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Chaos in the one-dimensional wave equation

Francisco J. Solisa,∗, Lucas Jódarb, Benito Chenc

aCIMAT, Gto, Mexico
bUPV, Valencia, Spain

cU. Wyoming, Laramie, USA

Received 1 June 2003; accepted 1 June 2003

Abstract

This paper deals with the chaotic behavior of the solutions of a mixed problem for the one-dimensional wave
equation with a quadratic boundary condition. This behavioris studied through the connection between the energy
function and quadratic discrete dynamical systems.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In the literature there are plenty of examples of dynamical systems that exhibit chaotic behavior
[2,3]. In spite of the complexity of these behaviors, sometimes chaos occurs in systems that are relatively
simple [4,5]. Recently, in the paper [2], the appearance of chaos in the one-dimensional wave equation
with a cubic boundary condition was shown. The authors studied the dynamics of the solution at the
nonlinear boundary by generating a discrete dynamical system and suggesting that chaos is due to the
changes of sign of the derivative of the energy function, the so-called ‘self-excited oscillations’.

The aim of this paper is to contribute to the explanation of the appearance of chaotic behavior in the
one-dimensional wave equation. We consider a mixed problem for this equation with a special quadratic
boundary condition that generates families of general type quadratic discrete dynamical systems.
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Weshow that by choosing a family of discrete dynamical systems the change of sign of the derivative of
the energy function is not a necessary condition for the appearance of chaos. Also, we show the numerical
difficulties that arise due to the presence of the nonlinear boundary condition.

This paper is organized as follows. InSection 2we present the mixed problem concerning the one-
dimensional wave equation and derive from it a family of discrete dynamical systems, which describe
the behavior of the solution at the nonlinear boundary domain. We also study the relationship between
the energy function and parametric coefficients of the introduced discrete systems. InSection 3we draw
consequences about the discrete systems regarding periodicity and chaotic behavior. Finite difference
methods are also used to solve the wave equation to see what the effect of the discretization errors on the
chaotic behavior is. Finally, inSection 4the general conclusions of the work are summarized.

2. Wave equation

Consider the one-dimensional wave equation

utt(x, t) = c�u(x, t)

with initial conditions

u(x,0) = f (x) and ut (x,0) = g(x) (1)

and boundary conditionsu(t,0) = 0 and

(ux(1, t)− ut (1, t))2 − 2b(λ)(ux(1, t) − ut(1, t))− 2(ux(1, t)+ ut (1, t)) = 0. (2)

Weare interested in the solution to the above system in the strip 0< x < 1 andt > 0. It is well known
that the solution can be obtained by using characteristics: letψ = x + ct andη = x − ct.

Let

w(x, t) = ux(x, t) + ut(x, t)

2
(3)

and

z(x, t) = ux(x, t) − ut(x, t)

2
, (4)

so with this conditionw andz are constant alongψ = ξ1 and alongη = ξ2 respectively, whereξ1 andξ2

are constants. Thus,w andz satisfy the equationswt − cwx = 0 andzt + czx = 0 with initial conditions
given by

w(x,0) = f ′(x)+ g(x)

2

z(x,0) = f ′(x)− g(x)

2
whereas using (3) and (4) the boundary conditions become

w(0, t) = z(0, t)

and

z2(1, t)− b(λ)(z(1, t)) = w(1, t). (5)

Theboundary condition (5) becomes
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z(1, t) = H (w(1, t)) (6)

where

H (w) = b(λ)− √
b2(λ)− 4w

2
.

Let us study the behavior of a sequence of values of the solution reflected in the nonlinear boundary
at x = 1 along the characteristic curves starting from(xo,0). The characteristic curvex − ct = xo

intersects the boundaryx = 1 at thepoint (1, τo) whereτo = 1−xo
c . Here we have thatz(1, τo) = z(xo,0)

andw(1, τo) = H−1(z(xo,0)), where

H−1(z) = z2 − b(λ)z.

Departing from the point(1, τo) along the characteristicx + ct = 2 − xo intersect the boundaryx = 0
at the point(0, τ1) whereτ1 = 2−xo

c here we have thatz(0, τ1) = w(0, τ1) = H−1(z(xo,0)). Notice that,
along the characteristicx − ct = xo − 2, z is constant, therefore its value atx = 1 andτ2 = 3−xo

c is given
by z(1, τ2) = H−1(z(xo,0)) and

w(1, τ2) = H−1(z(1, τ2)) = H−1 ◦ H−1(z(xo,0))

or

w(1, τ2) = H−1(w(1, τo)).

By induction we can write

w(1, τ2n) = H−1(w(1, τ2(n−1))) (7)

whereτ2n = 2n+1−xo
c . That is, the solution can be obtained by iterates ofH−1.

If we defineqn = w(1, τ2n) then Eq. (7) takes the form

qn+1 = q2
n − b(λ)qn (8)

which is aquadratic unimodal map.
Notice that the discrete dynamical system (8) turns out from the general quadratic dynamical system

of the form

xn+1 = α(λ)x2
n + β(λ)xn + γ (λ)

taking the substitutionxn = Aqn + B with A = α(λ)−1 andB = (2α)−1(β − √
β2 − 4αγ ).

Let us study the relationship between the derivative of the energy function and the coefficientb(λ)
arising in (8). The energy of the system is given by

E(t) ≡ 1

2

∫ 1

0
(u2

x + u2
t )dx

so
dE(t)

dt
= ut(1, t)ux (1, t)

dE(t)

dt
= ut(1, t)

(
ut (1, t)+ b(λ)+ 1 −

√
(b(λ)+ 1)2 + 4ut (1, t)

)
.

For values ofwt(1, t) small enough, we have that
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dE(t)

dt
= ut (1, t)

(
b(λ)− 1

b(λ)+ 1

)
+ o(u2

t (1, t)).

Thus the sign of the derivative of the energy depends only on the valueb(λ) with respect to one. That is,
if 0 < b(λ) < 1 then thesign of dE(t)

dt is equal to the sign of−ut(1, t) while if b(λ) > 1 then the sign of
dE(t)

dt coincides with the sign ofut (1, t). Thus the sign of the derivative of the energy depends locally on
b(λ).

In the next section we study the discrete system (8) for different functionsb(λ).

3. Chaos and the role of b(λ)

Let us chooseb(λ) as an unimodal function, given by

b(λ) = 4α

β2
λ(β − λ), (9)

whereβ > 0 and 0< α. Hereα and β are the maximum value and a zero of the functionb(λ)
respectively. For this example it will be interesting to show the different scenarios obtained for different
values ofα, sincethe behavior of the systemqn+1 = q2

n − b(λ)qn depends strongly on the value ofα. If
0 < α < 1 then limn→∞ qn = 0 for every value ofλ. If 1 < α <

√
6 − 1 then weobtain a bifurcation

diagram forqn that consists of a straight line with an asymmetric close loop homeomorphic to a circle;
seeFig. 1(a). For values of

√
6 − 1 < α < 1.57 then we have bifurcation diagrams consisting of a

straight line with a collection of nested loops. It is in this range where periodic behavior takes place. If√
6 − 1 < α < 1.5441 then there are two loops, as is shown inFig. 1(b). If 1.5441< α < 1.564 then

there are four loops, seeFig. 1(c), and so on. However, ifα > 1.57 we have a chaotic behavior, as is
shown in the bifurcation diagram ofFig. 1(d).

3.1. Finite differences methods

There are not many hyperbolic partial differential equations that can be solved exactly and that have
chaotic solutions. So this one-dimensional wave equation with the nonlinear right boundary condition
gives a good case study to see what is the effect of the discretization on the behavior of the solutions. It is
well known that for the one-dimensional wave equation with Dirichlet boundary conditions, the standard
explicit centered differences scheme with equal uniform time and space steps produces the exact solution
except for round-off errors [1]. For a time step,	t , different from the space step,	x , the truncation error
is O((	t)2 + (	x)2). To have the same degree of accuracy in the approximation of the right boundary
condition, we approximate both the time and spatial first derivatives using centered differences. Since
the x-derivative is evaluated atx = 1, it is necessary to add a fictitious line of nodes atx = 1 + 	x .
From evaluating the approximation to the wave equation atx = 1 andfrom the approximation to the
right boundary condition, the values at the fictitious nodes can be eliminated. Centered time differences
require initial values att = 0 andt = 	t . Ref. [1] showshow to use a Maclaurin series to get second
order approximations att = 	t . In our case, we could also use the exact value att = 	t , and in some
runs we did.

Calculations were done using	x = 1/100, 	x = 1/200 and	x = 1/400 with 	t = 	x ,
	t = 	x/10 and	t = 	x/100. Values ofα, β andλ were chosen to see if we could reproduce the
bifurcation diagrams ofFig. 1. An initial condition f (x) = sin(πx) and initial derivativeg(x) = 0 were
chosen. Some subharmonics were also used. In all the calculations, the values at the right boundaryx = 1
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Fig. 1. Regular reversal maps forα = 1.2, 1.5, 1.562 and 1.575 respectively.
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started to grow and propagate into the domain, and eventually the program tried to take the square root of
a negative number. The numerical approximation of that boundary condition creates an instability. Since
the numerical scheme for the wave equation is stable for all	t/	x ≤ 1, we expect that any instabilities
are due to the boundary condition. There are no general methods to study nonlinear instabilities such as
the one we are getting. Reducing the time step does not help control the instability.

4. Conclusions

We have shown that the appearance of periodic/chaotic behavior in the one-dimensional wave equation
depends on the behavior of the solution at the nonlinear boundary condition. For bounded functionsb(λ)
it is possible to obtain only periodic solutions and for unbounded functions there is always periodic and
chaotic behavior.
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