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Let N(t) be a birth-death process on {0, 1,. .} with state 0 reflecting and let 4: be the 

quasi-stationary distribution of the truncated process on {0, 1,. , K} with AK > 0. It is shown 

that the sequence (qz) increases stochastically with K. The bivariate Markov chain (M(t), N(t)) 

where M(t) = maxo, ,.I, N(t’) is studied as a stepping stone to the proof of the result. 

birth-death processes * quasi-stationary structure * stochastic monotonicity * maximum process 

0. Introduction 

In a recent paper (Keilson and Ramaswamy [6]), it was shown that for an ergodic 

birth-death process on (0, 1,. . .} with ergodic distribution e& the sequence of 

quasi-stationary distributions q; [l, 21 on (0, 1, . . . , K} converges elementwise to 

e& as K + ~0. This result has since been extended to stochastically monotone Markov 

processes on [0, co) (Pollak and Siegmund [9]). The following stochastic order 

inequality was made use of in [6]: 

(0.1) 

Here eiT and egT are the ergodic distributions of the replacement processes obtained 

by replacing samples that reach state K + 1 at states 0 and K respectively. As will 

be seen subsequently both egT and eET increase stochastically with K. It is then of 

some interest to enquire whether q; also increases stochastically with K. We will 

show in this note that this is indeed so. 

Let N(t) be a birth-death process on (0, 1,. _ .} (not necessarily ergodic) with 

governing transition rates A, and p., (pO= 0). Let M(t) be the maximum of the 

process N(t) up to time t, i.e. M(t) = maxO%,,,, N( t’) with M(0) = 0. As part of the 

proof of the stochastic increase of the sequence of quasi-stationary distributions 
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qg, the maximum process M(t) is studied via examination of the bivariate Markov 

chain [M(t), N(t)]. 

Let 

(0.2a) 

dKn(f)=PIN(t)=nIM(t)=K], O=sncK, (0.2b) 

and let d; ( t ) = ( dKn ( t)) and q z( t) = ( qKn ( t)) be the corresponding row vectors. Let 

qz be the quasi-stationary distribution on (0, 1,. . . , K} (where K + 1 is made 

absorbing). Then from the definition of quasi-stationarity, one has 

It will be shown subsequently as a lemma that d:(t) also satisfies (0.3), i.e. 

(0.4) 

Equation (0.4) is demonstrated by deriving explicitly the distribution of d:(t) in 

terms of sOK(f), the density of the passage time TOK from state 0 to state K. 

It is known that TOK increases locally (in the stochastic sense) with K (see e.g. 

Keilson and Sumita [7]; Whitt [lo]), i.e. sOK ( t)/sOK+,( t) is non-increasing in t. The 

notation TOK i, ToKtl will be employed. This is essentially due to the fact that 

sOK( t) is log-concave (Keilson [5]). The local order is then used to demonstrate the 

stochastic increase of d;(t) with K, i.e., 

dz( t) < dz+,( t) for each fixed t > 0, K 2 1. (0.5) 

Since stochastic order is preserved under limits, one can use (0.4) and (0.5) to 

conclude that q; i qL+, which proves the stochastic increase of the sequence of 

quasi-stationary distributions (4;). 

The stochastic increase with K of the ergodic distributions eET and ekT is proved 

in Section 1. The bivariate maximum process is studied in Section 2. Equations 

(0.4) and (0.5) are established in Section 3. 

1. Stochastic increase of the replacement distributions 

Let 7r0= 1, 7rj = (ho. 1 * Aj_,)/(pL1 * * * pj), j 2 1, be the potential coefficients. The 

ergodic distribution egT on (0, 1, . . . , K} for reflecting truncation at level K is just 

the vector of potential coefficients (ni, 0 --J -= ‘S K) renormalized, as a consequence 

of detailed balance. Simple algebra then shows that eET increases stochastically 

with K. 

The proof of the stochastic increases of eg* with K is given next. 
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The elements of the probability vector eiT are explicitly evaluated in [6] (see 

equations (3.8)-(3.15) in that reference). It is shown there that 

e$(j)=vje$(0)-O,_,iK, lGj<K, (l.la) 

where iK = l/E[ r,,] and 0, is given by the recursive relation 

~j+lOj=l+AjOj_l, lsj<K-1, 

e,=L. 
PO 

The quantity e;(O), obtained from renormalization, is given by 

eO,(O) = 
1 

; (&lP”)-l. 
ErToK+,I 0 

(l.lb) 

(l.lc) 

Using equations (l.l), it is seen from elementary algebra that the ratio e$( j)/ e%+i( j) 

is nonincreasing with j. This shows that egT <, eO,T,,, where -c[ denotes local order, 

which implies that the two vectors are stochastically ordered. 

The reader should note the ease with which ordinary stochastic order is established 

by showing that the entities are ordered in the local sense, which 

Surprisingly, the direct demonstration of ordinary stochastic increase 

K is elusive. 

is stronger. 

of egT with 

2. The bivariate maximum process 

In this section the bivariate maximum process [M(t), N(t)] is studied as a stepping 

stone to the proof of the stochastic increase of the quasi-stationary distributions q: 

with K. In particular, the conditional probabilities dKn( t) are derived explicitly in 

terms of the p.d.f. sOK (t) of the passage time TOK from state 0 to state K. This will 

enable us to prove in Section 3 that the vector dL( t) of probabilities dKn( t) increases 

stochastically with K for each t and that d:(t) converges to the quasi-stationary 

distribution q G as t + CO. 

Let Z(t) be the two dimensional process [M(t), N(t)]. Note that Z(t) is a 

bivariate Markov chain on {(m, n): 0 G n s m}. Further consider, for fixed K, the 

two ‘vertical’ sets L,={(K,n):0an~K} and L~+,={(K+l,n):O~n~K} 

(B for bottom states). The vertical set L K+l is similarly defined (see Figure 1). 

Let the conditional distribution of the bivariate chain on the set LE,, be given by 

P[N(t)=nlM(t)=K+l, N(t)sK]. (2.1) 

One then has the following result which is easily proved using simple arguments 

involving conditional probabilities. 

Lemma 2.1. d:+,(t) . IS a mixture of the distribution Ui,, degenerate at K + 1 and 

d%(t). 
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K K+l m 

Fig. 1 

The expressions for dL( t) and dgf,( ) t are obtained next. Note that the motion 

of the bivariate process Z(t) on the set LK and on the set Lg,, can be thought of 

in terms of a birth-death process on states (0, 1,. . . , K} with loss from state K, i.e. 

AK > 0. Let the transition matrix for this loss process be pg( t) whose (m, n)th 

element is given by ~$;,,~(t). Finally let s,,(t) be the p.d.f. of the passage time 

from state 0 to stake K with Laplace transform aoK (s). 

Lemma 2.2. The distributions dL( t) and dBT K+l( t) are given respectively by 

and 

(2.2) 

(2.3) 

Proof. We will first prove (2.2). Observe that, under the condition M(0) = 0, the 

event [N(t) = n, M(t) = K] occurs at time t if a sojourn is initiated on LK by a first 

paSSage from 0 t0 State K at SOIne prior time 7 G t and if, subsequently, one has 

Ng( t - 7) = n for the loss process on (0, 1, . . . , K}. These arguments imply that 

P[N(t)=n,M(t)=KIM(O)=O]= SOK(T)&;Kn(t-T)dr, OsnsK. 

(2.4) 
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Summing over n in (2.4) one obtains that 

I 

f 
P[M( t) = K] = sOK(r)U;p*,(t-~)l dT (2.5) 

0 

where Ug is a probability vector with all mass at state K. Note that ULpg(t)l is 

the survival function of the passage time from state K to state K + 1 so that (2.5) 

yields an expression for P[ M( t) = K] which might have been anticipated. Equation 

(2.2) is now a direct consequence of (2.4) and (2.5). 

The proof of (2.3) is given next. 

Let I(t) be the inception time density on LB K+lr i.e. I(t) dt is the probability that 
. . . . 

a solourn is mniated on LE,, in (t, t + d t) to first order in d t. One can then write, 

as in (2.4), that 

I 
P[M(t)=K+l,N(t)=n]= 

I 
I(T)&Kn(f-T)d7; OsncK. (2.6) 

0 

It remains to evaluate I(t). Note that the sequence of epochs at which sojourns on 

the set LE+, are initiated form a delayed renewal process and that I(t) is the renewal 

density for this renewal process. Since for the two-dimensional process there is 

permanent exit from the set LK+, at state (K + 1, K + 1) with hazard rate hK+i, the 

lifetime distribution of the renewal process is not honest. The (dishonest) p.d.f. of 

the time to the first renewal is seen to have Laplace transform e(s) which is given 

by 

O(s) = UK+1 
~oK+l(~)- VK+,+SqK+l 

where 

vn=L+/&, p.3, qn k, 
V* V?l 

(2.7) 

(2.8) 

Now sojourns on the set Lg+, can be initiated only by an entry into state (K + 1, K). 

If a sojourn has just been initiated on the set LE,,, then the time to the next initiation 
has Laplace transform n(s) given by 

T(S) = = c+K(sp= vK+,+SqK+l (2.9) 

where C;(S) is the Laplace transform of the passage time Ti from state K to state 

K+l. Let 

I 
m 

f(s) = e-“‘I( 7) dT 
0 

be the Laplace transform of 1(t). The arguments above imply that 

f(s)= 19(s)[l+n(s)+n2(s)+*. .] 

(2.10) 

(2.11) 
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Substituting for 0(s) and q(s) in (2.11), one obtains 

It is known that the passage time transforms c:(s) satisfy the recurrence relation 

(Keilson [ 51) 

(2.13) 

Using (2.13) in (2.12), it follows that 

I(t) =ys K+, OK+*(f). (2.14) 

Equation (2.3) now follows from (2.6) and (2.14). 

Note that lim ,+_= s,,k+z( t) = 0. Hence from (2.14), one sees that I(t) + 0 as t + CO. 

This is due to the fact that the renewal process under consideration has a dishonest 

underlying lifetime distribution. 

3. Stochastic increase of the quasi-stationary distribution 

In this section the stochastic increase with K of the sequence of quasi-stationary 

distributions qz on (0, 1, . . . , K} will be demonstrated. To do so, it is first shown 

that dz( t) + q; as t + ~0. It is then shown that d:(t) increases stochastically with 

K. The fact that stochastic order is preserved under limits proves the desired result. 

Before proceeding to the main results of this section, a few preliminary lemmas 

are needed. 

The following simple result for a birth-death process is proved in Ledermann 

and Reuter [8] (see also Callaert and Keilson [l]). 

Lemma 3.1. Consider a birth-death process on (0, 1,. . . , K} with state 0 reflecting 

and loss from state K (AK > 0). Let -yK be its principal decay rate, i.e. let - yK be the 

eigenvalue of the associated Q-matrix closest to zero. Then, for K 3 1, one has 

YK--I’ YE 

As a consequence of Lemma 3.1 one has the following result which will be used 

subsequently in Lemma 3.3. 

Lemma 3.2. For any K 2 1, one has 

eY%K (t) E L(O, 001, (3.1) 

i.e., jz eYK1soK(t) dt <a. 
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Proof. This follows at once from Lemma 3.1 and the fact that sOK(t) - eP’K-1’ as 

t+m. 

Lemma 3.3. In the notation of (0.2a) and (0.2b), one has 

dZ(l)+=qZ, f+m. 

Proof. It was proved in Lemma 2.2 that 

(3.2) 

Let yK be the principal decay rate for a birth-date process on 

loss from state K and state 0 reflecting. As proved in Keilson 

matrix p$ (t) has the representation 

(0, 1, . . . , K} with 

[5], the transition 

pg(t) =eVYKr(JK +~(t)). (3.4) 

where e(t) + 0, t + co elementwise. Also JK = rKI~/l~rK where 1; and r, are the 

(3.3) 

left and right eigenvectors of the Q-matrix Q”, associated with the eigenvalue -yK 

closest to zero. One then has 

+ e-YK* eYK7sOK(~)U~e(t-~)dr. (3.5) 

Substituting (3.5) in (3.3) one obtains 

Since e(t) --, 0 as t + co and eYX’soK (t) E L,(O, a) as shown in Lemma 3.2, it follows 

that 

I 
f 
eYK'sOK(~)U~e(f-~)d~-,O, teaa (3.7) 

0 

Finally note that UgJ,/ LJLJ,l= q:. One then obtains the required result by 

applying (3.7) in (3.6). 

One further lemma is needed. 

Let N(t) be a birth-death process on (0, 1, . . . , K + 1) with state K + 1 absorbing 

and transition matrix PA(t). Let the loss process on (0, 1, . . . , K} be governed by 

the (substochastic) transition matrix pz ( t). 
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Lemma 3.4. Let Uf and lJi be initial probability vectors concentrated on states 0 
and K respectively. Then the family of probability vectors qgT( t) and q$‘( t) given by 

qoKT( t) = 
UCp*K(t) Gp*K(t) 

U,Tp*,(t)l’ 
4ET(t) = 

GP?3t)l 
(3.8) 

respectively increase and decrease stochastically with t to the quasi-stationary distribu- 
tion 4:. 

Proof. Let 0 < T < t. Clearly 

(3.9) 

It is known that P^( t) is a TP, stochastic matrix for all t > 0 (Karlin and McGregor 

[4]). Since local order is preserved under post-multiplication by TP, matrices, one 

has from (3.9) that 

(3.10) 

The definition of local order implies that ordinary stochastic order is preserved 

when the probability vectors on both sides of (3.10) are conditioned on (0, 1, . . . , K}. 

Note that (Ur, O)pA( t) conditioned on this set is just q’&=(t). It follows then that 

qiT( t) increases stochastically to qL. A similar argument shows that qgT( t) decreases 

stochastically with t to qi. 
It is shown next that d:(t) increases stochastically with K for each fixed t. 

Theorem 3.5. For each Jixed t > 0 and, for every K 2 1, 

d;(t)< d;+,(t). (3.11) 

Proof. From Lemma 2.1, dg+,( t) is a mixture of the distribution Ui+l concentrated 

at state K + 1 and dgT,( t). Clearly dz( t) < Ui,,. It suffices to show, therefore, that 

d&(t) < &T,(t). (3.12) 

From (2.2) and (2.3), one has 

and 

C,(t) = I:, &x+z(=)Ub*K(t- =) dT 
I:, %K+z(+&‘%t-T)1 dT’ 

(3.13) 

(3.14) 
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Note that in the notation of Lemma 3.4, equation (3.13) may be rewritten as 

I 

f 

d;(t)= aK(T)q;=(f-~) d7 (3.15) 
0 

where ~~(7) is a p.d.f. with support on (0, t) given by 

(3.16) 

Similarly (3.14) can be rewritten as 

d::,(f) = j-; a,+,(T)q:‘(t - 7) dr 

where Us+* is a p.d.f. with support on (0, t) given by 

(3.17) 

%+2(T) = II 
soK+dT)u:P*,(t- T)l 

oSO~+2(T’)~~P~(t-T’)1dT” OGTc t* 

Hence from (3.16) and (3.18), one has 

‘k(T) SOK (7) -= 
UK+~(T) '&,~+2(7)' o<Tst' 

(3.18) 

(3.19) 

where C is dependent on t but independent of T. For birth-death processes, it is 

known that for the passage time TOK from state 0 to state K, one has TOK i, TOK+2 

(Keilson and Sumita [7]). This implies that the ratio s~~(T)/s~~+~(T) is non- 

increasing in T. From (3.19) one concludes that uK( T) iI Us+* which implies that 

the mixing distributions in (3.15) and (3.17) are stochastically ordered. Moreover, 

from Lemma 3.4 it is seen that qEr( t - T) is stochastically increasing with T, for 

0 G T S t. Since ordinary stochastic order is preserved under mixing, equation (3.12) 

and hence (3.11) follows. 

Theorem 3.6. For each K > 1, 

(3.20) 

Proof. This follows directly from Lemma 3.3 and Theorem 3.5 since stochastic order 

is preserved under limits. 
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