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Abstract

A pebbling move on a graph consists of taking two pebbles off of one vertex and placing one pebble
on an adjacent vertex. In the traditional pebbling problem we try to reach a specified vertex of the
graph by a sequence of pebbling moves. In this paper we investigate the case when every vertex of
the graph must end up with at least one pebble after a series of pebbling movesvéheebbling
numberof a graph is the minimum number of pebbles such that however the pebbles are initially
placed on the vertices of the graph we can eventually put a pebble on every vertex simultaneously. We
find the cover pebbling numbers of trees and some other graphs. We also consider the more general
problem where (possibly different) given numbers of pebbles are required for the vertices.
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1. Introduction

The game of pebbling was first suggested by Lagarias and Saks, and introduced to the
literature in a paper of Churld]. A pebbling move consists of taking two pebbles “off”
of one vertex and placing one pebble on an adjacent vertex. Given a Grapbpecified
number of pebbles, and a configuration of the pebbles on the verticesioé goal is to be
able to move at least one pebble to any specified target vertex using a sequence of pebbling
moves. The pebbling numbe(G) is the minimum number of pebbles that are sufficient to
reach any target vertex regardless of the original configuration of the pebbles. In the present
context it is naturally assumed thedt graphs considered are connectédoews[5] found
the pebbling number of trees by using a clever path partition of the tree. For a survey of
additional results s€@].

In this paper we investigate the following question: How does the pebbling problem
change ifinstead of having a specified target vertex we need to place a pebble simultaneously
on every vertex of the graph? In some scenarios this seems to be a more natural question, for
example if information needs to be transmitted to several locations of a network, or if army
troops need to be deployed simultaneously. We definedker pebbling number(G) to
be the minimum number of pebbles needed to place a pebble on every vertex of the graph
using a sequence of pebbling moves, regardless of the initial configuration. We establish
the cover pebbling number for several classes of graphs, including complete graphs, paths,
fuses (a fuse is a path with leaves attached at one end), and more generally, trees. We also
describe the structure of the largest non-coverable configuration on a tree.

More generally, let a weight functiom be given that assigns an integefv) to each
vertexv of G. We say thatw is positiveif w(v) >0 for all v. We define thewveighted
cover pebbling number,, (G) to be the minimum numbérensuring that, from any initial
configuration withk pebbles there is a sequence of pebbling moves after which all the
verticesv simultaneously havey(v) pebbles on them. Our main result on trees in Section
4 determines,, (T) for every treel” and every positive weight function.

Given a configuratiod of pebbles, we will use the following notation. Tsige|C| of the
configuration denotes the number of pebble€ iThesupports(C) of the configuration is
the set oBupport verticesi.e. those on which there is at least one pebbl€.cfhe number
of pebbles onv in C is denoted byC (v) (hencep € ¢(C) if and only if C (v) > 0). We call
a configuratiorsimpleif its support consists of a single vertex. We say that a configuration
is cover-solvablgor simply coverable(resp.w-coverablg, if it is possible to transport at
least one pebble (resp.(v) pebbles) to every vertex of the graph simultaneously (and
non-coverableotherwise). As is customary, we denote the vertex set and edge 6kt of
by V(G) and E(G), respectively. IfG is of ordern, we sometimes denote its vertices by
v1, V2, ..., Uy.

2. Preliminary results

We begin with the cover pebbling number of the complete giEplonn vertices. Note
that the pebbling number fdt,,, 7(K,), isn (se€[3]).
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Theorem 1. y(K,) =2n — 1.

Proof. If 2n — 2 pebbles are placed on vertex then 2 pebbles will be used to cover each
of then — 1 other vertices. Thus no pebbles will remain to cayetHencey(K,,) >2n — 1.

Now suppose that at leask 2- 1 pebbles are placed on the vertices. We may suppose
that some vertex, say,, has no pebbles on it, otherwise the graph is already covered. The
pigeonhole principle says that some other vertex has at least two pebbles on it; we use those
to covery,. Since there are now at least 2 3 pebbles among the remaining- 1 vertices,
induction says we can cover them (of courg&k’1) = 1). Hencey(K,)<2n — 1. 0O

A similar inductive proof works also for weighted covering, and yields the following
result. Denote the total weight hy| = )", w(v) and define min = min, w(v).

Theorem 2.y, (K,) = 2|lw| — minw for every positive weight function.

Next we find the cover pebbling number of the p@&honn verticesuvy, .. ., v,, with
vivip1 € E for 1<i <n. Note thatt(P,) = 2"~ 1 (se€[3]).

Theorem 3. y(P,) =2" — 1.

Proof. If 2" — 2 pebbles are placed at vertey, then covering; will use 221 pebbles,
coveringv, will use 2:=2 pebbles, .., and coveringv,_1 will use 2 pebbles. Then no
pebbles will remain to cover,. Hencey(P,) >2" — 1.
Now suppose that at least 2 1 pebbles are placed on the vertices. If there are no pebbles

onv, then we may use at most2' pebbles to cover it, since(P,) = 2" 1. By induction,

the remaining 2-1 — 1 or more pebbles can covej,_ (of coursey(Py) = 1). If there are
pebbles on,, then move as many of them as possible,to1, leaving 1 or 2 onv,. Either

at least 2-1 — 1 pebbles have been movedup_1, or at most 2-1 — 2 moves have been
made and at most two pebbles stayugnin any case, at least 2! — 1 pebbles remain on
P,_1.Again, induction shows that P,) <2" — 1. [

Note that the upper bound is also mentionefin

Among all graphs om vertices, the complete graph has the smallest pebbling num-
ber (z) and the path has the largest pebbling numbérip In both cases, we have
7(G) = 2rn(G) — 1. While this might lead one to guess that such a relation holds for
all (connected) graphs, this could not be farther from the truth. As the following theo-
rem shows, the ratio(G)/n(G) is unbounded, even within the class of trees. The sub-
class offusesis defined as follows. The vertices 6f(n) (I >2 andn > 3) arevy, . .., vy,
so that the first vertices form a path fromy1 to v;, and the remaining vertices are in-
dependent and adjacent only tp (The path is sometimes called tldck, while the
remaining vertices are sometimes called fiparks) For example F»(n) is the stars,
on n vertices. The fact thap(S,) = 4n — 5 serves as the base case for the following
result.

Theorem 4. y(F;(n)) = (n — [ + 1)2! — 1.
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Proof. Following the arguments for the path given above, it is easy to see that so many
pebbles are required of a simple configuration sittingon

Likewise, induction orl shows that so many pebbles suffice to cover the fuse. Indeed,
consider the cases whether or ngthas pebbles on it and argue as was done for paths,
above.

Regarding the base cake- 2, we point out that»(n) is the star om vertices, so we
can let any leaf play the role af. If all the pebbles are om, then we can cover the star
easily. Otherwise, some leaf has at least one pebble on it, and we label thatwyeNexv
we pebble as many as possible frofrto vy, leaving 1 or 2 orv1. Induction on the number
of leaves finishes the proof.[]

We define theovering ratioof G to bep(G) =y(G)/n(G). For a class7 of graphs we
definep(#) = sup; .4 p(G) if it exists, andp(F ) = oo, otherwise. Thus, for the families
" of complete graphs an# of paths, we have(#") = p(£) = 2.

Theorem 5. Let.7,, be the family of all trees on n vertices. Thetv ) = oc.

Proof. Sincen(F;(n))=2'+n—1—1 (sed5]), we see that, fot =2/ +1, p(F;(n)) > (n —
D2 /n—1+2>@m—Ign)/2. O

3. The transition digraph

The main goal of this section is to prove that any sequence of pebbling moves can be
replaced by one which is cycle free in a well-defined sense. For this, we introduce the
following concept.

Definition. Given a sequencg of pebbling moves on grapfi, thetransition digraphis a
directed multigraptdenotedr' (G, S) that hasV (G) as its vertex set, and each move §
along edgey;v; (i.e., where two pebbles are removed fremand one placed on;) is
represented by one directed edge;.

Theorem 6. Let S be a sequence of pebbling moves@resulting in a configuratiorC.
Then there exists a sequenge of pebbling moveserminating with a configuratior€*,
such that

1. On each vertex, the number of pebbles iG* is at least as large as that i@, and
2. T(G, §*) does not contain any directed cycles.

Proof. We apply induction on the number of directed cycle§i(G, S). The assertion is
trivially true for everyS where this number is zero.

Let now S be arbitrary, and consider the shortest préfixof S that contains a directed
cycle. That is, the last move i creates a cycle, sa§’ = vivy - - - v, in T(G, S'). For
i=12,...,n,letusdenote by, andd;“ the in-degree and out-degree, respectively, of
vertexv; in T (G, §’). In the initial configuration, eacty has to contain at Ieaslalﬁr —d;
pebbles, otherwise some moveSfcould not be performed at.
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Let us consider the edge s&t= E(T (G, S"))\E(C"). By the choice ofS’, this F’ does
not contain any directed cycles. Hence it contains a varte{ in-degree zero. It means
d7 =0if v; ¢ C’, andd;” = 1 otherwise. In the former casg, initially has at least 2"
pebbles and is incident with precise:ly“ edges inF’; while in the latter, the number of
pebbles at; is at least 2;“ — 1 and that of its incident edges is juﬁ — 1. In either case,
v; has sufficiently many pebbles so that the pebbling moves for all of its incident edges in
F’ are feasible before any move belongingtchas been performed. We now rearrasge
to make all moves of”" involving v; at the beginning. Analogously;,’ — v; has a vertex;
of zero in-degree iF’. Hence after the rearrangement of moves; athe moves of edges
incident withv; are feasible completely befot&. Eventually we obtain a rearrangement,
say S” of S’ where the moves of”’ are performed at the very end, and of course the
concatenation of” andS — S’ terminates in configuratio@. Now it is immediately seen
that the concatenatia$i™ of S” — C’ andS — S’ is a feasible sequence of moves that ends
up with a configuratiorC ™ where the verticesy, . .., v, have one more pebble thandh
and the other vertices have the same number of pebblésimdC ™. Since the number of
directed cycles i’ (G, ST) is strictly smaller than that iff (G, S), the assertion follows
by induction. O

4. Trees

In this section we determine the (weighted) cover pebbling number for an arbitrary tree
T.Forv e V(T) define

s(v) = Z 24wy
ueV(T)

whered (u, v) denotes the distance fromto v, and let

s(T) = max s(v).
veV(T)

Analogously, if a positive weight functiom is given, we define
sw@) =Y w2V
ueV(T)
and
sw(T) = max sy, (v).
veV(T)
Clearly, for asimpleconfiguration sitting on, s,, (v) pebbles are necessary and sufficient

to coverT. Thusy,, (T) >s, (T) for everyT and every positivev. We are going to prove
that this obvious lower bound is in fact tight.

Theorem 7. For positive weight functions we havey, (T) = s, (7).

Proof. The theorem can be reformulated in the following equivalent form:
For every non-coverable configuration C there exists a simple non-coverable configu-
ration C* such thaC*| = |C]|.
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The proof of this latter assertion is essentially induction, where we either reduce the tree
to another tree with fewer vertices or keBpinchanged but decrease the suppo€) of
C without making its sizeéC| decrease.

We shall use the following terminology concerning a configuratioriVe say that a
vertexv is a

o D-vertex with demand (v) = w(v) — C(v) if w(v) — C(v) > 0.
e N-vertex (neutral) ifC (v) = w(v). Then we definé (v) = 0.
e S-vertex with supph§(v) = C(v) — w(v) if C(v) — w(v) > 0.

Itis immediate by definition that every non-coverable configuration contains at least one
D-vertex.

Casel. T =KjorT =Ko.

These are trivial initial cases, handled already in the more general context of Theorem 2.

Case2. Some leaf of T is not an S-vertex.

Letv be such a leaf, and latbe its neighbor irf". We now delete from T (with all its
pebbles), and increaseat u to the valuew’(u) = w(u) + 2D (v). Keepingw’(x) = w(x)
unchanged for alk ¢ {u, v}, the configuratiorC’ = C — v on the treeT’ = T — v with
the weight functionw’ is coverable if and only if so i€ on T with w. This follows from
Theorem 6, which implies that if is coverable, then there is a sequence of pebbling moves
where no pebble gets moved franto «. (To makev properly covered, we need to place at
leastD(v) additional pebbles on it; and this requires taking(2) pebbles off of:.)

Case3. Every leaf of" is an S-vertex.

For a given leabh = vq, define the pathyvz - - - v, SO thatv,, is the other leaf ifT is a
path and is the only vertex of the path having degree at least Ditmerwise. In the latter
case we call,, thesplit vertex ofvs. If there is a support vertex other thapon this path,
we call the one having minimum subscript thearest supponertex ofvs.

Sincev; isan S-vertex we can moye=|S(v1)/2| pebblesta,. Moreover, ifs; > w(v2)—
C(v2) then we can further transmiz = | (s1 + C(v2) — w(v2))/2] pebbles taws, and so
on. For a vertexy on this path we say that; suppliesuvy if at least one of the pebbles
from v1 can reachy in this way. There are three possibilities for. v1 supplies its split
vertex, vy supplies its nearest support vertexversupplies neither of these. We consider
these possibilities in reverse order.

Subcase A. Some leaf supplies neither its split nor its nearest support vertices.

We follow an argument similar to that in Case 2. etbe such a leaf and létbe the
largest subscript so thai suppliesv; (thenk <m andv; is not a support vertex for any
2<i<k). Let C’ andw’ be the restrictions of andw to 7" =T — {v1, ..., v}, except
thatw’(vg11) = w(vesr1) + 2D, whereD' = w(vy) — si_1 is the resulting demand an
after being supplied by;. ThenC’ is non«w’-coverable off”’, and sinceT’| < |T| there is
a simple norw’-coverable configuration of siz€’| on 7"’. This yields a nony-coverable
configurationC” of size|C| on T that sits on two vertices. If' has at least three leaves
then some leaf is not an S-vertex and we are done by Case 2. Oth&hsse path and
a(C") = {v1, v, }. Non-w-coverability now means that, can supplyv,with strictly fewer
thanD’ pebbles. Finally we testif—1>n — k. If so, then for every in the rang& < j <n,
d(vy,vj)=>d(vj, vr). Thus, definingC*(v,) = 0 andC*(v1) = C'(v1) + C'(vy) = |C],
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we obtain a simple non-coverable configuration, as requirdd-fl <n — k we do the
opposite.

Subcase B. Some leaf supplies its nearest support vertex.

Let v1 be such a vertex ang, its nearest support vertex (then¢ ¢(C) for 1 <i <k).

We defineC’(vx) =0 andC’(v1) = C(v1) + C(vr), keepingC’ identical toC on every other
vertex. TherlC’| =|C|, |o(C"| < |a(C)|, andC’ is non-coverable whenevéris, because
the supply fromwq yields fewer pebbles ony, in C’ than inC.

Subcase C. Every leaf supplies its split vertex.

By Subcase B we may assume that no leaf supplies its nearest support vertex. There must
be some vertex that is the split vertex for two different leaves (indeed, choose any leaf
and letv be any vertex of degree atleast 3 at farthest distance from it—the two leaves past
v witness this). Label these leavesandv, so thatP =v; ... v, ... v, is the unique path
between them and = v,,. Recall thatv; is not a support vertex for any<di < ¢ and that
bothv1 andv, supplyv,,. Let us denote by, their total supply fow,,,.

If 5, > w(vy), thenP can supplyl’ — P with s = L%(sm — w(vy,))] pebbles (at most);
and otherwise it needs to receive at ledst w(v,,) —s,, pebbles fronT” — P. In both cases
we consider the problem restricted o wherew (v;) is kept unchanged for all# m, and
w(vy,) Is modified tas,, + 1. This configuration orP is non-coverable. Thus, according to
Subcase A, th€ (v1) + C(vy) pebbles can be placed on one vertexdr v,), keepingP
non-coverable. It follows that the modified configuration, too, either supplies® with at
mosts’ pebbles or needs to receive at ledspebbles fronl” — P. In either case, the new
configuration orf" is non-coverable and has at least one D-vertex leaf, thus we are done by
Case2. O

From this proof we see that a non-coverable configuration of maximum size can be
assumed to be simple. The next result shows that the single support vertex must be an end
of alongest path. (This is the case even for weight functiomghere the longest paths are
not of maximum weight.)

Theorem 8. Given a tree T and a positive weight functian let C be a non-coverable
simple configuration of maximum sjz&th ¢(C) = {v}. Thenv is a leaf of a longest path
inT.

Proof. Sincey, (T) = s, (v) for somev, we need to show that the maximum value of
sy (v) is attained only on some endpoints of the longest path(§) ¥¥e are going to prove
something strongeeverylongest path has at least one endpainthoses,, (x) is larger
thans,, (1) for everyu which is not the endpoint of some longest path.

Suppose first thak is just a pathvqvz . . . v,. Consider any internal vertex (1 < k < n).

We compare the partial sums =), ., _,w(v)2?0 ) ands ™=y, _; o, w(v;) 2400,
If s~ <sT, thens, (vi_1) > sw(vg); and if s~ >sT, thensy, (vir1) > sw(vr). Thus,s, (k)
can never be the largest.

Suppose next thdt is a tree with precisely three leaves. Applying the previous idea, from
any non-leaf vertex we can move to one of its neighbors and find there a larger vajue of
Hence, letv, v’, v” be the three leaves, and suppose that the longestpathl is the one
connecting’ with v”. We need to show, (v) < max{s, (v"), s, (v")}. Letu be the unique
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degree-3 vertex df . We haved (u, v) < d(u, v") andd (u, v) < d(u, v") (for otherwise the
v—v’ path or the)—v” path were at least as long as iftev” path, contrary to the assumption
onv). From this it is easily seen that for every verigxat least one af (v/, x) andd (v”, x)

is at leastd (v, x) + 1. Consequentlys,, (v) + sy, (V") > 25, (v), i.€. 5y, (v) cannot be the
largest.

Finally, let T be a tree with more than three leaves. [Pebe one of its longest paths,
v* a leaf that doesot belong to any longest path @f, andv # v* a leaf not onP (but
maybe on some other longest path7of We apply the transformation anas described
in Case 2 of the proof of Theorem 7. This modification keeps the funetiaimchanged
on all vertices ofl’ — v, moreoverP remains a longest path amd does not become the
endpoint of any longest path i — v. Thus, by induction on the number of vertices,is
larger on some endpoint @f than onv*. This completes the proof.[]

5. Open problems
There are several natural problems and questions to ask.

Problem 9. Find y(G) for other graphs G for example cubgscomplete r-partite
graphs etc.

For progress on this question during the year of the refereeing procelgsas®is].

Question 10. Is it true for all graphs G that at least one of the largest non-coverable
configurations on G is simpke

For progress on this question during the year of the refereeing procel€saseiy].
Problem 11. Find classes of graphg whose covering rati@ () is bounded.
Question 12. Can the questiartls p(G) <k?” be answered efficiently

These questions extend to positive weight functions in a natural way. Let us note, however,
that the situation drastically changes when “positive” is replaced by “nonnegative’. for
This fact is already shown by the complete gragh (n>3) where only one vertex is
required to be covered, which corresponds to the weighiis@ . . ., 0. Here the unique
maximal non-coverable configuration has the pebble distributjidnD) ..., 1, in striking
contrast to the case whewe> 0 and all pebbles may be concentrated on a suitably chosen
single vertex. Such considerations must be tackled in order to pursueitieted pebbling
numberof a graphG, defined ast,, (G) = max, y,,(G), where the maximum is taken over
all nonnegative weight functions of size|w| = w. The pebbling numbert(G) is the case
w=1.

Problem 13. Find n,,(T) for any tree T and weight.
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