
Journal of Algebra 320 (2008) 3481–3492

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Deformation of a smooth Deligne–Mumford stack via
differential graded Lie algebra

Yasunari Nagai ∗, Fumitoshi Sato

Korea Institute for Advanced Study (KIAS), 207-43 Cheongnyangni 2-dong, Dongdaemun-gu, Seoul 130-722, Republic of Korea

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 July 2007
Available online 9 September 2008
Communicated by Corrado de Concini

Keywords:
Deformation theory
Deligne–Mumford stack

For a smooth Deligne–Mumford stack over C, we define its
associated Kodaira–Spencer differential graded Lie algebra and
show that the deformation functor of the stack is isomorphic to
the deformation functor of the Kodaira–Spencer algebra if the stack
is proper over C.

© 2008 Elsevier Inc. All rights reserved.

Introduction

Grothendieck and his followers established a general method to deal with the deformation theory,
which was initiated by Kodaira and Spencer. Grothendieck’s method can be applied to the deformation
of almost every algebro-geometric (or analytico-geometric) object.

Recently, many people believe that a deformation theory over a field of characteristic 0 should
be ‘controlled’ by a differential graded Lie algebra (DGLA in short). This principle seems to have come
from the researches concerning homotopy theory, quantization, mirror symmetry, etc. (see, for exam-
ple, [K]).

One prototype example to this principle is the deformation theory of compact complex manifold
via Maurer–Cartan equation on the vector field valued (0,1)-forms. This is the Newlander–Nirenberg
theorem (or rather Kuranishi’s proof of the existence of Kuranishi space). If we restrict to infinitesimal
deformations, we can describe the situation as a bijection between

{
Maurer–Cartan solutions in KS1

X ⊗ mA
}

gauge equivalence
∼=

{
deformations of a compact

complex manifold X over A

}

isomorphisms
(1)
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where A is a local artinian C-algebra and KS•
X = (A0,•

X (ΘX ), ∂̄, [−,−]) the Kodaira–Spencer algebra on
X (see Theorem 1.10). This isomorphism is functorial in A. The left-hand side is the deformation
functor associated to the Kodaira–Spencer DGLA KS•

X , denoted by DefKSX , and the right-hand side is
the usual deformation functor DefX of X .

Although the correspondence (1) was originally based on highly analytic arguments by Newlander–
Nirenberg, the statement itself concerns only infinitesimal deformations, therefore it is algebraic in
nature. Actually, Iacono [Ia] recently gave a purely algebraic proof (i.e., it involves no analysis of
differential equations).

With a view toward this situation, it is quite reasonable to expect that the correspondence (1) can
be generalized to the case of smooth Deligne–Mumford stacks. We can get some flavor from the case
where X is given by a global quotient [X/G] of a proper smooth algebraic variety X by an action of
a finite group G . Giving a deformation of X = [X/G] should be equivalent to giving a deformation
of X on which the G-action lifts. Therefore, the deformations of X are given by the G-invariant part
DefX (A)G of the deformations of X . Since the correspondence (1) is G-equivariant, if we take (KS•

X )G

as the DGLA, we get a functorial bijection

Def(KSX )G (A)
∼→ DefX (A)G ,

which describes the infinitesimal deformations of the stack X = [X/G] via a DGLA (KS•
X )G .

In this article, we prove the following theorem:

Main Theorem (Theorem 4.4). Let X be a smooth separated analytic Deligne–Mumford stack. Then we can
associate the Kodaira–Spencer differential graded Lie algebra KS•

X and there is a natural isomorphism of
deformation functors

Γ : DefKSX → DefX .

By a standard GAGA type argument (Proposition 2.6), we also have a corresponding statement for
a proper smooth (algebraic) Deligne–Mumford stack over C.

Corollary. Let X be a proper smooth Deligne–Mumford stack over C. Then we also have the isomorphism
DefKSX

∼→ DefX , where the right-hand side is the deformation functor of algebraic deformations of X .

One obvious application of our main theorem is the deformation of a proper algebraic variety with
only isolated quotient singularities, because the isolated quotient singularity is rigid if the dimension
is not less than three [Sch2].

Corollary. Let X be a proper algebraic variety with only isolated quotient singularities over C of dimension
not less than three. Then the deformation functor of X is isomorphic to the deformation functor of the Kodaira–
Spencer algebra on the canonical covering stack X → X.

More generally, our main theorem describes the locus of equisingular deformations in the defor-
mation space of a proper normal variety with only quotient singularities, i.e., a complex V-manifold.

Our proof of the main theorem is parallel to the proof in [Ia]. We mention some reasons why one
can transplant the proof to the case of DM stacks. One reason is, of course, the algebraic nature of
the arguments of the proof in [Ia]. Another is the recent development of the deformation theory on
algebraic stacks due to Aoki and Olsson [A,O1]. In particular, it is crucial for our argument that Aoki’s
theorem on the equivalence of the deformation functor of an algebraic stack and the deformation
functor of the simplicial space associated to the stack.

The article goes as follows. In Section 1, we review some general results on deformation functors
and DGLA fixing our notation. The next section treats the deformation theory of stacks. We review
Aoki’s result and deduce some consequences in the case of DM stacks. We also treat GAGA type
arguments for DM stacks as far as we need. In Section 3, we define the Kodaira–Spencer algebra on a
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smooth DM stack and prove a Dolbeault type theorem, which is essentially due to Behrend [B]. After
these preparations, we verify that the proof in [Ia] works completely in the case of our main theorem.

1. Deformation theory and differential graded Lie algebras

In this section, we review the theory of deformation functors of differential graded Lie algebras
and its application to the deformation theory of a compact complex manifold. The references are [M]
and [Ia, Chapter I]. For Section 1.3, see also [F-M].

1.1. Let Art be the category of local artinian C-algebra A such that A/mA ∼= C, where mA is the
maximal ideal of A. We mean by a functor of artinian rings [Sch1] a covariant functor

D : Art → Set

such that D(C) is the one-point set. The tangent space tD to a functor of artinian rings D is defined
by

tD = D
(
C[ε]),

where C[ε] is the ring of dual numbers C[x]/(x2).

1.2. Let A, B, C be local artinian C-algebras and

η : D(B ×A C) → D(B) ×D(A) D(C)

be the natural map. We call a functor of artinian rings D a deformation functor if it satisfies (i) if
B → A is surjective, so is η, and (ii) If A = C, η is bijective [M, Definition 2.5]. We remark that
these conditions are closely related to Schlessinger’s criterion of existence of a hull (see Remark to
Definition 2.7 in [F-M]).

1.3. Most deformation functors are described (in an implicit way) by obstruction classes to the ex-
istence of a lifting of a small extension and the space which parametrizes the isomorphism classes of
liftings in case the obstruction vanishes. Fantechi and Manetti abstracted these “obstruction theories”
in the framework of functors of artinian rings ([F-M, Definition 3.1], see also [M, Definition 2.12]).
An obstruction theory of a functor of artinian rings D is a pair (V ,ob(−)) consisting of a C-vector
space V , the obstruction space, and a map ob(α) : D( Ā) → V ⊗ I , the obstruction map, for every small
extension

α: 0 → I → A → Ā → 0,

i.e., an extension with I · mA = 0, satisfying the following conditions:

1. If x̄ ∈ D( Ā) lifts to D(A), ob(α)(x̄) = 0.
2. For any morphism ϕ of small extensions

α1: 0 I1

ϕI

A1

ϕ

Ā1

ϕ̄

0

α2: 0 I2 A2 Ā2 0,

we have the compatibility ob(α2)(ϕ̄∗(x̄)) = (idV ⊗ϕI )(ob(α1)(x̄)) for every x̄ ∈ D( Ā1).
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Moreover, if ob(α)(x̄) = 0 implies the existence of a lifting of x̄ to D(A), the obstruction theory is
called complete.

Proposition 1.4. (See [M, Proposition 2.17].) Let D1 and D2 be deformation functors and ϕ : D1 → D2 a
morphism of functors, (V 1,obD1 ) and (V 2,obD2 ) obstruction theories for D1 and D2 , respectively. Assume
that

(i) ϕ induces a surjection (resp. bijection) on the tangent spaces tD1 → tD2 .
(ii) There is an injective linear map between obstruction spaces ψ : V 1 → V 2 such that obD2 ◦ϕ = ψ ◦ obD1 .

(iii) The obstruction theory (V 1,obD1 ) is complete.

Then, the morphism ϕ is smooth (resp. étale).

1.5. Now we recall the definition of a differential graded Lie algebra. Let L• = ⊕
i∈Z

Li be a graded
C-vector space. A triple (L•,d, [−,−]) is a differential graded Lie algebra (DGLA in short) if it satisfies
(i) d = ∑

di is a homogeneous differential of degree 1, i.e., di : Li → Li+1 and d ◦ d = 0, (ii) the bracket
[−,−] is a homogeneous, graded skew-symmetric bilinear form on L• , i.e., [Li, L j] ⊂ Li+ j and [a,b] +
(−1)deg a·deg b[b,a] = 0, (iii) the graded Jacobi identity [a, [b, c]] = [[a,b], c] + (−1)deg a·deg b[b, [a, c]]
holds for the bracket, and (iv) the graded Leibniz rule d[a,b] = [da,b] + (−1)deg a[a,db] holds.

1.6. Given a DGLA L• , we can associate its Maurer–Cartan functor as follows. Let L• be a DGLA and
A a local artinian C-algebra. We define the Maurer–Cartan functor MCL : Art → Set associated to L• by

MCL(A) =
{

x ∈ L1 ⊗ mA

∣∣∣ dx + 1

2
[x, x] = 0

}
,

where d and [−,−] is the DGLA structure on L• ⊗ mA induced in an obvious way by L• . We call an
element of MCL(A) a Maurer–Cartan solution.

1.7. In some cases, the space of Maurer–Cartan solutions MCL(A) is ‘too big.’ In such a case, we
get a more reasonable deformation functor considering the gauge action. Let L• be a DGLA and a ∈
L0 ⊗ mA where A is a local artinian C-algebra. For x ∈ L1 ⊗ mA , the gauge action of a is given by

ea ∗ x = x +
∞∑

n=0

[a,−]n

(n + 1)!
([a, x] − da

)
,

where [a,−]n(y) is the operator [a,−] applied to y n-times recursively: [a, [a, [· · · , [a, y] · · ·]]]. Note
that the gauge action preserves the space of the Maurer–Cartan solutions MCL(A). Two Maurer–
Cartan solutions x, y ∈ MCL(A) are said to be gauge equivalent if there exists a ∈ L0 ⊗ mA such
that y = ea ∗ x. We define the deformation functor DefL : Art → Set of a DGLA L• by DefL(A) =
MCL(A)/(gauge equivalence). One can easily check the following facts (see, for example, [Ia, §I.3.5]):

(i) The functor DefL is a deformation functor in the sense of Definition 1.2.
(ii) The tangent space to the deformation functor DefL is canonically isomorphic to H1(L•,d).

(iii) There is a natural complete obstruction theory of DefL with the obstruction space H2(L•,d).

1.8. One of the DGLA’s which appear naturally in a geometric context is the Kodaira–Spencer alge-
bra. Let X be a complex manifold and KSp

X = A0,p
X (ΘX ) be the space of C∞-differential forms of type

(0, p) with (holomorphic) vector field coefficients. Then, (KS•
X , ∂̄, [−,−]) is a DGLA in a natural way,

where [−,−] is a bracket induced by the Lie bracket on ΘX . We call this DGLA the Kodaira–Spencer
algebra.
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1.9. We can reformulate the classical deformation theory of a compact complex manifold by
Kodaira–Spencer, Newlander–Nirenberg and Kuranishi, using the framework of DGLA and its defor-
mation functor for infinitesimal deformations.

Let X be a scheme (resp. an analytic space) and A be a local artinian C-algebra. A lifting
of X to A is a pair ( X̃,ϕ) where X̃ is a scheme (resp. an analytic space) flat over A and ϕ
is an isomorphism X̃ ×Spec A Spec C

∼→ X . Two liftings ( X̃1,ϕ1) and ( X̃2,ϕ2) are isomorphic if
there exists an A-isomorphism f̃ : X̃1 → X̃2 that is compatible with the marking isomorphisms,
i.e. ϕ1 = ϕ2 ◦ ( f̃ ⊗A C). We define the deformation functor DefX : Art → Set of X by DefX (A) =
{isomorphism class of liftings X̃ of X to A}.

Theorem 1.10. (See [Ia, Theorem II.7.3].) Let X be a complex manifold and KS•
X the associated Kodaira–Spencer

algebra. Then we have an isomorphism γ : DefKSX → DefX between the deformation functors.

2. Deformation of a Deligne–Mumford stack

Recently, Aoki [A] explored the deformation theory of an algebraic stack (in the sense of Artin),
whose work depends on the preceding work by Olsson [O1,O2]. In the first half of this section, we
review some results from [A].

We can define a deformation functor DefX of an algebraic stack X just as in (1.9) for an algebraic
stack X , namely, for a local artinian C-algebra A, we define DefX (A) to be the set of isomorphism
classes of liftings X̃ of X to A (here we note that we will only consider 1-isomorphism classes of
liftings, so that our deformation functor is coarser than the one in [A, Definition 1.1]).

We will write groupoid space for internal groupoid in the category of algebraic spaces [A, Defi-
nition 2.1.2]. To an algebraic stack X , we can associate a choice of a smooth atlas U → X and a
groupoid space

T = Rs ×
U

t R m
R

i

s
t

U
e

(2)

such that s and t are smooth and (s, t) : R → U × U is quasi-compact and separated. Conversely, if we
are given a groupoid space R ⇒ U with these properties, we can recover the algebraic stack X .

For a groupoid space R ⇒ U , we can naturally define its associated deformation functor Def(R⇒U ) :
Art → Set in an obvious way. Aoki [A] showed that the correspondence between algebraic stacks and
groupoid spaces induces an isomorphism of these deformation functors.

Theorem 2.1. (See [A, Proposition 3.2.5].) Let X be an algebraic stack and R ⇒ U be an associated groupoid
space. Then there is a natural isomorphism of functors

C : Def(R⇒U ) → DefX .

As a corollary, we get the following results.

Corollary 2.2. (See [A, Corollary 3.2.6].) Let A → Ā be an extension with square zero ideal I = Ker(A → Ā)

and X be an algebraic stack flat over S = Spec Ā. Denote by p : X• → S the associated simplicial space over
S to a groupoid representation X0 = U → X . Then, (i) there is an obstruction class ω ∈ Ext2(L X•/S , p∗ I) to
the existence of a lifting of X to A, and (ii) if ω vanishes, the set of isomorphism classes of liftings of X to A
is a torsor under Ext1(L X•/S , p∗ I), where L X•/S is the cotangent complex associated to the ringed étale topos
on X• [Il] and Ext groups are also computed on the étale site.

Corollary 2.3. (See [A, §4.2].) The functor DefX , and therefore Def(R⇒U ) , is a deformation functor in the sense
of (1.2).
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If we restrict to a Deligne–Mumford stack (DM stack in short), we can take an étale atlas U → X
so that all the projections of the simplicial scheme X• are étale. The transitivity of the cotangent
complex [Il, II.2.1.5.6] and the vanishing of the cotangent complex for étale morphisms [Il, Proposi-
tion III.3.1.1] imply that L X•/S descends to the cotangent complex LX /S on the étale site of X . This
implies the following corollary:

Corollary 2.4. For a DM stack X , the liftings of f : X → S with square zero ideal I are controlled by the
Ext groups on the étale site Exti(LX /S , f ∗ I), (i = 1,2). In particular, the deformation functor DefX is
isomorphic to the deformation functor of the structure sheaf OX , i.e., the functor

DefOX (A) =
{

isomorphism class of a sheaf of algebras S flat over A
on the étale site over X such that S ⊗A C ∼= OX

}
.

In the rest of this section, we review some comparison results of GAGA type as much as we need.
In the definition of algebraic stacks, if we replace the category of schemes by the category of

analytic spaces, we get the concept of analytic stacks in Artin’s sense, or Deligne–Mumford’s sense.
Given an algebraic stack X , we have the associated analytic stack Xan; one way to see this is to take
a groupoid R ⇒ U representing X and take the associated groupoid of analytic spaces Ran ⇒ Uan ,
which induces Xan . Similarly, we have the concept of liftings of an analytic stack to a local artinian
ring and if we have a lifting X̃ of an algebraic stack X to A, we have the corresponding lifting of
analytic stack X̃an of Xan to A, i.e., we have a natural transformation

α : DefX → DefXan .

Note that the proof of Theorem 2.1 holds true for analytic stacks by the same proof as in [A,Il,O1];
therefore, Corollary 2.4 also holds true for analytic DM stacks.

Proposition 2.5. Let X be a DM stack proper over an affine C-scheme S and F be a coherent sheaf on X .
Then we have a natural isomorphism

H p(X ,F ) ∼= H p(Xan,Fan).

Proof. This is standard. Chow’s Lemma for DM stacks [L-M, Corollaire 16.6.1] and the dévissage tech-
nique of Grothendieck ([EGA3, §3], or [G]) reduces the proof to the classical case [Se]. �
Proposition 2.6. The natural transformation α : DefX → DefXan is an isomorphism if X is a smooth DM
stack proper over C.

Proof. As we assumed that X is smooth, the infinitesimal deformation space and the obstruction
space in Corollary 2.4 are given by Hi(X ,ΘX ) (i = 1,2). We also have the same statement for
Xan . If we apply Proposition 2.5 for F = ΘX , we get our proposition. �

We remark that as a corollary of the proposition, we get an isormorphism of the deformation
functors Def(R⇒U )

∼= Def(Ran⇒Uan) . The obstruction theory in the proof of the proposition above is in
fact a complete obstruction theory in the sense of Definition 1.3.

Proposition 2.7. Let X be a smooth (algebraic or analytic) DM stack and DefX its deformation functor.
There is a natural complete obstruction theory for DefX with obstruction space H2(X ,ΘX ). If X is proper
over C, the obstruction theory is compatible with the operation of taking the associated analytic stack.

Proof. This is also implied by [A, Corollary 3.2.6]. The compatibility with base change (ii) in Defini-
tion 1.3 goes back to the definition of the obstruction class in [Il, Théorème 2.1.7]. �
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3. Kodaira–Spencer algebra associated to a smooth DM stack

The observation in the introduction suggests that the deformation theory of a smooth Deligne–
Mumford stack should also be controlled by a DGLA something like the Kodaira–Spencer algebra, and
such a DGLA should be realized as a DGL sub-algebra of the Kodaira–Spencer algebra of an atlas of
the stack.

For a Deligne–Mumford stack X , the cotangent sheaf ΩX is a well-defined OX -coherent sheaf
and it is locally free if X is smooth. Therefore, the tangent sheaf ΘX is also a locally free sheaf for
a smooth X . Similarly, on the étale site over Xan , we have the sheaf of C∞-differentials A p,q

Xan
.

In the rest of the article, we will work in the analytic category. Moreover, we always assume that
a DM stack is locally compact and second-countable, i.e., we assume that every analytic space in the étale
site of a DM stack (in particular an atlas) is locally compact and second-countable.

Now take an étale atlas U → X . Let R = U ×X U be the “space of relations” and s, t : R → U the
first and second projections, respectively. Since U is a smooth space, we have the associated Kodaira–
Spencer algebra KS•

U = A0,•
U (ΘU ). The étale morphism s : R → U induces a map s∗ : A0,p

U (ΘU ) →
A0,p

R (ΘR) and the same holds for t .

Proposition–Definition 3.1. Let X be a smooth DM stack. Define KS•
X by

KSp
X = {

x ∈ A0,p
U (ΘU )

∣∣ s∗x = t∗x
} ⊂ A0,p

U (ΘU ).

Then,

(i) KSp
X does not depend on the choice of an atlas U → X . More precisely, KSp

X is the space of global

sections Γ (X ,A 0,p
X (ΘX )).

(ii) KS•
X = ⊕

p KSp
X is a differential graded Lie sub-algebra of KS•

U .

We call KSX the Kodaira–Spencer algebra of the DM stack X .

Proof. (i) is nothing but the descent property of A 0,p
X (ΘX ) on the analytic-étale site on X . For (ii),

it is enough to show that KS•
X is closed under ∂̄ and the bracket [−,−] of KS•

U . This is equivalent to
saying that ∂̄ and [−,−] commute with s∗ and t∗ . But this is obvious because s and t are étale. �

Example 3.2. For a global quotient DM stack [X/G], we can take X → [X/G] as an atlas. The proposi-
tion immediately implies that KS•[X/G] = (KS•

X )G .

Given the Kodaira–Spencer algebra KS•
X for a smooth DM stack, we can, of course, consider its

deformation functor DefKSX . Its tangent space and complete obstruction space (1.7) can be computed
by the following Dolbeault type theorem.

Theorem 3.3. Let X be a smooth separated DM stack over C. Then there is an isomorphism H p(KS•
X , ∂̄)

∼→
H p(X ,ΘX ) for all p.

Proof. Take an étale atlas U → X with U smooth and Stein and consider the associated Čech–
Dolbeault complex as usual:
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0 Γ (U p,Θ) Γ (U p,A 0,0(Θ)) · · · Γ (U p, A0,q(Θ)) · · ·

.

.

.
.
.
.

.

.

.

0 Γ (U1,Θ) Γ (U1,A 0,0(Θ)) · · · Γ (U1, A0,q(Θ)) · · ·

0 Γ (U0,Θ)

t∗−s∗

Γ (U0,A 0,0(Θ))

t∗−s∗

· · · Γ (U0, A0,q(Θ))

t∗−s∗

· · ·

0 KS0
X

· · · KSq
X

· · ·

0 0 (3)

where U p is the (p + 1)-fold self fiber product of U over X . The vanishing of cohomologies of co-
herent sheaves on a Stein space implies that the complex appeared in the leftmost column calculates
H p(X ,ΘX ). The Dolbeault theorem on a usual complex manifold U p implies that the rows but
the bottom one is exact. On the other hand, Behrend [B] showed that if we replace U by its ‘refine-
ment,’ we have a partition of unity associated with U [B, Definition 22], and this immediately implies
that the columns except the leftmost one are exact [B, Proposition 23]. A standard double complex
argument leads to our theorem. �
4. Infinitesimal Newlander–Nirenberg theorem for smooth DM stack

In this section, we complete the proof of our main theorem. After the preparations in Sections 2
and 3, our proof is an honest transplantation of the proof of Theorem 1.10 found in [Ia, Chapter II] to
the context of smooth DM stacks. We begin with the following theorem.

Theorem 4.1. Let X be a smooth separated analytic Deligne–Mumford stack and KS•
X be the associated

Kodaira–Spencer algebra. Then, there exists a natural injective morphism between the deformation functors

Γ : DefKSX → DefX

in the analytic category.

Proposition 4.2. Let A be a local artinian C-algebra with the maximal ideal mA and x ∈ MCKSX (A) be a

Maurer–Cartan solution of KSX . Then, to x we can associate a lifting X̃ ∈ DefX (A).

Proof. Corollary 2.4 implies that it is enough to construct a sheaf of algebras Sx on X flat over
A such that Sx ⊗A C ∼= OX . Take a smooth Stein space U as an atlas U → X . The tangent space
to the deformation functor DefKSU associated to the Kodaira–Spencer algebra KS•

U of U is isomorphic
to H1(U ,ΘU ), which is in fact trivial, for U is smooth and Stein. This means that DefKSU is trivial
[Ia, Lemma II.7.1]. In other words, for any Maurer–Cartan solution x ∈ MCKSX (A) ⊂ MCKSU (A), there

is a C∞-vector field a ∈ A0,0
U (ΘU ) ⊗ mA such that ea ∗ x = 0. We define the operator lx : A 0,0

U ⊗ A →
A 0,1

U ⊗ A for x = ∑
i, j xi j dz̄i

∂
∂z j

by the contraction

lx( f ) = −
∑
i, j

xi j
∂ f

∂z j
dz̄i,
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where zi are local holomorphic coordinates on U . By an explicit calculation of the gauge action [Ia,
Lemma II.5.5], we have

ea ◦ (∂̄ + lx) ◦ e−a = ∂̄ + ea ∗ lx = ∂̄,

where the last equality follows from ea ∗ x = 0. This means that the diagram

Sx = Ker(∂̄ + lx)

ea

A 0,0
U ⊗ A

∂̄+lx

ea

A 0,1
U ⊗ A

ea

OŨ A 0,0
U ⊗ A

∂̄
A 0,1

U ⊗ A

is commutative, where Ũ = U × Spec A. In particular, ea : Sx
∼→ OŨ is an isomorphism of sheaf of

algebras over A. Since OŨ is flat over A, Sx is also flat over A.

Let y = s∗x = t∗x ∈ A0,1
R (Θ) ⊗ mA . We have an analogous diagram on R:

s−1Sx = Ker(∂̄ + ly)

es∗a

A 0,0
R ⊗ A

∂̄+ly

es∗a

A 0,1
R ⊗ A

es∗a

s−1OŨ
∼= OR̃ A 0,0

R ⊗ A
∂̄

A 0,1
R ⊗ A,

where R̃ = R × Spec A, and the same diagram also for t−1Sx . Hence we have s−1Sx = t−1Sx as
sub-sheaves of A 0,0

R ⊗ A. This means that the descent data for A 0,0 ⊗ A induces a descent data for
Sx . Therefore, Sx descends to a sheaf of algebras on X flat over A. Sx ⊗A C ∼= OX is obvious. �

The proposition says that we have a morphism Γ̂ : MCKSX → DefX . The following proposition
concludes the proof of Theorem 4.1.

Proposition 4.3. Γ̂ descends to an injective morphism

Γ : DefKSX → DefX .

Proof. Assume x, y ∈ MCKSX (A) are gauge equivalent, i.e., there exists r ∈ KS0
X ⊗ mA such that er ∗

x = y. By [Ia, Lemma II.5.5], we have a commutative diagram

Sx = Ker(∂̄ + lx)

er

A 0,0
U ⊗ A

∂̄+lx

er

A 0,1
U ⊗ A

er

Sy = Ker(∂̄ + ly) A 0,0
U ⊗ A

∂̄+ly

A 0,1
U ⊗ A

whose columns are isomorphisms. r ∈ KS0
X ⊗ mA implies es∗r = et∗r so that er descends to an iso-

morphism between Sx and Sy on X . This means that Γ̂ factors through Γ .
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To prove the injectivity of Γ , we show that given an isomorphism ψ : Sx → Sy satisfying s∗ψ =
t∗ψ , there exists r ∈ KS0

X ⊗ mA such that ψ = er . It is enough to show this for small extensions by
inductive argument. In other words, we can assume that there is an extension

0 → I → A → Ā → 0

with I · mA = 0 and p = x − y ∈ A0,1
U (ΘU ) ⊗ I . Under this assumption, we have

0 = ∂̄(y + p) + 1

2
[y + p, y + p] = ∂̄ y + ∂̄ p + 1

2
[y, y] = ∂̄ p.

Since we assumed that U is Stein, H1(U ,ΘU ) vanishes. By the (usual) Dolbeault theorem, this means
that the Dolbeault complex (A0,•

U (ΘU ), ∂̄) is exact at the degree 1 place. Therefore, we have u ∈
KS0

X ⊗ I such that ∂̄u = p. Then, we have

eu ∗ x = x +
∞∑

n=0

[u,−]n

(n + 1)!
([u, x] − ∂̄u

) = x − ∂̄u = x − p = y.

Take a ∈ A0,0
U (ΘU ) ⊗ mA which induces an isomorphism ea : Sx → OŨ and ϕ be an automorphism of

OŨ making the diagram

Sx
ψ

ea

Sy
e−u

Sx

ea

OŨ

ϕ
OŨ

commutative. Because e−u ◦ ψ = id mod I , ϕ = id mod I . Therefore, there exists q ∈ H0(U ,ΘU ) ⊗ I
such that ϕ = eq . Note that eq commutes with ea since the coefficients of q are in I . This implies
ψ = eu ◦ e−a ◦ eq ◦ ea = eu+q . In other words, we have ψ = er for r = u + q ∈ KS0

X ⊗ mA . �
Remark. In the argument above, we can construct the lifting of the groupoid representation asso-
ciated to U → X without appealing to Corollary 2.4. Let R̃ ⇒ Ũ be the trivial lifting to A of the
groupoid R ⇒ U representing X and q0 = (s0, t0, e0,m0, i0) the structural morphisms of R̃ ⇒ Ũ . As
we assumed U Stein, every lifting of R ⇒ U to A is given only by twisting q0. The isomorphism
ea : Sx

∼→ OŨ appeared in the proof of Proposition 4.2 induces an automorphism

ηa : (R̃,OR̃)
s∗(ea)→ (

R̃, s−1Sx
) = (

R̃, t−1Sx
) t∗(e−a)→ (R̃,OR̃).

If we define qx = (sx, tx, ex,mx, ix) by

sx = s0, tx = t0 ◦ ηa, ex = e0, mx = m0 ◦ (
p∗

2η
−1
a

)
, ix = i0 ◦ ηa,

where p2 is the projection R̃ ×Ũ R̃ → R̃ to the second factor, it is straightforward to check that qx

satisfies the axioms of a groupoid space and the lifting qx of the groupoid space actually corresponds
to Sx ∈ DefOX (A). In this way, we can prove Corollary 2.4 by hand for a smooth separated DM
stack X .
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Theorem 4.4. Let X be a smooth separated analytic Deligne–Mumford stack and KSX be the associated
Kodaira–Spencer algebra. Then, the morphism of functors Γ : DefKSX → DefX in Theorem 4.1 is actually an
isomorphism in the analytic category.

Proof. To prove this theorem, we show that Γ is étale. According to Proposition 1.4, this is equivalent
to show that

(i) The ‘Dolbeault isomorphism’ in Theorem 3.3 on H1 is actually the map induced by the morphism
of functors Γ : DefKSX → DefX .

(ii) The ‘Dolbeault isomorphism’ in Theorem 3.3 on H2 satisfies the condition (ii) of Proposition 1.4.

For (i), the diagram chasing in (3) shows that x ∈ Z 1(KS•
X , ∂̄) corresponds to an element g ∈

Ker(Γ (U1,Θ)
d→ Γ (U2,Θ)). As we consider over the ring of dual numbers A = C[ε], the condition

g ∈ Ker d is equivalent to say that (id+g) : s∗OU ⊗ A → t∗OU ⊗ A satisfies the cocycle condition of
descent and the sheaf on X given by descent with this twist is isomorphic to Sx appeared in the
proof of Theorem 4.1.

Now we prove (ii). Let 0 → I → A → Ā → 0 be a small extension. Let x ∈ MCKSX ( Ā) be a Maurer–

Cartan solution on Ā and x̃ ∈ KS1
X ⊗ mA an arbitrary lifting to A. The obstruction to the existence of

a lifting of x in MCKSX (A) is

h = ∂̄ x̃ + 1

2
[x̃, x̃] ∈ Ker

(
KS2

X ⊗ I
∂̄→ KS3

X ⊗ I
)
,

which does not depend on the choice of a lifting x̃. By a diagram chasing in (3) gives τ ∈
Γ (U0,A 0,1(Θ)) ⊗ I , ρ ∈ Γ (U1,A 0,0(Θ)) ⊗ I , and ω ∈ Ker(Γ (U2,Θ) ⊗ I → Γ (U3,Θ) ⊗ I) satisfy-
ing

∂̄τ = h, ∂̄ρ = t∗τ − s∗τ , ω = p∗
2ρ − m∗ρ + p∗

1ρ,

where p1, m, and p2 are the projections pr12, pr13 and pr23 on U2 = U ×X U ×X U , respec-
tively. If we put x̂ = x̃ − τ , we can check x̂ ∈ MCKSU (A) (using the extension A → Ā is small). This
means that there is a sheaf Sx̂ on U , which is isomorphic to OŨ . ∂̄ρ = t∗τ − s∗τ implies that
eρ : s∗Sx̂ → t∗Sx̂ is an isomorphism (again using the smallness of the extension). The cocycle condi-
tion for descent is equivalent to the vanishing of the class [ω] = [p∗

2ρ−m∗ρ+ p∗
1ρ] in the cohomology

group H2(X ,ΘX ). This implies that ω gives the obstruction to lifting Sx to A, thus we checked
the condition (ii) of Proposition 1.4. �
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