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New insights into the physiologic basis for
intermittent pneumatic limb compression as a
therapeutic strategy for peripheral artery disease
Ryan D. Sheldon, MS,a Bruno T. Roseguini, PhD,b M. Harold Laughlin, PhD,c and
Sean C. Newcomer, PhD,d Columbia, Mo; São Paulo, Brazil; and San Marcos, Calif

The capability for externally applied rhythmic limb compressions to improve the outcomes of patientswith peripheral artery
disease has been recognized for nearly a century. Modern technology has permitted the development of portable and cost-
effective intermittent pneumatic compression (IPC) systems to be made readily available for affordable at-home use.
Mounting clinical evidence attests to the effectiveness of this strategy, with improvements in claudication distance rivaling
those seen with exercise training or pharmacologic interventions, or both. However, owing to a lack of mechanistic
knowledge, whether current application protocols are optimized for clinical outcomes is unknown. Traditional thinking has
suggested that IPC transiently elevates blood flow, which is purported to relieve ischemia, improve vascular function, and
promote vascular remodeling. Surprisingly, much ambiguity exists regarding the physiologic stimuli and adaptations that
are responsible for the clinical effectiveness of IPC treatment. This review presents and critically discusses emerging
evidence that sheds new light on the physiologic andmolecular responses to IPC therapy. These novel findings highlight the
importance of characterizing the phasic changes in the hemodynamic profile during IPC application. Further, these studies
indicate that factors other than the elevation in blood flowduring this therapy should be taken into account when designing
an optimal IPC device. Lastly, we advance the hypothesis that manipulation of IPC stimulation characteristics could
potentially magnify the documented clinical benefits associated with this therapy. In conclusion, recent evidence challenges
the physiologic basis on which current IPC systems were designed, and further research to elucidate the basic and clinical
outcomes of alternate stimulation characteristics is necessary. (J Vasc Surg 2013;58:1688-96.)
Intermittent pneumatic compression (IPC) therapy
shows promise as an effective alternative to conventional
treatments for relieving many of the symptoms associated
with peripheral artery disease (PAD) in the leg. However,
the physiologic basis by which this treatment is effective
is an active area of investigation. Interestingly, despite
recent advances in the field, the stimulation characteristics
(ie, pressure, frequency, etc) currently used by IPC systems
have remained relatively unchanged for nearly 40 years.

Our group has recently presented a series of studies
that challenge the traditional views that have driven IPC
system design and application,1-6 suggesting that other
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stimulation characteristics may provide superior clinical
utility. Here, we present a review of the current state of
our knowledge regarding IPC treatment for PAD. We
also provide a critical evaluation of the observations and
hypotheses that have motivated IPC application strategies
with the intent of encouraging investigations that are not
constrained by empiric IPC design.

INTERMITTENT PNEUMATIC LEG COMPRES-
SIONS AS A TREATMENT FOR PAD

PAD affects >8 million adults in the United States7 and
is strongly associated with high mortality risk, deteriorated
exercise capacity, and poor quality of life.7,8 Daily ambula-
tory activity and functional capacity are particularly
impaired,9,10 resulting in increasingly sedentary lifestyles
and the associated complications.11 Very few treatment
options for PAD consistently ameliorate walking-induced
pain and improve exercise capacity.7,12 Supervised exercise
training remains the most effective option for claudicant
patients, with improvements in maximal walking distances
approaching 150% in some trials.13 However, because
most patients experience pain during exercise and require
direct supervision from a health care professional, this
strategy remains poorly accessible, costly, and adherence is
low.14 Likewise, surgical options are effective in most cases
but are applicable to only a fraction of these individuals.15

Therefore, there is a clear need to promote cost-effective
strategies that are easily accessible, less invasive, and do
not require direct clinical supervision.
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CLINICAL TRIALS

Owing to the relatively low cost and ease of use, IPC
therapy overcomes major limitations associated with other
treatment options for PAD.16 The remarkable clinical
improvements to this therapy have been well described in
a number of recent clinical trials,17-22 as summarized in
the Table. In these trials, as little as 3 to 6 months of daily
at-home IPC therapy resulted in increases in absolute clau-
dication distance of 80% to 200%.17-19,21 This is compa-
rable to the increase after supervised exercise training14

and greater than that after treatment with cilostazol.23,24

These trials also reported improvements in limb hemody-
namics17,18 and quality of life18 after treatment. In fact,
a 12-month follow-up study in claudicant patients revealed
that the benefits of IPC treatment persist long after termi-
nation of treatment,18 which is likely partly due to
improved ambulatory ability in these patients.

In addition, IPC is highly effective at treating critical
limb ischemia (CLI) with rest pain or tissue loss, or both.
A study by Kavros et al20 assessed the long-term outcomes
of IPC in claudicant patients compared with age-matched
and disease-matched controls receiving standard care and
demonstrated that IPC treatment markedly improved
complete limb healing and reduced below-knee amputa-
tion at 18 months after treatment. Further, in a cohort of
171 CLI patients, Sultan et al22 reported a 94% limb
salvage rate at a 3.5-year follow-up, and 63% of the patients
were free from major adverse clinical events at 4.5 years.
These data clearly substantiate the use of IPC therapy in
the treatment of claudication and CLI.

The use of IPC to treat complications associated with
peripheral arterial insufficiency in other patient groups,
such as in diabetic patients or in those with spinal cord
injury, is currently not reported in the literature. Many of
the clinical trials listed in the Table included diabetic
patients, but whether this condition disproportionately
affects responsiveness to IPC is unknown or unreported.
Spinal cord patients, who not only suffer from PAD but
also are at risk for venous stasis and thrombosis due to their
immobility, may also benefit from IPC therapy. Similarly
unknown is whether IPC is effective when heavy vessel
calcification is present or in patients with prior surgical
interventions. Future work with IPC will likely reveal
a much broader scope for its clinical application than is
currently appreciated.

PHYSIOLOGIC MECHANISMS OF IPC ACTION

The clinical evidence provided in the previous section
clearly substantiates the benefits of IPC therapy in the
treatment of PAD. However, it is unknown whether the
stimulation characteristics (ie, pressure, frequency, dura-
tion, etc) of commercial IPC devices are optimized for clin-
ical efficacy because no trial has examined dose-response
relationships among patients with these characteristics.
To this end, it is vital that we seek to understand the mech-
anism(s) by which IPC is effective. Current thinking in this
area implicates increases in hemodynamic shear stress (SS)
during IPC application as the primary adaptive mechanism
to this therapy by inducing such adaptations as improved
endothelial function and collateral artery growth. In this
section, we discuss the stimulus provided by IPC and the
resulting adaptations.

PATHOPHYSIOLOGIC IMPORTANCE OF
HEMODYNAMIC SS

Endothelial cells (ECs) are highly responsive to alter-
ations in hemodynamic SS. Elevated SS is vasoprotective,
whereas oscillatory SS (ie, antegrade and retrograde shear
within a cardiac cycle) increases oxidative stress, vasocon-
strictor production, and causes EC dysfunction. In fact,
acute induction of oscillatory SS is sufficient to induce EC
dysfunction in healthy arteries in humans.25 EC dysfunction
precedes and is present through all stages of atherosclerotic
disease,26 and atherosclerotic plaques preferentially form in
regions of the arterial tree chronically subjected to low net or
oscillatory shear profiles, or both, such as is present in bifur-
cations. Importantly, exercise training improves EC func-
tion, partly due to transient elevations of SS during the
exercise bout.27 Similarly, repeated within-session alter-
ations in limb hemodynamics by IPC application may drive
adaptations in vascular function that are critical for the clin-
ical effectiveness of this treatment. Indeed, elevated blood
flow (although not SS per se) during IPC application has
been described in healthy volunteers and in patients across
a spectrum of PAD severity.28-31 Although important ques-
tions regarding the hemodynamic stimulus induced by IPC
application remain, such as the effects of oscillatory shear
during IPC cuff inflation (discussed in detail below),
elevated SS is regarded to constitute the adaptive stimulus
to IPC treatment.

ADAPTATIONS TO IPC THERAPY

It is widely held that IPC introduces a favorable hemo-
dynamic environment to the treated limb. This hyperemia
is speculated to induce two key adaptations within treated
limbs of patients with PAD: collateral artery growth and
improved EC function. Collateral artery growth is a re-
ported outcome to IPC therapy,32,33 although this has
not been confirmed to date by controlled clinical studies.
van Bemmelen et al32 used bilateral femoral ligation in
rabbits as a preclinical model of PAD. After 4 weeks of daily
IPC application, the size and density of collateral arteries
were greater than in the ligated, untreated control limb.
Further, a small cohort of patients with CLI who received
IPC treatment experienced angiographic improvement and
limb salvage.33,34 This suggests that vascular remodeling
may be a clinically significant adaptation to IPC treatment.

A second key adaptation to IPC therapy is thought to
be improved EC function owing to the hyperemic response
to treatment application17,18,21,29-31,35-37 although, sur-
prisingly, no study to date has directly measured endothe-
lial function in response to chronic IPC treatment.
However, limited evidence supports this theory. In some
clinical trials, for example, the postexercise ankle-brachial



Table. Summary of existing clinical trials examining the effects of intermittent pneumatic compression (IPC) treatment
on peripheral arterial disease (PAD) outcomes

Ref IPC device Study design Subject information Hours/days

17 FM220a Prospective Stable claudication (n ¼ 30) 2
Mean age: 59 years
Diabetes: EX
Smoking: EX
Prior revascularization: EX

18 AA1000b Prospective
(12-month follow-up)

Stable claudication (n ¼ 41)
Mean age: 67 years
Diabetes: n ¼ 7
Smoking: n ¼ 6
Prior revascularization: NR

>2.5

19 AA1000b Prospective Stable claudication (n ¼ 34) 3
Mean age: 67 years
Diabetes: n ¼ 7
Smoking: n ¼ 11 (current), n ¼ 21 (former)
Prior revascularization: EX

20 ArterialFlowc Retrospective
(18-month follow-up)

CLI (n ¼ 48)
Mean age: 70 years
Diabetes: n ¼ 32
Smoking: n ¼ 6 (current), n ¼ 34 (former)
Prior revascularization: n ¼ 36

6 (three 2-hour sessions)

21 AA1000b Prospective Stable claudication (n ¼ 30)
Mean age: 70 years
Diabetes: n ¼ 14
Smoking: n ¼ 10 (current)
Prior revascularization: EX

2 (two 1-hour sessions)

22 AA1000b Prospective CLI (n ¼ 171, no controls) 6-8 (two 3- to 4-hour sessions)
(1-62-month follow-up,

mean 13 months)
Mean age: 75 years
Diabetes: n ¼ 67
Smoking: n ¼ 114 (current þ former)
Prior revascularization: EX

ACD, Absolute claudication distance; BKA, below-knee amputation; CLI, critical limb ischemia; EX, excluded; ICD, initial claudication distance; MACE,
major adverse clinical events; NR, not reported; pe-ABI, postexercise ankle-brachial index; r-ABI, resting ankle-brachial index.
aFlowMedic, Caesarea, Israel.
bACI Medical Inc, San Marcos, Calif.
cDJO, Vista, Calif.
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index was improved but the resting ankle-brachial index
was not,17,18 which may suggest a functional adaptation.
In addition, elevated endothelial nitric oxide synthase
expression was reported after a single IPC session in
rats,38,39 although a single session of IPC application in
healthy human volunteers revealed no acute effect on
vascular function.5 Future studies must address the occur-
rence and relative importance of changes in vascular func-
tion to the clinical outcomes of this treatment.

IPC SYSTEM DESIGN AND RATIONALE

In the previous sections, we have described the clinical
improvements ascribed to IPC treatment and summarized
current knowledge regarding the physiologic mechanisms
driving these changes. In this context, we will now outline
the rationale that has driven the design of contemporary
IPC systems and then identify three key limitations to the
current model.

Historical background. As early as the 1930s, Herr-
man and Reid40 were among the first to propose that
periodic alternation of the pressure around an extremity
could promote hyperemia and relieve atherosclerotic
ischemia through a “sucking” effect and be a valuable
option to treat PAD. They designed a device that would
apply consecutive cycles of negative (�80 mm Hg) and
positive pressure (40 mm Hg) around the lower extremity,
which resulted in major improvements in 63 of the 75
patients with PAD.40 Unfortunately these remarkable



Treatment duration Stimulation characteristics Application site Major outcomes of IPC treatment

3 months 3-second compressions Calf only 85% increase in ICD
3 compressions/min 75.5% increase in ACD
65 mm Hg 97% increase in pe-ABI

5 months 4-second compression
3 compressions/min
120 mm Hg

Foot þ calf 197% increase in ICD
212% increase in ACD
r-ABI increased from 0.59 to 0.69
pe-ABI increased from 0.22 to 0.36
Improved quality of life assessment scores
Effects maintained 12-months post treatment

6 months 4-second compression Foot þ calf Up to 2.83-fold increase in ICD and ACD
3 compressions/min Improved r-ABI
120 mm Hg 28% increase in resting arterial inflow

Effects maintained 12-months post treatment

NR 2-second compressions
3 compressions/min
85-95 mm Hg

Calf only Complete limb healing in 58% vs 17% in controls
BKA rate of 42% vs 83% in controls
Improved cutaneous oxygenation

12 months 4-second compression Foot þ calf 151% increase in ICD

3 months 4-second compression Foot þ calf Resolved rest pain
3 compressions/min
120 mm Hg

Dry, nonprogressive gangrene
Ulcer healing in all but five patients
36.3% increase in toe pressure
57.9% increase in popliteal velocity
30% sustained clinical improvement at 3-year follow-up
Limb salvage rate of 94% at 3.5-year follow-up
31% all-cause survival at 4-year follow-up
63% free from MACE at 4.5-year follow-up

Table. Continued.
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results were not immediately recapitulated, because the
devices at this stage were large, cumbersome, and not
amenable for home-based applications, as indicated in the
review by Morris.41

Modern IPC system design. IPC systems have since
evolved into a cost-effective, highly compact, portable
format. However, despite the clear clinical benefit of these
systems, the underlying principles driving their design
appear to be more dogmatic than scientific. Specifically,
stimulation characteristics (ie, pressure, frequency, etc) of
modern IPC systems appear to arise from two basic
premises: (1) that the hyperemic response to cuff deflation
is the primary adaptive mechanism to IPC treatment and
(2) that this hyperemic response is a consequence to an
augmented arterial-venous (A-V) pressure difference. For
the sake of clarity, these premises will hereby be collectively
referred to as the A-V hyperemia hypothesis.

These criterion were used to design commercially avail-
able IPC devices that deliver two to four rapid
(<0.5 seconds to inflate/deflate) compressions per minute
at a pressure of 65 to 120 mm Hg in an effort to maximize
the A-V pressure difference and, subsequently, the hyper-
emic response. This pressure is intermediate between
typical venous pressure and arterial pressure, allowing for
expulsion of venous blood and decreased venous pressure
without a meaningful effect on arterial pressure.42

The origins for compression frequency stem from the
observation by Gaskell and Parrott43 in 1978 that veins
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refill slowly within the first 15 seconds after cuff deflation
and that increasing compression frequency would not
provide additional benefit. In fact, these authors proposed
that a higher compression frequency would actually impair
the hyperemic response because cuff inflation impairs
conductance of the limb.43 In contrast, we have recently
shown that, at least at the onset of IPC, increased compres-
sion frequency does not impede average arterial inflow due
to increased blood velocity during cuff deflation compared
with low-frequency treatment.5

In a seminal report in 2000, Delis et al44 sought to
determine the optimal stimulation characteristics of IPC
using venous pressure during application as their outcome
variable. That arterial hemodynamics, vascular function,
and other responses to IPC were not measured in this effort
underscores the widespread acceptance and perceived
importance of the A-V hyperemia hypothesis. In their
concluding remarks, they suggested that “IPC footþcalf is
the most effective in emptying the leg veins. The optimum
stimulus is achieved when an applied pressure level of
120 mm Hg to 140 mm Hg is combined with a frequency
of 3 or 4 impulses/min . . .”.44 Higher compression
frequencies were not tested.

To their credit, this is the only report in the literature
that has attempted to optimize IPC protocols. As such,
this recommendation has been used in commercially devel-
oped devices such as the Art Assist AA1000 (ACI Medical,
San Marcos, Calif), although this application is not
universal (Table). However, one must recognize that this
conclusion presumes that the A-V hyperemia hypothesis
is true. This supposition heeds neither the potential for
factors other than the A-V pressure difference to cause
hyperemia nor the possibility that other stimuli indepen-
dent of hyperemia may account for IPC outcomes. In the
following sections we will discuss the limitations with this
approach to IPC application with the goal of encouraging
efforts to optimize stimulation characteristics.
LIMITATIONS TO THE CURRENT MODEL

The A-V pressure gradient does not fully account
for the hyperemic response to IPC. A key oversight of
the A-V hyperemia hypothesis is that it ignores other
factors that affect arterial blood flow, namely, enhanced
leg vascular conductance. Indeed, increased hemodynamic
shear, such as is reported to occur during IPC application,
is well known to induce vasodilation and, likewise, decrease
peripheral resistance. Although no study has directly exam-
ined the vasodilatory response to IPC, in 1994 van Bem-
melen et al31 suggested that the A-V pressure difference
was unlikely to explain the magnitude of the observed
hyperemic response to IPC application and proposed
a vasodilation mechanism. In 2005, Delis and Knaggs45

demonstrated that the pulsatility index, an index of
peripheral resistance, is maximally attenuated within
5 seconds after the termination of acute IPC application
and returns to baseline within 35 to 50 seconds. These
findings are consistent with endothelial vasodilatory
kinetics and are suggestive that active vasodilation is
present during IPC application.

Numerous experimental models support this concept.
Increased endothelial nitric oxide synthase expression was
reported after a single IPC session in rodents39 and using
an in vitro system designed to study the combined effects
of pulsatile forward flow and intermittent compression on
cultured ECs.46 Kirby et al47 demonstrated mechanically
induced vasodilation rapidly occurs within one to two
cardiac cycles from the onset of forearm compression in
humans. In addition, externally applied pressure pulses
induce vasodilation in isolated rodent soleus feed arteries.48

Finally, arterial inflow is independent of the volume of
venous blood expelled by muscle contraction.49

Collectively, these data suggest an important role for
active vasodilation in the hyperemic response to IPC appli-
cation. A number of authors have recognized this possi-
bility,17,18,28,31,35 although the extent to which IPC
induces vasodilation has yet to be determined. Acknowl-
edging that rapid vasodilation contributes to the hyperemic
response to IPC therapy refutes the traditional notion that
IPC should be applied at a low frequency to take advantage
of the A-V difference.

The hemodynamic impacts of IPC may be detri-
mental. Elevated blood flow, although not SS per se,
during IPC application has been described in healthy
volunteers and in patients across a spectrum of PAD
severity.28-31 The reported magnitude of this hyperemic
response is remarkable. IPC application increases mean
popliteal artery blood flow by as much as 240%30 and mean
foot skin perfusion by as much as 328% compared with
resting values.28 However, mean blood flow measurements
mask important transient changes in limb hemodynamics
during IPC. Rhythmic limb compressions result in a low
net/highly oscillatory shear profile during the inflated
phase with a subsequent high net/low oscillatory shear
profile when the cuff is deflated, as shown in Fig 1.3,5 It is
possible that this periodicity in opposing shear stimuli may
counterbalance each other, yielding no net effect on
vascular function.5

Alternatively, repeated transient exposure to this nega-
tive stimulus may lead to a protective beneficial adaptation
in the vessel by, for instance, increasing antioxidant
capacity to counter oscillatory shear-induced oxidative
stress. In addition, the hemodynamic response to IPC is
not necessarily constant with respect to time,5 which is
important because a single session of IPC treatment can
last for durations of 1 to 4 hours or more.17,18,21,22,50

We have reported in young, healthy volunteers that the
hyperemic response to IPC is ablated by the 45th minute
of high-frequency IPC application with an increased oscil-
latory shear profile.5 This suggests that longer IPC session
durations may not provide additional benefit or may even
be deleterious. These theories remain speculative, however,
because no study to date has directly assessed endothelial
function in response to chronic IPC treatment.



Fig 1. Representative samples of (A and C) ultrasound/Doppler recordings and (B and D) corresponding digitali-
zation (B and D) of limb hemodynamics during (A and B) high-frequency and (C and D) low-frequency intermittent
pneumatic compression (IPC) treatment. The red lines indicate cuff inflation, and the green lines indicate cuff deflation.
Note the oscillatory shear that occurs during cuff deflation during each respective treatment frequency. Importantly,
high-frequency IPC doubles the proportion of each minute the limb is exposed to this state of oscillatory shear but has
no acute detrimental effect on popliteal artery function. Figure adapted from Sheldon et al.5
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Mechanical compression of skeletal muscle is a
powerful physiologic stimulus. Another important limi-
tation of current IPC design is that it ignores other stimuli
that are elicited by IPC. Mechanical compression of skeletal
muscle is one such stimulus. Externally applied pressure is
directly transmitted within the tissue, and rises in both intra-
muscular and transmural pressures are possible mechanisms
capable of signaling positive adaptations within the
compressed limb.51 For example, mechanical stimuli can
induce structural vascular adaptations in the skeletal muscle.
Rivilis et al52 revealed increased vascular endothelial growth
factor (VEGF) expression after shear or muscle stretch,
whereas matrix metalloproteinase 2 expression was only
elevated after the muscle-stretch stimulus.

Our group recently demonstrated that higher IPC
frequency (2 seconds of inflation/2 seconds of deflation in
rats, 2 secondsof inflation/3 secondsof deflation inhumans),
which increases themechanical stimulusof IPC, in contrast to
a common clinical frequency (3 seconds of inflation,
17 seconds of deflation) in the healthy limbs of rats and
humans, resulted in a differential expression in skeletal of
genes regulating inflammation (monocyte chemoattractant
protein-1 [MCP-1], rats) extracellular matrix stability
(cysteine-rich angiogenic inducer 61, connective tissue
growth factor; humans) and angiogenesis (VEGF, rats).1,5

Further, acute IPC application in a rat model of peri-
pheral arterial insufficiency (femoral ligation) revealed a
compression frequency-dependent increase in messenger
RNA expression of and immunostaining for chemokine
(C-X-C motif) ligand 1, MCP-1, and VEGF in skeletal
muscle as well as an increase in MCP-1 messenger RNA
expression in collateral arteries.4 These effects occurred
despite the seemingly detrimental shear profile that occurs
with high-frequency IPC,5 further supporting an important
role for mechanical stimuli and vascular remodeling to the
effectiveness of IPC. However, a 2-week application of
high-frequency IPC in our rat model of peripheral arterial
insufficiency failed to evoke an observable increase in capil-
lary contacts per fiber ratio compared with sham-treated
control limbs.6 This treatment did, however, significantly
improve treadmill exercise capacity and in situ skeletal
muscle blood flow compared with sham-treated controls.

Longer treatment durations may be necessary to
observe morphologic changes in the treated limb. In fact,



Fig 2. Schematic representation of the proposed mechanisms that contribute to the clinical outcomes (ie, reduced
resting and intermittent claudication, improved ankle-brachial index, improved limb salvage, and better quality of
life) of intermittent pneumatic compression (IPC) therapy. The dashed-line box indicates that improved vascular
function to IPC treatment is speculative because it has not been directly measured previously, as detailed in the text.
A-V, Arterial-venous.
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cyclic strain and vessel compression can induce vasodilation
and improve endothelial function53-56 and thus provides
a possible mechanism through which increasing mechanical
strain may also improve blood flow responses and vascular
function. It would be of interest for future studies to test
this hypothesis by comparing the clinical outcomes of
claudicant patients exposed to high-frequency IPC or
traditional low-frequency IPC.

Of course, other stimulation characteristics, such as
pressure and duration of compression, may also affect
IPC efficacy. For instance, although our group has demon-
strated no effect of moderate IPC pressure increases in the
forearms of humans (150 mm Hg) or the hind limbs of rats
(200 mm Hg),1,3 the use of much higher pressures
(w300 mm Hg) and frequencies (one per cardiac cycle)
during enhanced external counterpulsation improves
brachial and femoral artery function.57 In addition,
ischemic-preconditioning treatment (5 minutes of ischemia
at 200 mm Hg, followed by 5 minutes of reperfusion) can
improve systemic markers of inflammation.58,59 Investiga-
tion into the utility of such stimulation characteristics in
the context of IPC therapy is needed.

In summary, the A-V hyperemia hypothesis is an over-
simplified model to describe the mechanisms by which IPC
is effective that is supported by limited experimental
evidence. It is challenged by recent observations that
applying IPC stimulation characteristics that diminish the
hemodynamic effect to treatment actually generate
a more robust change in vascular and skeletal muscle
gene expression without acutely affecting vascular function.
Direct mechanical skeletal muscle compression can poten-
tially explain the adaptations that occur to IPC. Impor-
tantly, the studies we have referred to used healthy or
preclinical models, and whether similar phenomena will
occur in the diseased limbs of PAD patients treated with
IPC is currently unknown. A schematic of the proposed
mechanisms contributing to the outcomes of IPC treat-
ment is depicted in Fig 2. It is crucial that future studies
examine these mechanisms in PAD patients.

CONCLUSIONS AND PERSPECTIVES

Owing to its low cost and ease of use, IPC treatment is
an attractive alternative to other treatments for PAD.
Although IPC has been reported to improve claudication
distance to a similar extent as exercise, we must emphasize
that this treatment should not be used as an exercise
replacement. The substantial systemic benefits of exercise,
such as improved oxygen consumption, metabolic regula-
tion, and weight loss, cannot be mimicked by IPC treat-
ment. Ideally, IPC should be used in combination with
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exercise in a fashion that progressively increases ambulation
time and decreases the time spent with IPC treatment.
Future research needs to assess the outcomes of patients
using a combined IPC and exercise treatment regimen.

Clinical investigations into the efficacy of IPC provide
promising evidence that this treatment is advantageous.
However, the IPC systems used in these studies were
designed based on premises that overemphasize the impor-
tance of the A-V pressure difference and the resulting
hyperemic response to treatment. In fact, IPC causes
a detrimental oscillatory shear profile during cuff inflation.
Importantly, accumulating evidence supports the impor-
tance of rhythmic mechanical deformation of skeletal
muscle as an important stimulus driving adaptations to
IPC therapy. This concept, however, remains to be demon-
strated in a clinical setting. Ultimately, various IPC stimu-
lation characteristics and their consequent physiologic
responses must be evaluated in the context of the adapta-
tions and clinical outcomes of treatment in chronic,
sham-controlled trials.
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