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A b s t r a c t - - I n  this paper, we consider nonlinear oscillatory equations of the form d2u + w2u 

---- ef (u, ~ ) ,  whose solutions can be obtained by the decomposition method. But these solutions do 
not exhibit periodicity, which is characteristic of oscillatory systems. We use an alternative technique 
by which the solution obtained by the decomposition method is made periodic. The method is 
described and illustrated with examples. There is no smallness assumption on the parameter e 
occuring in the equation. 
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1. I N T R O D U C T I O N  

The decomposition method of Adomian has been applied to a rather wide class of nonlinear 
differential and partial differential equations [1]. The general nonlinear deterministic operator in 

an equation J :  y = g is split into linear and nonlinear parts denoted by £: and A f. £ is written 

as L + R, where L is the linear part of £ with the highest derivative, and R is the remaining 
oo An part of the linear operator. The unknown function y is written as y -- Y]n=0 Yn, where A 

is a parameter. The nonlinear term N y is represented as a series of Adomian polynominals 
N y  oo = )-~n=O An An,  where An is defined as 

_ 1 d n 
An n! dA n / (Y(A)) 

• A = O  ' 

and An = A n ( y o , y l , . . .  ,Yn).  Now, 

Y = Yo - L - 1 R y -  L - 1 N y .  

d 2 
If, for example, L --= ~-~, then Yo = Y(O)+y~(O)+L -1 g. Each Yn is calculated from the preceeding 

term Yn-  1 : 

Yn+l = - L - 1  ( R y n  + An) .  

Thus, the method results in a series solution. 
In general, there exists no method which yields an exact solution of any nonlinear differential 

equation. For certain classes of differential equations, the only methods available are approxima- 
tion procedures such as linearization, perturbative methods, etc. The advantage of the decom- 
position method over the other approximate methods, apart from computational simplicity, is 
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that the method is nonperturbative and does not involve any linearization or smallness assump- 
tions. Hence, the solution obtained by this method is expected to be a better approximation. 
In this paper, we consider nonlinear oscillatory systems whose solutions can be obtained by the 
decomposition method. But these solutions do not exhibit periodicity, which is characteristic of 
oscillatory systems. We use an alternative technique to be applied to the series solution of the 
decomposition method that yields sine and cosine functions in the solution which are periodic. 
The procedure is described and illustrated with examples. 

2. D E S C R I P T I O N  O F  T H E  M E T H O D  

We consider equations of the form 

dt 2 + w 2 u = E f  u , - ~  , 

where e is a parameter (not necessarily small). We solve this nonlinear equation using the 
d 2 

decomposition method with ~ as the linear operator and obtain a series solution in t. This series 
solution does not exhibit the periodic behaviour which is characteristic of oscillator equations. 

d 2 
Adomian, in his book [2], has suggested that if we choose ~-~ + w 2 as the linear operator L, 
the solution converges faster than the previous case and one gets sine and cosine functions for 
solutions of the homogeneous equations which are used as an initial approximation. But inversion 
of the operator produces computational difficulties. Using a technique suggested in [3], we apply 
Laplace transformation to the series obtained by Adomian's decomposition method, then convert 
the transformed series into a meromorphic function by forming its Pad~ approximant, and then 
invert the approximant which yields a better solution that is also periodic. 

In perturbative schemes, the frequency and the amplitude of the oscillator are considered 
as varying functions of time, and the frequency is also perturbed with respect to the small 
parameter ~. In conservative systems, steady oscillations occur for arbitrary amplitude, and 
hence the amplitude remains a constant. In nonconservative systems, stationary oscillations are 
possible only for special values, and so the amplitude is a varying function of time which tends to 
the fixed amplitude as t --~ oo. Here, in our case, the amplitude is not a varying function of time. 
So, for conservative systems, where amplitude is a constant, we apply the Laplace transformation 
to the series taken up to n terms and find the Pad~ approximant of the transformed series. But 
for nonconservative systems, to get the fixed amplitude of the steady oscillation, one can apply 
the Laplace transformation to the series and find the Pad~ approximant to the terms containing 
~0, el, e2,. . ,  separately, and obtain the solution. The value of the amplitude for which the 
higher order Pad~ approximant is reduced to the previous order Pad~ approximant gives the 
amplitude of the steady oscillation. The method is illustrated with the help of examples. 

For comparison with the perturbative solutions, the parameter e is taken to be small in these 
examples. 

3. E X A M P L E S  

Example  1. The  Duiting Equat ion  

Consider the equation 

d2u 
dt--- F + u + c u 3 = O, u ( o )  = a ,  = o.  
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By Adomian's method, we have 

We take 

U0 ---- a ,  

t 2 
u l  = - a  (1 + a 2) 

U2 = a (1 + ~a 2) (1 + 3ea 2) ~ ,  

t 6 
u3 = --a (1 + ~a  2) (27~ 2 a 4 + 24ea  2 + 1) ~[, 

t s 
u 4 =  [ a ( l + 4 ~ a  2 + 3 ~  ~a 4 ) ( 1 + 1 1 4 ~ a  2+117~  : a  4 ) + 9 0 ~ a  3 ( 1 + ~ a 2 )  3 ] ~ .  

¢5 = u0 + u l  + u2 + u3 + u4. (1) 

Here, we apply the Laplace transform to ¢5 and find the [4/4] Padd approximant of the resulting 
series. The [4/4] approximant is 

s 4 + (19~a 2 +9 )  s 2 + 16~2a 4 
s L ( u ) =  s 4 + ( l O + 2 0 e a  2)s 2+(33E  2a 4 + 2 6 e a  2 + 9 ) "  

Hence, 

A B s  C s  
L(u) = -- + + - - ,  where s ~ s2+q 

p = 5 ( 1 +  2ca 2) + (67c 2a 4 + 74sa  2 + 16) 1/2 , 

q--  5 ( 1 +  2ea 2 ) -  (67~ 2a 4 + 74~a 2 + 16) 1/2 , 

16 e2 a 4 
A =  

3362a 4 + 26ea  2 + 9' 

C =  A ( q - 1 0 - 2 0 e a 2 ) + 1 9 e a 2 + 9 - q  and 
p - q  

B = I - A - C .  

On inverting the approximant, we get periodic functions in the solution, for all values of the 
amplitude a, as p and q are positive for all a. The solution is 

u = a {A + B cos(v~t  ) + Ccos(v~t )}  , 

which exhibits periodicity as is characteristic of the equation. The solution holds for arbitrary a, 
as the system is conservative. The solution is compared with that  of the perturbative solution [4], 
for a -- 1 and e = 0.1, in Figure 1. 

E x a m p l e  2. T h e  L inea r  D a m p i n g  Osci l la tor  E q u a t i o n  

Consider the linear damping oscillator equation: 

d2u du 
dt ~ + u = - 2 6 - ~ ,  u (O)=a ,  u'(O)=O. 

By the decomposition method, we have 

U0 ---- a ,  

t 2 
U 1 ~ - - a  2 t '  

t 3 t 4 
u~ = 2a e ~ + a ~.., 

t 4 t 5 t 6 
u3 --- - 4 a s  2 ~ - 4ae g - a N ,  

¢4 = uo + ul + u2 + u3. (2)  
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Figure 1. Solution of the Duffing equation. 
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T h e  [2/2] Padd app rox iman t  of  the  Laplace t r ans form of the  series (2) is 

a (s + 2e) 
L ( u )  - s 2 + 2 ¢ + 1  

On inverting,  we have 
/ 

= a -~ s i n ( b t ) ] ,  e - e t  {cos(b t) + u 

where b = (1 - e 2 )  W2. T h o u g h  the  equat ion is nonconservat ive,  it is l inearly dissipat ive and,  
hence, the  ampl i tude  is a constant .  This  solution is compared  wi th  the  exact  solut ion for a = 1 
and e = 0.1, in Figure  2. Here, the solution exhibits  oscil latory behaviour  only  when ~ < 1. 

Example 3. The Vanderpol Equation 

T h e  p rob lem to  be solved is 

d2u du  
dr--- ~ + u = ~ (1 - u 2) - ~ ,  u(0) = a, u ' (0)  = 0. 

Using the  decomposi t ion  method ,  we have 

UO ---- a ,  
t 2 

U 1 ---- - - a  2,1' 

t 3 t 4 
u2 = - - a ~ ( 1 - - a  2 ) ~ [  - t - a~ . t ,  

u3 = - a ¢  2 (1 - a2)  2 t4 t5 t6 ~. + 2aE (1 - 4a 2) ~ - a ~ ,  

t s t 6 t 7 t s 
U4 = - - a e  3 (1 -- a2)  3 ~.I + a ¢ 2  (1 -- 32a  2 + 2 9 a  4) 6.1 + a e  ( 6 9 a  2 - 3) -~. + a ~.., 

(~5 ---- U0 "[- Ul  -[- U2 "4- U3 -[- U4. (3) 
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F i g u r e  2. L i n e a r  d a m p i n g  o s c i l l a t o r  e q u a t i o n .  

Here, we write (3) as 

u = a  1 - ~ . + 4 q - 6 q + ~ .  t + a s - ( 1 - a 2 ) ~ + ( a - 8 a 2 ) ~ + ( 6 9 a 2 - 3 ) ~  + . . . .  (4) 

The Vanderpol equation is nonconservative and so the amplitude is not a constant. We apply 
the Laplace transform to the series [3] and find the Padd approximant for the terms containing 
co, ~1, s 2 , . . . ,  separately, and on inverting the [4/4] approximant, we have 

u = acos(t) + a~(a 2 - 1) sin(ext) - 

1 - a 2 
b =  

2a(21a 2 - 48)' 

a = ( 4 a 2 - 1  +a(21a2-48) l /2)  ~ , 

#=  ( 4a2 - 1 -  a(21a2 - 48)1/2) 1/2 

where 

The [4/6] approximant reduces to the [4/4] approximant for a = 2. From perturbative techniques, 
it is known that  steady oscillations occur when a -- 2. The graph of the steady oscillation is 
sketched in Figure 3 and is compared with the perturbative solution [4]. 

E x a m p l e  4. T h e  R a y l e i g h  E q u a t i o n  

The Rayleigh Equation is 

= o, u ' ( O )  = 
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Figure  3. Solut ion of t he  Vanderpol  equa t ion  for a = 2. 
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Figure  4. Solut ion of the  Rayleigh equa t ion  for a = 2.058171. 

By the decomposition method, the solution is 

71, 0 = a t ,  

u l = a e  1 -  a 2 ~ . - a ~ . ,  
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4 a2 1 ) t 3 
u2=a~ ~ 1-~ +~a 4 ~ -  

By separating terms containing e °, e l , . . ,  we have 

( a~ 2 -  a 2 ~. +a5!" 
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- t 3 +  t5 t2 - (2- 3a2) ~ } (5) ¢ 3 = a ( t ~  ~ )  ÷ a e { ( 1 -  3a2)  ~ 

The inversion of the [3/2] Pad~ approximant to the Laplace transform of (5) gives the solution 
as 

ae  (3 - a 2) bcos(t/v/'b), u -- a sin(t) + ~ -  

where b = (3 - a2)/(6 - 4a2). The [3/4] approximant reduces to the [3/2] approximant for 
a = 2.058171. From the solution obtained by perturbative techniques [4], the stable oscillation 
is attained at a = 2. Figure 4 represents the graph of the steady oscillation. 

4. CONCLUSION 
The examples considered show that  the method illustrated above yields a more convenient 

form of the solution compared to the series solution of the decomposition method for a class of 
nonlinear oscillatory problems. The solution exhibits periodic behaviour and is compared with 
the perturbative solutions. 
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