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The Adames strain of Punta Toro virus (PTV-A, Bunyaviridae, Phlebovirus) causes an acute lethal disease in
hamsters and mice. The Balliet strain of the virus (PTV-B) is generally considered to be avirulent. The
difference in hamster susceptibility is likely due to the ability of PTV-A to suppress interferon (IFN)-3
similarly to that described for Rift Valley fever virus. Here we investigated strain differences in PTV
pathogenesis and the IFN response in mice. Although PTV-B infection in mice did not induce systemic IFN-p
release, primary macrophages produced dramatically higher levels when exposed to the virus in culture. The
importance of IFN in resistance to PTV infection was borne out in studies employing STAT-1 knock-out mice.
Also, a number of genes specific to IFN response pathways were upregulated in PTV-B-infected macrophages.
Our findings provide new insights into the type I IFN response during PTV infection in the mouse model of
phleboviral disease.

Rift Valley fever virus
Rift Valley fever
Hemorrhagic fever

© 2009 Elsevier Inc. All rights reserved.

Introduction

A member of a group of RNA viruses that cause hemorrhagic fever,
Rift Valley fever virus (RVFV) primarily affects domesticated livestock
and humans. It has been the cause of several recent epidemics in
Africa and the Middle East (CDC, 2000a, 2000b, 2007). Evidence of its
capacity to cause disease in geographical areas outside of endemic
sub-Saharan Africa, along with its ease of transmission and lack of
effective countermeasures are the basis of its classification as a
category A pathogen by the National Institute of Allergy and Infectious
Disease (NIAID, 2002).

RVFV's virulence is at least partially attributed to its NSs protein,
which suppresses the host antiviral immune response by hindering
production of type I interferons (Billecocq et al., 2004; Bouloy et al.,
2001; Muller et al., 1995). Interferons (IFNs) are produced in response
to viral infection and initiate a signaling cascade that results in the
production of a number of antiviral gene products (Haller et al., 2006).
The RVFV NSs protein functions via general inhibition of cellular
transcription (Billecocq et al., 2004; Le May et al., 2004) and specific
repression of the IFN-B promoter region (Le May et al., 2008) to
provide a means for the virus to evade the immune response and
thereby establish infection.
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Due to the enhanced biosafety level 3 (BSL-3+) facilities required
to work with RVFV, a closely related BSL-2 phlebovirus, Punta Toro
virus (PTV), has been used in rodent systems to model RVF disease.
The eastern Panamanian Adames strain of PTV (PTV-A) causes disease
in hamsters and mice similar to that seen in natural RVFV infections,
and therefore serves as a safer and more cost effective alternative to
study disease pathogenesis (Anderson et al., 1990; Fisher et al., 2003;
Gowen et al., 2006a; Perrone et al., 2007; Pifat and Smith, 1987) and
pre-clinical antiviral drug development (Gowen et al., 2006b, 20073,
2007b, 2009; Sidwell et al., 1988b). Though previous studies indicated
PTV-A was only able to induce disease in weanling age mice (Pifat and
Smith, 1987), recent work in our lab has established PTV-A's ability to
produce lethal disease in 7- to 8-week-old mice (Gowen et al., 2006a);
however, the disease histopathology has not been examined in these
older mice.

A second strain of PTV isolated from western Panama, the Balliet
strain (PTV-B), is of low virulence in hamsters, as reflected by survival
of animals challenged with doses up to 10° PFU (Anderson et al., 1990).
In a recent report studying genetic determinants of pathogenicity,
PTV-A was found to antagonize the 3 interferon (IFN-B) response in
hamsters, while PTV-B lacked that capacity (Perrone et al., 2007).
Similar to findings with RVFV and the attenuated clone 13, which
indicate that the NSs gene on the S RNA segment is critical to virulence
(Muller et al., 1995), the work by Perrone and colleagues suggests that
the PTV-A NSs gene product is the element that inhibits I[FN-{3 gene
induction. Previous studies have indicated that PTV-B is also avirulent
in mice unless inoculated directly into the brain (Sidwell et al., 1988a,
1988b). We hypothesized that the strategy employed to evade the host
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Fig. 1. Survival of C57BL/6] mice infected with PTV-A or PTV-B. C57BL/6] mice were
challenged subcutaneously with multiple doses of PTV-A or PTV-B (5 animals per
group) and observed daily for mortality over a duration of 14 days.

IFN response in hamsters may also be utilized by PTV-A during
infection in mice, ultimately conferring lethality from infection with
the Adames, but not the Balliet strain of the virus.

During viral infections, the IFN signaling pathway can regulate
transcription of hundreds of factors that function to induce an
antiviral state. The first type I [FN produced is IFN-p, which triggers
the production of multiple I[FN-« subtypes (Marie et al., 1998). These
type I IFNs induce the transcription of many genes coding for proteins
with various antiviral activities. Thus, PTV-A NSs suppression of the
IFN-B promoter can abrogate this critical antiviral signaling chain of
events at the outset, arresting much of the IFN pathway and its
effectors. Although IFN-B plays a central role in driving the host IFN
response pathway, its regulation and that of downstream effector
molecules has not been explored in relation to PTV infection in mice.

Results

Susceptibility and disease pathology in adult C57BL/6] mice infected
with PTV

A virus titration experiment was initially performed to determine
the most appropriate dose for evaluating PTV disease in adult mice
(Fig. 1). The LDsos based on the titrations were ~630 and >2 x 10 50%

cell culture infectious doses (CCIDsq) for PTV-A and PTV-B, respec-
tively. The highest dose of PTV-A resulted in lower lethality, possibly
due to a defective interfering particle effect or perhaps stimulating the
immune system more effectively than the lower dose that was
uniformly lethal. The mean day of death for animals infected with
PTV-A was 5.2 days, with a range from 4 to 7 days. On day 3 post-
infection (p.i.), mice infected with PTV-A presented with clear signs of
illness including weight loss, ruffled fur, hunching, and inactivity. By
day 5, surviving mice presented with milder signs of illness, ulti-
mately recovering by day 7. None of the animals challenged with PTV-
B showed any signs of illness by visual examination or lost weight
following challenge (data not shown).

We next longitudinally evaluated histopathology, and virologic
and clinical disease parameters in mice challenged with the 2x 103
CCIDsp of PTV-A or PTV-B by sequential sacrificing of groups of
animals daily during the period of acute infection. Histologically, the
livers of PTV-A-infected mice appeared normal until day 3 of the
infection, at which time coalescing areas of severe, acute hepatocel-
lular necrosis were apparent, and on day 4, necrosis became diffuse
(Figs. 2A and C). Hepatocellular necrosis was not present in mice
infected with PTV-B, as liver sections appeared similar to those from
sham-infected animals (Fig. 2B and D), though there was evidence of
hypoxia in centrilobular hepatocytes on day 4 p.i. and mild hydropic
degeneration on day 5 p.i. (data not shown).

Similarly, spleens of PTV-A-infected mice were histologically normal
until day 3, when lympholysis was present, characterized by cellular
fragmentation and nuclear pyknosis, within periarteriolar sheaths
(Fig. 2E). Degenerate cells and macrophages containing hemosiderin
and cellular debris were also scattered throughout the splenic
interstitium. Spleens of PTV-B-infected mice were histologically normal
(Fig. 2F). Duodenums, adrenal glands, and brains of PTV-infected mice
all appeared normal histologically, regardless of challenge virus strain.

We quantified systemic and tissue virus burden by determining
CCIDsp/ml of serum or g of tissue (Figs. 3A-E). In all cases, infectious
virus was detectable in PTV-A infected C57BL/6] mouse serum and
tissues 1 to 3 days before PTV-B-infected animals, with no evidence of
serum or brain virus burden at any time following PTV-B challenge.
There was no detectable infectious virus in the duodenum of animals
infected with either PTV-A or PTV-B (data not shown).

To assess liver damage, we also quantified serum ALT concentra-
tions in PTV-infected animals (Fig. 3F). On day 3, Animals challenged
with PTV-A had a pronounced spike in ALT, peaking at a mean

Fig. 2. Histopathology of PTV infection in mice. Livers from (A, C) PTV-A-infected, (B) PTV-B-infected, and (D) sham-infected mice on day 3 p.i. Day 4 spleens from (E) PTV-A-infected
and (F) PTV-B-infected mice. Tissues were stained with hematoxylin and eosin. All images are 40 x magnification, with the exception of (C), which is 80 x.
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Fig. 3. Mean virus titers, ALT, and IFN-{ in serum or tissue samples from PTV-infected
C57BL/6] mice. Mice were challenged subcutaneously with PTV-A or PTV-B and groups
of mice (n=23 per strain) were sacrificed daily on days 1-5 p.i. for collection of sera,
livers, spleens, adrenal glands, and brains. (A-E) Tissue viral burden in log;o CCIDso /ml,
g or tissue was determined in Vero 76 cells. The intersection of the x-axis with the y-axis
reflects the assay limit of detection. (F) Serum ALT was quantified using a kinetic enzyme
activity assay. (G) Serum IFN-3 was determined by ELISA. Values represent the mean
and standard deviation from groups of animals. Due to mortality prior to day of sacrifice,
data for the Adames strain on days 4 and 5 were from two mice.

concentration of ~7000 IU/ml. Levels decreased substantially by day 4
(~3400 IU/ml), and returned to near baseline levels by day 5. There
was no remarkable increase in ALT concentrations in PTV-B-infected
animals throughout the 5-day sampling period.

PTV-B infection in mice does not induce systemic IFN-3

Serum [FN-{> levels were determined during the course of PTV
infection by ELISA (Fig. 3G). In mice infected with PTV-A, systemic

IFN-P was first detectable day 2, with high levels detected in 2 out of 3
animals. On day 3 of infection, all three animals had high levels of
serum IFN-B, averaging 7240 pg/ml, with diminishing levels 4 and
5 days p.i. (1990 and 2045 pg/ml, respectively). Serum IFN-3 was only
detected at very low levels (~190 pg/ml) on day 4 in two of three
animals infected with PTV-B. A similar experiment measuring viremia
and IFN-P3 levels was performed with animals challenged by the
intraperitoneal (i.p.) route in attempt to achieve greater viral loads
and type I IFN induction in PTV-B-infected mice; however, results
were similar to what was seen with subcutaneous (s.c.) virus
inoculation (data not shown).

The above results argued against more rapid and higher-level
systemic induction of IFN by PTV-B playing a role in resistance to
PTV-B infection in mice, as suggested for hamsters (Perrone et al.,
2007). Although hamsters do not succumb to lethal disease upon
infection with PTV-B, they present earlier with elevated levels of
circulating IFN-B compared to PTV-A-infected animals, which is
thought to be a factor in resistance to PTV-B. Since we observed very
little to no IFN production by mice infected with the Balliet strain, we
sought to investigate whether the IFN system was important for
mouse survival of PTV-B infection. We used STAT-1 knock-out (KO)
mice to determine whether the IFN signaling pathway plays an
important role in murine resistance to PTV-B.

IFN STAT-1 signaling pathway is required for protection against PTV-B
infection

Mice challenged with PTV-B do not present with viremia or
physical signs of disease. However, when mice deficient in STAT-1
were infected with PTV-B, 100% lethality was achieved (Fig. 4).
Moribund PTV-B-infected STAT-1 KO mice had modest to high
infectious virus titers systemically and in the liver and spleen
(Table 1). No samples were examined from 12956 WT mice infected
with PTV-B as none of the animals became moribund and readily
cleared the infection. Because disease signs were absent, it is likely
that virus titers would be very low or undetectable in these animals,
as was the case in C57BL/6] mice. PTV-B-infected STAT-1 KO mice
also had high serum ALT, indicating that they were plagued with liver
disease characteristic of PTV-A infection in WT mice.

In moribund PTV-A-infected animals, the WT mice showed modest
disease signs (ruffled fur and decreased movement), with more
severe manifestations observed in KO mice. WT mice had modest
serum, liver, and spleen virus titers, while KO mice had viral loads of 2
to 3 log,o higher (Table 1). Interestingly, KO animals infected with
PTV-A also had relatively high brain virus titers compared to the WT
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Fig. 4. Survival of PTV-infected STAT-1 KO mice. Mice were challenged subcutaneously
with either virus strain and observed daily for mortality for a duration of 14 days. KO vs.
WT survival data were compared for each virus strain by log-rank analysis; p = 0.0058
for PTV-A, p=0.0006 for PTV-B. Survival of PTV-A-infected KO mice differed
significantly from that of PTV-B infected KO mice (p =0.0026).
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Table 1

Disease parameter analysis in moribund STAT-1 KO vs. WT mice®.
Virus strain WT/KO Day p.i. Tissue virus titers ALT (IU/ml)

Serum (logqo CCIDso/ml) Liver (logio CCIDso/g) Spleen (log;o CCID50/g) Brain (logyo CCIDso/g)

Adames WT 3 = 6.5 7.0 <2.8° =
Adames WT 3 5.8 <2.8¢ 6.5 <2.8¢ 6659
Adames WT 3 6.3 6.2 6.5 <2.8¢ 6339
Adames KO 3 = 7.7 9.0 6.7 =
Adames KO 3 8.5 8.7 8.8 5.7 6659
Adames KO 3 9.5 9.2 9.5 6.7 6179
Balliet KO 3 8.8 7.2 7.8 52 5539
Balliet KO 5 6.8 6.7 7.0 35 1941
Balliet KO 5 7.3 6.7 6.5 35 2306
Balliet KO 8 <2.8¢ <2.8¢ 5.0 52 18

2 Animals were sacrificed when moribund. Serum and tissues (liver, spleen, and brain) were collected for virus and ALT analysis.

> Animal died before serum could be obtained.
¢ Infectious virus is below the limit of detection.

animals wherein virus was undetectable. Similar high levels of serum
ALT were observed at the time of death in PTV-A-infected WT and KO
mice, though the comparable concentrations may have been due to
saturation of the ALT assay limiting its resolution at such high levels.

PTV-B has a slight growth advantage in Vero 76 cells but not primary
mouse macrophages

In comparing growth rates of the two PTV strains, we found that
PTV-A is slower to produce cytopathic effect (CPE) in interferon-
incompetent Vero 76 cells (Emeny and Morgan, 1979; Mosca and
Pitha, 1986) relative to PTV-B (data not shown). To determine
growth efficiency of the PTV strains, we infected Vero 76 monolayers
with a low multiplicity of infection (MOI) of 0.0005 and collected
supernatants each day out to 6 days p.i. Consistent with the ob-
servation that CPE development was delayed in PTV-A-infected cells,
there was a slight but significant growth advantage with PTV-B,
despite both viruses growing to approximately the same peak burden
(Fig. 5A). Having been passed once through hamsters, our PTV-A
stock was thought to be less adapted for growth in vitro compared to
PTV-B. However, we found no significant growth difference between
the current stock and a PTV-A stock passaged strictly in cell culture
(data not shown). Previous work by Perrone et al. (2007) did not
report a strain difference in growth in Vero cells; however,
differences in passage history and the MOI used in the present
study may have contributed to the slight PTV-B growth advantage we
observed in Vero 76 cells.

In primary macrophages exposed to the same low infectious dose
(MOI 0.0005) of PTV strains, viral replication was only evident during
the first 2 days of infection, reaching ~3.7 log,o CCIDso/ml on day 1
and peaking at ~4.6 log;o CCID5o/ml on day 2 (Fig. 5B). Titers ranging
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Fig. 5. PTV growth in (A) Vero 76 and (B) primary macrophage cultures. Cells were
infected with PTV-A or PTV-B at an MOI of 0.0005. Virus titers on the indicated days p.i.
were resolved by CCID5, determination in Vero 76 cells. Growth curves in Vero 76 cells
differed significantly by two-way ANOVA (p<0.0001). Data are representative of three
independent experiments with Vero 76 or macrophages. *p<0.05.

from 4.0 to 4.5 log; o CCIDso/ ml were sustained through the rest of the
5-day sampling period. Statistical analyses revealed no significant
differences in growth efficiencies between the two virus strains in
these IFN-competent cells.

PTV-B evokes a potent IFN-3 response in mouse primary macrophages

We next investigated PTV induction of IFN-p in primary macro-
phages. The experiments were conducted similarly to the growth
curve studies, but using a higher infectious virus dose (MOI of 0.05).
Although a similar pattern of IFN- expression was observed in the
first 48 h of infection, concentrations were significantly (p<0.001)
higher in PTV-B samples (Fig. 6). We first saw IFN-3 in supernatants
beginning at 24 h p.i., at which time PTV-B-infected cells produced
~14-fold more IFN- than PTV-A-infected cells (374 vs. 27 pg/ml,
respectively). [FN-3 concentrations peaked at 36 h, reaching 700 pg/
ml in PTV-B samples and 133 in PTV-B samples (5.3-fold difference).
At 48 h, IFN-P levels in PTV-A samples had diminished and continued
to decrease through the remainder of the experiment.

PTV strain differences in stimulation of host IFN signaling and response
pathways

Although IFN-3 production did not significantly impact growth in
macrophages, STAT-1 KO mice are unable to control PTV-B infection.
This led us to examine the genes involved in the IFN pathways that
contribute to host defense and their regulation in response to PTV
infections. We harvested total RNA from infected primary mouse
macrophages and measured IFN and related genes by quantitative
RT-PCR arrays to determine differences in expression. There were a
large number of gene expression changes comparing the 0 h time
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Fig. 6. IFN-p release by PTV-infected macrophages. Cells were infected with PTV-A or
PTV-B at an MOI of 0.05. At the indicated time points, IFN-3 concentration in cell culture
supernatants was analyzed by ELISA. IFN- induction curves differed significantly by
two-way ANOVA (p<0.0001). Data are representative of results obtained in two
independent experiments. * p<0.001.
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point, to the other respective time points for each of the PTV infections
(Supplementary data); however, the focus of our effort was to
investigate differences between PTV-A- and PTV-B-infected cells.
Although several genes in the IFN signaling and response pathways
were induced when macrophages were infected with either PTV,
Ifnb1 was the only one that differed significantly (p =0.019) between
the two infections at 16 h, with PTV-B-infected macrophages having a
4.7-fold increase in expression relative to PTV-A-infected cells (Fig. 7).
Complete information regarding the overall gene expression profiles
during infection with a particular virus at each time point can be
found in the supplementary data tables and figures.

By 24 h p.i., 16 genes varied significantly (p<0.05) between
samples infected with PTV-A and PTV-B (Fig. 7). Ifnb1 expression
continued to be significantly greater in cells exposed to PTV-B (4.4-
fold higher) compared to PTV-A infection. Other genes that were
induced at higher levels by PTV-B included multiple IFN-« subtypes,
Ifnal (4.3-fold), Ifna2 (3.8-fold), Ifna5 (4.7-fold), and Ifnab (8.6-fold),
interferon-inducible proteins, Isg20 (1.9-fold) and Iigp1 (2.7-fold),
and inflammatory molecules such as Cxcl10 (5.3-fold), Cxcl11
(6.8-fold), 16 (5.4-fold), Vcam1 (3.2-fold), and Socs1 (2.5-fold).
Expression of Tnfsf10 (2.1-fold), a gene product that induces apoptosis,
is also significantly higher in PTV-B infection. Genes whose expression
was comparatively lower in PTV-B samples included Ifngr (— 2.1-fold),
Rb1 (—1.7-fold), and D430028G21Rik (VISA) (—1.8-fold). At 36 h p.i.,
six of the aforementioned genes continued to exhibit increased
expression in PTV-B-infected cells (Fig. 7). These included Cxcl10 (3.4-
fold), ligp1 (2.5-fold), Socs1 (2.4-fold), Cxcl11 (5.3-fold), II6 (8.4-fold),
and Vcam1 (3.2-fold). Cxcl9 also demonstrated increased expression in
PTV-B infected cells at 36 h with a fold-change of 2.8 relative to PTV-A.
At 48 h p.i., Cxcl11 was the only gene that continued to be significantly
upregulated (4.4-fold) in PTV-B samples compared to PTV-A (Fig. 7).
However, Ifi203 and Myc both demonstrated decreased levels of
expression of —2.2- and — 2.9-fold, respectively.

Discussion

Pathological findings in 8-week-old mice were consistent with
those reported previously in PTV-A-infected weanling mice (Pifat and
Smith, 1987), as we observed severe hepatocellular necrosis in the
liver and lympholysis in the spleen as the most pronounced lesions.
PTV-A-induced disease in hamsters is also associated with severe liver
and spleen pathology, but other organs are significantly affected as
well (Fisher et al.,, 2003). Notably, the duodenum is targeted during
infection in hamsters resulting in severe enteritis that is thought to be
a central factor contributing to death (Anderson et al., 1990). No
pathological changes were observed in the duodenum of infected
mice in the current study, although mild necrosis was observed in the
small intestines of 4-week-old animals (Pifat and Smith, 1987). The
splenic lesions in hamsters are localized to the red pulp (Anderson
etal., 1990), while we observed lympholysis in the white pulp of mice,
consistent with previous findings in 4-week-old animals (Pifat and
Smith, 1987). Nevertheless, the disease pathology in mice models that
seen in natural RVFV infections of domestic livestock and humans
(Swanepoel and Coetzer, 1994), with the liver being the principally
affected organ.

The difference in virulence between the Adames and Balliet strains
of PTV is thought to be at least partially attributed to the suppression
of the host IFN response by PTV-A. Similar to RVFV (Billecocq et al.,
2004; Bouloy et al., 2001), PTV-A contains an NS protein coded on its S
segment that exhibits [FN-antagonistic activity in the hamster system
by repressing activation of the IFN- promoter (Perrone et al., 2007).
Mouse macrophages demonstrate a subdued IFN-3 response to
infection with PTV-A when compared to PTV-B-infected macro-
phages. Whether the reduced levels are due to direct antagonism or
reduced capacity to induce IFN-B in mouse macrophages remains to
be determined. However, robust induction of IFN-B in these cells at

the site of PTV-B challenge is likely the principal reason the virus is
unable to cause disease.

One key difference that we found between the mouse and hamster
models is that PTV-B does not induce detectable systemic IFN-{3 in mice.
This is likely due to the lack of productive PTV-B dissemination into the
blood. In PTV-infected hamsters, PTV-B induces type [ IFN earlier during
infection than PTV-A, with similar titers reached by 72 h p.i. (Perrone et
al., 2007). In contrast to mice, PTV-B infection in hamsters does reach
detectable viral loads in the blood. Thus, it is not surprising that animals
that have little to no systemic virus would not elicit high levels of
circulating IFN. In an attempt to produce a systemic infection to evoke a
better IFN response, we also tried i.p. inoculation, but still detected no
circulating virus. We speculate that due to a more effective IFN
response to PTV-B at the site of inoculation, animals are able to control
the virus locally before extensive dissemination is achieved.

STAT-1 is a key component in the IFN signaling pathway (Akira,
1999; Haller et al.,, 2006), and therefore, eliminating its function
effectively knocks out the IFN response circuit. To this end, our
findings rendering mice that are lacking in this pathway susceptible to
PTV-B infection indicate that the virus is controlled principally by the
IEN response since WT mice do not develop disease. However,
pathogenic differences between PTV-A and PTV-B are not completely
attributable to regulation within the IFN response, as STAT-1 deficient
animals challenged with PTV-A succumbed to infection on average
>2 days earlier than those challenged with PTV-B (p = 0.0026). In fact,
even WT mice challenged with PTV-A succumbed earlier than did KO
mice challenged with PTV-B (p = 0.0058). Moreover, KO mice infected
with PTV-A succumbed to infection in less time and developed higher
viral burdens compared their WT counterparts. Interestingly, the lack
of STAT-1 resulted in PTV-A infection in the brain, which is not
normally seen in WT mice. The lower viral burden in the WT animals
likely limits inflammation and permeability of the blood-brain barrier,
as previously seen in studies of West Nile virus infection in mice
(Wang et al., 2004). Collectively, these data suggest that in addition to
the IFN response, other mechanisms contribute to PTV-A's increased
pathogenicity in mice.

In previous work by Perrone et al. (2007), neither strain of PTV had
a growth advantage in interferon-incompetent Vero cells, but PTV-A
had an obvious advantage in primary hamster embryonic fibroblasts.
Though we anticipated that PTV-A would have a growth advantage in
primary mouse macrophages, as it did in hamster embryonic
fibroblasts (Perrone et al., 2007), this was not the case. PTV-B
stimulates early IFN-B induction in hamster embryonic fibroblasts,
approximately two-fold higher than PTV-A (Perrone et al., 2007),
consequently leading to reduced viral replication. It would seem
probable that since PTV-B is a better inducer of IFN in macrophages
that its growth would be inhibited compared to PTV-A. The loss of the
PTV-B growth advantage in IFN-incompetent Vero 76 cells may be due
to the effect of higher IFN induction in PTV-B-infected macrophages.
The more restricted viral replication observed in macrophages
suggests that these cells are not as accommodating to PTV growth
as the hamster fibroblasts. The fact that macrophages and fibroblasts
are such vastly different cell types could also help explain the
observed differences.

To more fully understand the mechanisms involved in resistance
to PTV-B, we examined expression of a variety of IFN and related
genes in mouse macrophages. We found that regulatory mechanisms
of IFN-3 production likely occur at the gene transcription level, as
there is a significant >4-fold increase the amount of IFN-3 RNA in
macrophages infected with PTV-B compared to PTV-A at 16 h p.i. This
is consistent with previous findings by Perrone and colleagues that
showed a ~3-fold increase in the IFN-3 promoter by PTV-B (Perrone
et al, 2007). By comparison, IFN signaling pathways are down-
regulated at later time points in PTV-A-infected macrophages,
particularly 24 and 36 h p.i. Multiple genes encoding I[FN-a subtypes
were induced 3- to 9-fold higher in PTV-B-infected cells at 24 h.
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PTV-B-infected macrophages also demonstrated increased tran-
scription of a number of proinflammatory cytokines and chemokines
compared to PTV-A-infected cells. In vivo, these molecules could lead
to early and localized control of the virus, preventing dissemination.

116, Cxcl9, Cxcl10, Cxcl11, Vcam1 code for inflammatory proteins that
can contribute to temperature modulation and leukocyte migration to
the site of infection. We found that these molecules were expressed at
higher levels in macrophages infected with PTV-B compared to those
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Fig. 7. Expression patterns over time of genes with significant differences between PTV-A and PTV-B-infected peritoneal macrophages at one or more time points. Cells were infected
with an MOI of 0.05 and total RNA was collected at the indicated time points. Samples were analyzed by qRT-PCR gene expression arrays. Fold-change represents the change in gene
expression from time O to the indicated time point. *p<0.05. Ifnb: interferon-B; Ifna: interferon-o; Isg: interferon-stimulated gene; ligp: interferon-inducible GTPase; Cxcl:
chemokine (C-X-C motif) ligand; II: interleukin; Vcam: vascular cell adhesion molecule; Socs: suppressor of cytokine stimulation; Tnfsf: tumor necrosis factor super family; Ifngr:
interferon-vy receptor; D430028G21Rik: Riken cDNA D430028G21 gene (or Visa: virus-induced signaling adaptor); Myc: myelocytomatosis gene; Rb: retinoblastoma gene; Ifi:

interferon inducible gene.
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infected with PTV-A, which indicates a stronger proinflammatory
response elicited by PTV-B.

We did not see significant transcriptional changes in the most
commonly known IFN response genes, such as Eif2ak2 (PKR), Oas, or
Mx genes, as a result of increased levels of type I IFNs early in
infection with PTV-B. However, Isg20 was expressed ~2-fold higher
in PTV-B-infected macrophages than PTV-A at 24 h p.i. (p<0.05).
Isg20 is the second known RNase, along with RNaseL, to be regulated
by interferon (Nguyen et al, 2001) and its expression can be
regulated by IFNs in PKR-, RNase L- and Mx-deficient fibroblasts,
demonstrating an independent regulatory mechanism from these
common IFN-induced molecules (Espert et al., 2003). Isg20 possesses
antiviral properties against RNA viruses, specifically vesicular
stomatitis virus (VSV), influenza, and encephalomyocarditis viruses,
but not the DNA genomic adenovirus (Espert et al., 2003). As Isg20
does not require functional PKR, RNase L, or Mx proteins, it is
assumed to serve as an alternative antiviral pathway to those already
well described.

Also of interest, ligp1 (interferon-inducible GTPase 1) transcription
was found to be upregulated ~2.7-fold at 24 h p.i and ~2.4-fold at 36 h
(p<0.05) in response to infection of macrophages with PTV-B relative
to PTV-A. ligp1 codes for a protein belonging to a family of 47-kDa
GTPases whose members are present at low basal levels in mouse cells
but are induced by IFNs and are implicated in resistance to
intracellular pathogens (Carlow et al., 1998; Uthaiah et al., 2003;
Zerrahn et al.,, 2002). The function of IIGP1 in host antiviral defense
has not yet been assessed, but IIGP1 shares several similar
biochemical properties to other known GTPases with antiviral
activities against ssRNA viruses, such as the Mx proteins (Uthaiah
etal., 2003). The human protein MxA interferes with RVFV replication,
allegedly through association with the viral RNA polymerase (Carlow
et al,, 1998).

As elucidated in these studies, IFN plays a critical role in survival of
mice infected with PTV-B. These results further support the use of
type | IFN as a potential treatment for phleboviral disease. A
recombinant IFN-a, Interferon alfacon-1, demonstrates appreciable
efficacy against PTV infection in hamsters when given up to 72 h after
infection (Gowen et al., 2008). Further, recombinant [FNs have proven
effective against RVFV in rhesus monkeys when administered 24 h
prior to, or 6 h after infection (Morrill et al., 1989). Although these
results suggest that therapeutic IFN intervention would be useful in
treating phleboviral disease, efficacy appears to require early
intervention, and cost associated with recombinant IFN treatments
would likely be prohibitive for use in remote underdeveloped areas
the world where RVF is endemic. Nevertheless, treatments targeting
the stimulation of the IFN pathway could prove to be particularly
effective against phleboviral infection, and should continue to be
explored.

Materials and methods
Animals

C57BL/6] mice were from Jackson Laboratories (Bar Harbor, ME)
and 129S6/SvEv and STAT-1 KO mice (129S6 background) were from
Taconic (Hudson, NY). Animals were quarantined for 6 days prior to
beginning studies in the animal facility at Utah State University under
specific pathogen-free conditions. All animal procedures used in these
studies complied with guidelines set by the U.S. Department of
Agriculture and the Utah State University Animal Care and Use
Committee.

Cells and viruses

Vero 76 (African green monkey kidney) and LLC-MK, (rhesus
monkey kidney) cells were from American Type Culture Collection

(ATCC, Manassas, VA). Cells were maintained in Minimal Essential
Medium (MEM) supplemented with 10% fetal bovine serum (FBS) or
5% FBS for Vero 76 and LLC-MK; cells, respectively. The Adames
strain of PTV was provided by Dominique Pifat of the U.S. Army
Medical Research Institute for Infectious Diseases (USAMRIID,
Frederick MD). It was passaged 4 times in LLC-MK; cells and once
in hamsters. The virus was originally isolated from the serum of a
patient in eastern Panama in 1972. The Balliet strain of PTV was from
ATCC. It was passaged twice in LLC-MK; cells. The Balliet virus was
originally isolated from a patient in western Panama in 1966. Both
virus strains were further passaged twice in Vero 76 cells. Strains
were verified by quantitative RT-PCR (data not shown). All media,
serum, supplements, and buffers were from Hyclone Laboratories
(Logan, UT).

Virus stocks were initially titrated in mice to determine the most
appropriate infectious dose. Based on these titrations, the 90-100%
lethal doses (LDgg_100) wWere chosen for subsequent challenge
experiments discussed below. All virus inoculations were by s.c.
injection, unless otherwise indicated.

Experimental design

For pathology and IFN analysis studies, C57BL/6] mice were
challenged with 2000 CCIDsq of PTV. Groups of 7 mice were sacrificed
daily, 3 PTV-A-infected, 3 PTV-B-infected and 1 sham-infected. Serum,
liver, spleen, adrenal gland, and brain were collected from each. A
section of each tissue was fixed in formalin for 24 h. The remaining
portions of each tissue were stored at —80 °C until time of use for
virus titer analysis. Tissues were diluted and homogenized in MEM.
Due to the small size of the adrenal gland, accurate gram weights were
unobtainable. Therefore, we added a set volume per tissue of 0.5 ml/
adrenal gland for homogenization.

For challenge studies in STAT-1-deficient mice, 129S6 WT and
STAT-1 KO mice were challenged with 3.2 x 10* CCIDsq of PTV and
monitored for signs of illness and death. Serum, liver, spleen, and
brain were harvested from moribund animals for virus load and ALT
quantification.

Virus, ALT, and IFN-3 quantification

Serum and homogenized tissue samples were serially log;o diluted
and plated on LLC-MKj; cells in 96-well microplates for quantification
of virus by an infectious cell culture assay, as previously described
(Gowen et al., 2007a). Viral cytopathic effect (CPE) was determined
7 days post-virus inoculation, and the 50% endpoints were calculated
as described (Reed and Muench, 1938). The limit of detection for most
tissues was 2.8 logo CCIDso/g. The detection limit for adrenal gland
was 0.45 log;o CCIDsp/tissue. Serum virus was detectable to 1.8 log;g
CCIDso/ml. In samples presenting with undetectable tissue or serum
virus, a value equal to the lowest limit of detection was assigned, and
therefore, mean values for groups of animals wherein undetectable
virus levels were present are likely an overestimation of the actual
average.

To assess liver damage, serum ALT concentration was used as a
marker (Amacher, 1998). Levels were measured in serum samples
using the ALT (SGPT) Reagent Set (Pointe Scientific, Lincoln Park, MI).
The reagent volumes were adjusted for analysis on 96-well microplates.

IFN-B concentration in the serum samples was determined by
ELISA (PBL Interferon Source, Piscataway, NJ) according to the
manufacturer's instructions. All serum samples were diluted 1:5 or
1:10 and tested in duplicate wells.

PTV growth in Vero 76 and PECs

Mouse peritoneal exudate cells were harvested by peritoneal
lavage from C57BL/6] mice 4 days after i.p. injection with 1 ml sterile
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aged thioglycollate broth. Cells were plated in 96-well plates in RPMI
containing antibiotics. Two hours after plating, the nonadherent cells
were removed by splashing off media and replacing with RPMI with
10% FBS and antibiotics. The resulting cell population was >90%
macrophages, as previously described (Gowen et al., 2000).

Virus growth was determined in Vero 76 cells and peritoneal
macrophages. A MOI of ~0.0005 of PTV strains was used to infect cell
monolayers. Supernatants were collected from triplicate wells on each
day from O to 6 days p.i. Samples were frozen and stored at -80 °C until
time of use. Samples were plated on Vero 76 cells in serial logio
dilutions and virus CCIDsos were determined.

IFN induction and related gene expression in primary macrophages

For IFN induction and gene expression studies, primary macro-
phages were plated in 96-well plates and infected with ~3x10°
CCIDsq of each PTV strain (MOI of 0.05). Supernatants were collected
from triplicate wells at 0, 12, 16, 24, 36, 48, 60, 72, and 84 h p.i. IFN-p
in supernatants was measured by ELISA.

At 0, 16, 24, 36, and 48 h p.i., total RNA was collected for use in
gene expression studies with Qiagen's (Valencia, CA) RNeasy Mini Kit
following the manufacturer's instructions. One pl Superase-In
(Ambion, Austin, TX) was added to each 50 pl RNA sample to
protect RNA from degradation. Genomic DNA was eliminated using
Ambion's DNA free system. Quality of RNA samples was determined
using Experion's Automated Electrophoresis (Bio-Rad, Hercules, CA)
at the Center for Integrated BioSystems (Utah State University, Logan,
UT). cDNA was synthesized from RNA samples using the Superscript
Il First-Strand Synthesis System (Invitrogen, Carlsbad, CA). Both
oligo-dT primers and random hexamers were used in each synthesis
reaction. cDNA samples were diluted 1:20. Interferon signaling and
response StellARrays from Bar Harbor Biotechnology (Trenton, ME)
were used to detect expression changes of multiple IFN-related genes
simultaneously. SYBR GreenER qPCR Supermix Universal (Invitrogen)
was used in conjunction with StellARray plates for quantitative real
time PCR. Quantitative PCR was performed using an Opticon 2
(Bio-Rad, Hercules, CA) thermal cycler using the following condi-
tions: 95 °C for 10 min, 40 cycles of 95 °C, 60 °C, followed by a
dissociation curve reading every 1° C from 30 °C to 95 °C.

Statistics

Survival curves were evaluated using log-rank analysis. Two-way
analysis of variance (ANOVA) was used to detect significance in
overall difference between virus strains in growth curves and IFN-
induction experiments and Bonferroni post-tests were performed to
determine significance at individual time points. Global Pattern
Recognition (GPR) software (Bar Harbor Biotechnology) was used to
analyze changes in gene expression levels.
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