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Abstract

A pebblingmove on a graph consists of taking two pebbles off of one vertex and placing one pebble
on an adjacent vertex. In the traditional pebbling problem we try to reach a specified vertex of the
graph by a sequence of pebbling moves. In this paper we investigate the case when every vertex of
the graph must end up with at least one pebble after a series of pebbling moves. Thecover pebbling
numberof a graph is the minimum number of pebbles such that however the pebbles are initially
placed on the vertices of the graph we can eventually put a pebble on every vertex simultaneously.We
find the cover pebbling numbers of trees and some other graphs. We also consider the more general
problem where (possibly different) given numbers of pebbles are required for the vertices.
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1. Introduction

The game of pebbling was first suggested by Lagarias and Saks, and introduced to the
literature in a paper of Chung[1]. A pebbling move consists of taking two pebbles “off ”
of one vertex and placing one pebble on an adjacent vertex. Given a graphG, a specified
number of pebbles, and a configuration of the pebbles on the vertices ofG, the goal is to be
able to move at least one pebble to any specified target vertex using a sequence of pebbling
moves. The pebbling number�(G) is the minimum number of pebbles that are sufficient to
reach any target vertex regardless of the original configuration of the pebbles. In the present
context it is naturally assumed thatall graphs considered are connected. Moews[5] found
the pebbling number of trees by using a clever path partition of the tree. For a survey of
additional results see[3].
In this paper we investigate the following question: How does the pebbling problem

change if insteadof havinga specified target vertexweneed to placeapebble simultaneously
on every vertex of the graph? In some scenarios this seems to be amore natural question, for
example if information needs to be transmitted to several locations of a network, or if army
troops need to be deployed simultaneously. We define thecover pebbling number�(G) to
be the minimum number of pebbles needed to place a pebble on every vertex of the graph
using a sequence of pebbling moves, regardless of the initial configuration. We establish
the cover pebbling number for several classes of graphs, including complete graphs, paths,
fuses (a fuse is a path with leaves attached at one end), and more generally, trees. We also
describe the structure of the largest non-coverable configuration on a tree.
More generally, let a weight functionw be given that assigns an integerw(v) to each

vertex v of G. We say thatw is positive if w(v) >0 for all v. We define theweighted
cover pebbling number�w(G) to be the minimum numberk ensuring that, from any initial
configuration withk pebbles there is a sequence of pebbling moves after which all the
verticesv simultaneously havew(v) pebbles on them. Our main result on trees in Section
4 determines�w(T ) for every treeT and every positive weight functionw.
Given a configurationC of pebbles, wewill use the following notation. Thesize|C| of the

configuration denotes the number of pebbles inC. Thesupport�(C) of the configuration is
the set ofsupport vertices, i.e. those on which there is at least one pebble ofC. The number
of pebbles onv in C is denoted byC(v) (hence,v ∈ �(C) if and only ifC(v) >0). We call
a configurationsimpleif its support consists of a single vertex. We say that a configuration
is cover-solvable, or simplycoverable(resp.w-coverable), if it is possible to transport at
least one pebble (resp.w(v) pebbles) to every vertexv of the graph simultaneously (and
non-coverableotherwise). As is customary, we denote the vertex set and edge set ofG

by V (G) andE(G), respectively. IfG is of ordern, we sometimes denote its vertices by
v1, v2, . . . , vn.

2. Preliminary results

We begin with the cover pebbling number of the complete graphKn onn vertices. Note
that the pebbling number forKn, �(Kn), is n (see[3]).
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Theorem 1. �(Kn) = 2n − 1.

Proof. If 2n − 2 pebbles are placed on vertexvn, then 2 pebbles will be used to cover each
of then−1 other vertices. Thus no pebbles will remain to covervn. Hence�(Kn)�2n−1.
Now suppose that at least 2n − 1 pebbles are placed on the vertices. We may suppose

that some vertex, sayvn, has no pebbles on it, otherwise the graph is already covered. The
pigeonhole principle says that some other vertex has at least two pebbles on it; we use those
to covervn. Since there are now at least 2n−3 pebbles among the remainingn−1 vertices,
induction says we can cover them (of course,�(K1) = 1). Hence�(Kn)�2n − 1. �

A similar inductive proof works also for weighted covering, and yields the following
result. Denote the total weight by|w| = ∑

vw(v) and define minw =minv w(v).

Theorem 2. �w(Kn) = 2|w| −minw for every positive weight functionw.

Next we find the cover pebbling number of the pathPn on n verticesv1, . . . , vn, with
vivi+1 ∈ E for 1� i < n. Note that�(Pn) = 2n−1 (see[3]).

Theorem 3. �(Pn) = 2n − 1.

Proof. If 2n − 2 pebbles are placed at vertexvn, then coveringv1 will use 2n−1 pebbles,
coveringv2 will use 2n−2 pebbles,. . . , and coveringvn−1 will use 2 pebbles. Then no
pebbles will remain to covervn. Hence�(Pn)�2n − 1.
Now suppose that at least 2n−1 pebbles are placed on the vertices. If there are no pebbles

onvn then we may use at most 2n−1 pebbles to cover it, since�(Pn) = 2n−1. By induction,
the remaining 2n−1− 1 or more pebbles can coverPn−1 (of course,�(P1) = 1). If there are
pebbles onvn then move as many of them as possible tovn−1, leaving 1 or 2 onvn. Either
at least 2n−1 − 1 pebbles have been moved tovn−1, or at most 2n−1 − 2 moves have been
made and at most two pebbles stay onvn. In any case, at least 2n−1 − 1 pebbles remain on
Pn−1. Again, induction shows that�(Pn)�2n − 1. �

Note that the upper bound is also mentioned in[2].
Among all graphs onn vertices, the complete graph has the smallest pebbling num-

ber (n) and the path has the largest pebbling number (2n−1). In both cases, we have
�(G) = 2�(G) − 1. While this might lead one to guess that such a relation holds for
all (connected) graphs, this could not be farther from the truth. As the following theo-
rem shows, the ratio�(G)/�(G) is unbounded, even within the class of trees. The sub-
class offusesis defined as follows. The vertices ofFl(n) (l�2 andn�3) arev1, . . . , vn,
so that the firstl vertices form a path fromv1 to vl , and the remaining vertices are in-
dependent and adjacent only tovl . (The path is sometimes called thewick, while the
remaining vertices are sometimes called thesparks.) For example,F2(n) is the starSn

on n vertices. The fact that�(Sn) = 4n − 5 serves as the base case for the following
result.

Theorem 4. �(Fl(n)) = (n − l + 1)2l − 1.
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Proof. Following the arguments for the path given above, it is easy to see that so many
pebbles are required of a simple configuration sitting onv1.
Likewise, induction onl shows that so many pebbles suffice to cover the fuse. Indeed,

consider the cases whether or notv1 has pebbles on it and argue as was done for paths,
above.
Regarding the base casel = 2, we point out thatF2(n) is the star onn vertices, so we

can let any leaf play the role ofv1. If all the pebbles are onv2 then we can cover the star
easily. Otherwise, some leaf has at least one pebble on it, and we label that vertexv1. Now
we pebble as many as possible fromv1 to v2, leaving 1 or 2 onv1. Induction on the number
of leaves finishes the proof.�

We define thecovering ratioof G to be�(G) = �(G)/�(G). For a classF of graphs we
define�(F) = supG∈F �(G) if it exists, and�(F) = ∞, otherwise. Thus, for the families
K of complete graphs andP of paths, we have�(K) = �(P) = 2.

Theorem 5. LetTn be the family of all trees on n vertices. Then�(Tn) = ∞.

Proof. Since�(Fl(n))=2l +n− l−1 (see[5]), we see that, forn=2l + l,�(Fl(n)) > (n−
l)2l/(n − l + 2l ) > (n − lg n)/2. �

3. The transition digraph

The main goal of this section is to prove that any sequence of pebbling moves can be
replaced by one which is cycle free in a well-defined sense. For this, we introduce the
following concept.

Definition. Given a sequenceS of pebbling moves on graphG, thetransition digraphis a
directed multigraphdenotedT (G, S) that hasV (G) as its vertex set, and each moves ∈ S

along edgevivj (i.e., where two pebbles are removed fromvi and one placed onvj ) is
represented by one directed edgevivj .

Theorem 6. LetS be a sequence of pebbling moves onG, resulting in a configurationC.
Then there exists a sequenceS∗ of pebbling moves, terminating with a configurationC∗,
such that

1. On each vertexv, the number of pebbles inC∗ is at least as large as that inC, and
2. T (G, S∗) does not contain any directed cycles.

Proof. We apply induction on the number of directed cycles inT (G, S). The assertion is
trivially true for everyS where this number is zero.
Let nowS be arbitrary, and consider the shortest prefixS′ of S that contains a directed

cycle. That is, the last move inS′ creates a cycle, sayC′ = v1v2 · · · vk, in T (G, S′). For
i = 1,2, . . . , n, let us denote byd−

i andd+
i the in-degree and out-degree, respectively, of

vertexvi in T (G, S′). In the initial configuration, eachvi has to contain at least 2d
+
i − d−

i

pebbles, otherwise some move ofS′ could not be performed atvi .
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Let us consider the edge setF ′ = E(T (G, S′))\E(C′). By the choice ofS′, thisF ′ does
not contain any directed cycles. Hence it contains a vertexvi of in-degree zero. It means
d−
i = 0 if vi /∈ C′, andd−

i = 1 otherwise. In the former case,vi initially has at least 2d
+
i

pebbles and is incident with preciselyd+
i edges inF ′; while in the latter, the number of

pebbles atvi is at least 2d
+
i − 1 and that of its incident edges is justd+

i − 1. In either case,
vi has sufficiently many pebbles so that the pebbling moves for all of its incident edges in
F ′ are feasible before any move belonging toC′ has been performed.We now rearrangeS′
to make all moves ofF ′ involving vi at the beginning. Analogously,F ′ − vi has a vertexvj

of zero in-degree inF ′. Hence after the rearrangement of moves atvi , the moves of edges
incident withvj are feasible completely beforeC′. Eventually we obtain a rearrangement,
say S′′ of S′ where the moves ofC′ are performed at the very end, and of course the
concatenation ofS′′ andS − S′ terminates in configurationC. Now it is immediately seen
that the concatenationS+ of S′′ − C′ andS − S′ is a feasible sequence of moves that ends
up with a configurationC+ where the verticesv1, . . . , vk have one more pebble than inC,
and the other vertices have the same number of pebbles inC andC+. Since the number of
directed cycles inT (G, S+) is strictly smaller than that inT (G, S), the assertion follows
by induction. �

4. Trees

In this section we determine the (weighted) cover pebbling number for an arbitrary tree
T . Forv ∈ V (T ) define

s(v) =
∑

u∈V (T )

2d(u,v),

whered(u, v) denotes the distance fromu to v, and let

s(T ) = max
v∈V (T )

s(v).

Analogously, if a positive weight functionw is given, we define

sw(v) =
∑

u∈V (T )

w(u)2d(u,v)

and

sw(T ) = max
v∈V (T )

sw(v).

Clearly, for asimpleconfiguration sitting onv, sw(v) pebbles are necessary and sufficient
to coverT . Thus�w(T )�sw(T ) for everyT and every positivew. We are going to prove
that this obvious lower bound is in fact tight.

Theorem 7. For positive weight functionsw we have�w(T ) = sw(T ).

Proof. The theorem can be reformulated in the following equivalent form:
For every non-coverable configuration C there exists a simple non-coverable configu-
rationC∗ such that|C∗| = |C|.
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The proof of this latter assertion is essentially induction, where we either reduce the tree
to another tree with fewer vertices or keepT unchanged but decrease the support�(C) of
C without making its size|C| decrease.
We shall use the following terminology concerning a configurationC. We say that a

vertexv is a

• D-vertex with demandD(v) = w(v) − C(v) if w(v) − C(v) >0.
• N-vertex (neutral) ifC(v) = w(v). Then we defineD(v) = 0.
• S-vertex with supplyS(v) = C(v) − w(v) if C(v) − w(v) >0.

It is immediate by definition that every non-coverable configuration contains at least one
D-vertex.
Case1. T = K1 or T = K2.
These are trivial initial cases, handled already in the more general context of Theorem 2.
Case2.Some leaf of T is not an S-vertex.
Let v be such a leaf, and letu be its neighbor inT . We now deletev from T (with all its

pebbles), and increasew atu to the valuew′(u) = w(u) + 2D(v). Keepingw′(x) = w(x)

unchanged for allx /∈ {u, v}, the configurationC′ = C − v on the treeT ′ = T − v with
the weight functionw′ is coverable if and only if so isC on T with w. This follows from
Theorem 6, which implies that ifT is coverable, then there is a sequence of pebbling moves
where no pebble gets moved fromv to u. (To makev properly covered, we need to place at
leastD(v) additional pebbles on it; and this requires taking 2D(v) pebbles off ofu.)
Case3.Every leaf ofT is an S-vertex.
For a given leafv = v1, define the pathv1v2 · · · vm so thatvm is the other leaf ifT is a

path and is the only vertex of the path having degree at least 3 inT otherwise. In the latter
case we callvm thesplit vertex ofv1. If there is a support vertex other thanv1 on this path,
we call the one having minimum subscript thenearest supportvertex ofv1.
Sincev1 isanS-vertexwecanmoves1=�S(v1)/2�pebbles tov2.Moreover, ifs1> w(v2)−

C(v2) then we can further transmits2 = �(s1 + C(v2) − w(v2))/2� pebbles tov3, and so
on. For a vertexvk on this path we say thatv1 suppliesvk if at least one of the pebbles
from v1 can reachvk in this way. There are three possibilities forv1: v1 supplies its split
vertex,v1 supplies its nearest support vertex, orv1 supplies neither of these. We consider
these possibilities in reverse order.
Subcase A. Some leaf supplies neither its split nor its nearest support vertices.
We follow an argument similar to that in Case 2. Letv1 be such a leaf and letk be the

largest subscript so thatv1 suppliesvk (thenk < m andvi is not a support vertex for any
2� i�k). LetC′ andw′ be the restrictions ofC andw to T ′ = T − {v1, . . . , vk}, except
thatw′(vk+1) = w(vk+1) + 2D′, whereD′ = w(vk) − sk−1 is the resulting demand onvk

after being supplied byv1. ThenC′ is non-w′-coverable onT ′, and since|T ′| < |T | there is
a simple non-w′-coverable configuration of size|C′| onT ′. This yields a non-w-coverable
configurationC′′ of size |C| on T that sits on two vertices. IfT has at least three leaves
then some leaf is not an S-vertex and we are done by Case 2. OtherwiseT is a path and
�(C′′) = {v1, vn}. Non-w-coverability now means thatvn can supplyvkwith strictly fewer
thanD′ pebbles. Finally we test ifk−1�n−k. If so, then for everyj in the rangek�j �n,
d(v1, vj )�d(vj , vk). Thus, definingC∗(vn) = 0 andC∗(v1) = C′(v1) + C′(vn) = |C|,
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we obtain a simple non-coverable configuration, as required. Ifk − 1< n − k we do the
opposite.
Subcase B. Some leaf supplies its nearest support vertex.
Let v1 be such a vertex andvk its nearest support vertex (thenvi /∈�(C) for 1< i < k).

We defineC′(vk)=0 andC′(v1)=C(v1)+C(vk), keepingC′ identical toC on every other
vertex. Then|C′| = |C|, |�(C′)| < |�(C)|, andC′ is non-coverable wheneverC is, because
the supply fromv1 yields fewer pebbles onvk in C′ than inC.
Subcase C. Every leaf supplies its split vertex.
By Subcase B wemay assume that no leaf supplies its nearest support vertex. There must

be some vertexv that is the split vertex for two different leaves (indeed, choose any leaf
and letv be any vertex of degree atleast 3 at farthest distance from it—the two leaves past
v witness this). Label these leavesv1 andv� so thatP = v1 . . . vm . . . v� is the unique path
between them andv = vm. Recall thatvi is not a support vertex for any 1< i < � and that
bothv1 andv� supplyvm. Let us denote bysm their total supply forvm.
If sm > w(vm), thenP can supplyT − P with s′ = �12(sm − w(vm))� pebbles (at most);

and otherwise it needs to receive at leasts′′ =w(vm)−sm pebbles fromT −P . In both cases
we consider the problem restricted toP , wherew(vi) is kept unchanged for alli �= m, and
w(vm) is modified tosm + 1. This configuration onP is non-coverable. Thus, according to
Subcase A, theC(v1) + C(v�) pebbles can be placed on one vertex (v1 or v�), keepingP
non-coverable. It follows that the modified configuration, too, either suppliesT −P with at
mosts′ pebbles or needs to receive at leasts′′ pebbles fromT − P . In either case, the new
configuration onT is non-coverable and has at least one D-vertex leaf, thus we are done by
Case 2. �

From this proof we see that a non-coverable configuration of maximum size can be
assumed to be simple. The next result shows that the single support vertex must be an end
of a longest path. (This is the case even for weight functionsw where the longest paths are
not of maximum weight.)

Theorem 8. Given a tree T and a positive weight functionw, let C be a non-coverable
simple configuration of maximum size, with �(C) = {v}. Thenv is a leaf of a longest path
in T.

Proof. Since�w(T ) = sw(v) for somev, we need to show that the maximum value of
sw(v) is attained only on some endpoints of the longest path(s) ofT . We are going to prove
something stronger:everylongest path has at least one endpointx whosesw(x) is larger
thansw(u) for everyu which is not the endpoint of some longest path.
Suppose first thatT is just a pathv1v2 . . . vn. Consider any internal vertexvk (1< k < n).

We compare the partial sumss− =∑
1� i<kw(vi)2d(vi ,vk) ands+ =∑

k<i �nw(vi)2d(vi ,vk).
If s− �s+, thensw(vk−1) > sw(vk); and if s− �s+, thensw(vk+1) > sw(vk). Thus,sw(k)

can never be the largest.
Suppose next thatT is a treewith precisely three leaves.Applying the previous idea, from

any non-leaf vertex we can move to one of its neighbors and find there a larger value ofsw.
Hence, letv, v′, v′′ be the three leaves, and suppose that the longest pathP in T is the one
connectingv′ with v′′. We need to showsw(v) <max{sw(v′), sw(v′′)}. Letu be the unique
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degree-3 vertex ofT . We haved(u, v) < d(u, v′) andd(u, v) < d(u, v′′) (for otherwise the
v–v′ path or thev–v′′ path were at least as long as thev′–v′′ path, contrary to the assumption
onv). From this it is easily seen that for every vertexx, at least one ofd(v′, x) andd(v′′, x)

is at leastd(v, x) + 1. Consequently,sw(v′) + sw(v′′) >2sw(v), i.e. sw(v) cannot be the
largest.
Finally, let T be a tree with more than three leaves. LetP be one of its longest paths,

v∗ a leaf that doesnot belong to any longest path ofT , andv �= v∗ a leaf not onP (but
maybe on some other longest path ofT ). We apply the transformation onv as described
in Case 2 of the proof of Theorem 7. This modification keeps the functionsw unchanged
on all vertices ofT − v, moreoverP remains a longest path andv∗ does not become the
endpoint of any longest path inT − v. Thus, by induction on the number of vertices,sw is
larger on some endpoint ofP than onv∗. This completes the proof.�

5. Open problems

There are several natural problems and questions to ask.

Problem 9. Find �(G) for other graphs G, for example cubes, complete r-partite
graphs, etc.

For progress on this question during the year of the refereeing process see[4 and8].

Question 10. Is it true for all graphs G that at least one of the largest non-coverable
configurations on G is simple?

For progress on this question during the year of the refereeing process see[6 and7].

Problem 11. Find classes of graphsF whose covering ratio�(F) is bounded.

Question 12.Can the question, “Is �(G)�k?” be answered efficiently?

Thesequestions extend to positiveweight functions in anaturalway. Let us note, however,
that the situation drastically changes when “positive” is replaced by “nonnegative” forw.
This fact is already shown by the complete graphKn (n�3) where only one vertex is
required to be covered, which corresponds to the weights 1,0,0, . . . ,0. Here the unique
maximal non-coverable configuration has the pebble distribution 0,1,1, . . . ,1, in striking
contrast to the case wherew >0 and all pebbles may be concentrated on a suitably chosen
single vertex. Such considerations must be tackled in order to pursue theweighted pebbling
numberof a graphG, defined as�w(G) =maxw �w(G), where the maximum is taken over
all nonnegative weight functionsw of size|w| = w. The pebbling number�(G) is the case
w = 1.

Problem 13. Find �w(T ) for any tree T and weightw.



B. Crull et al. / Discrete Mathematics 296 (2005) 15–23 23

References

[1] F.R.K. Chung, Pebbling in hypercubes, SIAM J. Discrete Math. 2 (1989) 467–472.
[2] D. Hersovici, Graham’s conjecture on products of cycles, J. Graph Theory 42 (2003) 141–154.
[3] G. Hurlbert, A survey of graph pebbling, Congr. Numer. 139 (1999) 41–64.
[4] G. Hurlbert, B. Munyan, Cover pebbling hypercubes, Bull. Inst. Combin. Appl., to appear.
[5] D. Moews, Pebbling graphs, J. Combin. Theory (B) 55 (1992) 244–252.
[6] J. Sjostrand, The cover pebbling theorem, Math ArXiv, math.CO/0410129.
[7] A. Vuong, M. Wyckoff, Conditions for weighted cover pebbling of graphs, Math ArXiv, math.CO/0410410.
[8] N. Watson, C. Yerger, Cover pebbling numbers and bounds for certain families of graphs, Math ArXiv,

math.CO/0409321.


	The cover pebbling number of graphs
	Introduction
	Preliminary results
	The transition digraph
	Trees
	Open problems
	References


