–1986 bidirectional
hits were identified representing 84.6–87.5% of the total genes in the
Hudgins genome (Table S2). These data are typical of strains belonging
to the same species [16,17]. Blastn gene homology comparisons also re-
vealed that themajority of the genes in theHudgins genome (84–87% of
the total number of genes) were ≥95% similar to genes in other S.
hominis genomes (Table S3).

4. Conclusions

This study presents the draft genome sequence and annotation of
Staphylococcus hominis strain Hudgins. The genome revealed extensive
sugar and amino acid degradation machinery. Comparison to the viru-
lence factor database identified 475 genes in the genomewith potential
virulence-associated function including type IV Com system for pili pro-
duction, and the potential for the secretion of a membrane associated
poly-gamma-glutamate capsule. Comparative genomics using general
genomic features as well as the COG function profile coincided with
the phylogenetic topology but placed strainHudgins away from the pre-
viously published S. hominis genome ZBW5.
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microbiology course, followed by extraction of its genomic DNA and
analysis of its genome sequence during the second semester in an
upper divisionmicrobial genomics course. Here, strain Hudginswas iso-
lated by an undergraduate student (GCH) and its genomewas analyzed
by a teamof undergraduate (CJ and JZ) and graduate (SC) students. This
is Draft Genome#8 in the SIMD project.WDHacknowledges support by
NSF grants MCB-1051590, MRI-1338097, and CHE-1412500.

Authors' contributions

SC, CJ, JZ, MBC, and NY contributed to the analysis. SC, WDH, DPF,
and NY wrote the manuscript. GCH, CB, and RAH performed the lab
experiments.

Transparency document

The Transparency document associated to this article can be found in
the online version.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gdata.2016.10.003.

References

[1] M.B. Couger, A. Hurlbut, C.L. Murphy, C. Budd, D.P. French, W.D. Hoff, M.S. Elshahed,
Y. NH, Draft Genome Sequence of the Environmental Isolate Chryseobacterium sp.
Hurlbut01. Genome Announc. 3 (5) (2015).

[2] C. Callewaert, F.-M. Kerckhof, M.S. Granitsiotis, M. Van Gele, T. Van de Wiele, N.
Boon, Characterization of Staphylococcus and Corynebacterium clusters in the
human axillary region. PLoS One 8 (8) (2013), e70538.

[3] R. Coates, J. Moran, M.J. Horsburgh, Staphylococci: colonizers and pathogens of
human skin. Future Microbiol 9 (1) (2014) 75–91.

[4] P.M. Swe, M. Zakrzewski, A. Kelly, L. Krause, K. Fischer, Scabies mites Alter the skin
microbiome and promote growth of opportunistic pathogens in a porcine model.
PLoS Negl. Trop. Dis. 8 (5) (2014), e2897.

[5] K. Dansey, L. Stratton, B.D. Park, Staphylococcus Hominis carotid artery infection
with septic embolization. J.Vasc. Surg. Cases 1 (2) (2015) 81–83.

[6] F. Chaves, M. García-Álvarez, F. Sanz, C. Alba, J.R. Otero, Nosocomial spread of a
Staphylococcus Hominis subsp. Novobiosepticus strain causing sepsis in a neonatal
intensive care unit. J. Clin. Microbiol. 43 (9) (2005) 4877–4879.

[7] S. Jiang, B. Zheng,W. Ding, L. Lv, J. Ji, H. Zhang, Y. Xiao, L. Li,Whole-genome sequence
of Staphylococcus hominis, an opportunistic pathogen. J. Bacteriol. 194 (17) (2012)
4761–4762.

[8] G.L. Hughes, J.A. Raygoza Garay, V. Koundal, J.L. Rasgon, M. MM, Genome Sequences
of Staphylococcus hominis Strains ShAs1, ShAs2, and ShAs3, Isolated from the Asian
Malaria Mosquito Anopheles stephensi. Genome Announc. 4 (2) (2016).

[9] K. Marimuthu, Isolation and characterization of Staphylococcus hominis JX961712
from oil contaminated soil. J. Pharm. Res. 7 (3) (2013) 252–256.
[10] D.R. Zerbino, E. Birney, Velvet: algorithms for de novo short read assembly using de
Bruijn graphs. Genome Res. 18 (5) (2008) 821–829.

[11] D. Hyatt, G.L. Chen, P.F. Locascio, M.L. Land, F.W. Larimer, L.J. Hauser, Prodigal: Pro-
karyotic gene recognition and translation initiation site identification. BMC Bioinf.
11 (2010) 119.

[12] J. Mistry, R.D. Finn, S.R. Eddy, A. Bateman, M. Punta, Challenges in homology search:
HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 41 (12)
(2013), e121.

[13] R.D. Finn, P. Coggill, R.Y. Eberhardt, S.R. Eddy, J. Mistry, A.L. Mitchell, S.C. Potter, M.
Punta, M. Qureshi, A. Sangrador-Vegas, et al., The Pfam protein families database:
Towards a more sustainable future. Nucleic Acids Res. 44 (D1) (2016) D279–D285.

[14] S. Kumar, G. Stecher, K. Tamura, MEGA7: Molecular evolutionary genetics analysis
version 7.0 for bigger datasets. Mol. Biol. Evol. 33 (7) (2016) 1870–1874.

[15] D. Roberts, labdsv: Ordination and Multivariate Analysis for Ecology. 2007.
[16] N.J. Varghese, S. Mukherjee, N. Ivanova, K.T. Konstantinidis, K. Mavrommatis, N.C.

Kyrpides, A. Pati, Microbial species delineation using whole genome sequences.
Nucleic Acids Res. (2015).

[17] V. Novichkov, A. Kaznadzey, N. Alexandrova, D. Kaznadzey, NSimScan: DNA com-
parison tool with increased speed, sensitivity and accuracy. Bioinformatics (2016).

[18] P.N. Tran, N.E. Tan, Y.P. Lee, H.M. Gan, S.J. Polter, L.K. Dailey, A.O. Hudson, M.A. Savka,
Whole-Genome Sequence and Classification of 11 Endophytic Bacteria from Poison
Ivy (Toxicodendron radicans). Genome Announc. 3 (6) (2015).

[19] P. Horton, K.-J. Park, T. Obayashi, N. Fujita, H. Harada, C.J. Adams-Collier, K. Nakai,
WoLF PSORT: protein localization predictor. Nucleic Acids Res. 35 (Web Server
issue) (2007) W585–W587.

[20] C. Rinke, P. Schwientek, A. Sczyrba, N.N. Ivanova, I.J. Anderson, J.F. Cheng, A. Darling,
S. Malfatti, B.K. Swan, E.A. Gies, et al., Insights into the phylogeny and coding poten-
tial of microbial dark matter. Nature 499 (7459) (2013) 431–437.

[21] M.H. Saier Jr., V.S. Reddy, D.G. Tamang, A. Vastermark, The transporter classification
database. Nucleic Acids Res. 42 (Database issue) (2014) D251–D258.

[22] S. Imam, Z. Chen, D.S. Roos, M. Pohlschröder, Identification of surprisingly diverse
type IV pili, across a broad range of Gram-positive bacteria. PLoS One 6 (12)
(2011), e28919.

[23] A.P. Hendrickx, J.M. Budzik, S.Y. Oh, O. Schneewind, Architects at the bacterial sur-
face - sortases and the assembly of pili with isopeptide bonds. Nat. Rev. Microbiol.
9 (3) (2011) 166–176.

[24] T. Candela, A. Fouet, Poly-gamma-glutamate in bacteria. Mol. Microbiol. 60 (5)
(2006) 1091–1098.

[25] L. Chen, J. Yang, J. Yu, Z. Yao, L. Sun, Y. Shen, Q. Jin, VFDB: a reference database for
bacterial virulence factors. Nucleic Acids Res. 33 (Database issue) (2005)
D325–D328.

[26] D. Field, G. Garrity, T. Gray, N. Morrison, J. Selengut, P. Sterk, T. Tatusova, N.
Thomson, M.J. Allen, S.V. Angiuoli, et al., The minimum information about a genome
sequence (MIGS) specification. Nat. Biotechnol. 26 (5) (2008) 541–547.

[27] W.E. Kloos, C.G. George, J.S. Olgiate, L. Van Pelt, M.L. McKinnon, B.L. Zimmer, E.
Muller, M.P. Weinstein, S. Mirrett, Staphylococcus hominis subsp. novobiosepticus
subsp. nov., a novel trehalose- and N-acetyl-D-glucosamine-negative, novobiocin-
and multiple-antibiotic-resistant subspecies isolated from human blood cultures.
Int. J. Syst. Bacteriol. 48 (Pt 3) (1998) 799–812.

[28] W.E. Kloos, K.H. Schleifer, Isolation and characterization of Staphylococci from
human skin II. Descriptions of four new species: Staphylococcus warneri, Staphylo-
coccus capitis, Staphylococcus hominis, and Staphylococcus simulans. Int. J. Syst.
Evol. Microbiol. 25 (1) (1975) 62–79.

[29] M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K.
Dolinski, S.S. Dwight, J.T. Eppig, et al., Gene ontology: tool for the unification of biol-
ogy. The Gene Ontology Consortium. Nat. Genet. 25 (1) (2000) 25–29.

http://dx.doi.org/10.1016/j.gdata.2016.10.003
doi:10.1016/j.gdata.2016.10.003
doi:10.1016/j.gdata.2016.10.003
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0005
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0005
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0005
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0010
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0010
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0010
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0015
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0015
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0020
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0020
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0020
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0025
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0025
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0030
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0030
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0030
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0035
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0035
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0035
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0040
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0040
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0040
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0045
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0045
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0050
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0050
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0055
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0055
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0055
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0060
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0060
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0060
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0065
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0065
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0065
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0070
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0070
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0075
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0080
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0080
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0080
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0085
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0085
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0090
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0090
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0090
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0095
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0095
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0095
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0100
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0100
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0100
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0105
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0105
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0110
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0110
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0110
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0115
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0115
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0115
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0120
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0120
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0125
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0125
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0125
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0130
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0130
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0130
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0135
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0135
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0135
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0135
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0135
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0140
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0140
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0140
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0140
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0145
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0145
http://refhub.elsevier.com/S2213-5960(16)30132-5/rf0145

	Draft genome sequence of Staphylococcus hominis strain Hudgins isolated from human skin implicates metabolic versatility an...
	1. Introduction
	2. Materials and methods
	2.1. Genome sequencing information
	2.1.1. Genome project history
	2.1.2. Growth conditions and genomic DNA preparation
	2.1.3. Genome sequencing and assembly
	2.1.4. Genome annotation

	2.2. Phylogenetic analysis
	2.3. Comparative genomics

	3. Results and discussion
	3.1. Classification and features
	3.2. Genome properties
	3.3. Insights from the genome sequence
	3.4. Insights from comparative genomics

	4. Conclusions
	Competing interests
	Funding
	Authors' contributions
	Transparency document
	Appendix A. Supplementary data
	References


