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Background: Parkinson's disease (PD) is a complex disease and the current interest and focus of scientific research
is both investigating the variety of causes that underlie PD pathogenesis, and identifying reliable biomarkers to
diagnose and monitor the progression of pathology. Investigation on pathogenic mechanisms in peripheral
cells, such as fibroblasts derived from patients with sporadic PD and age/gender matched controls, might
generate deeper understanding of the deficits affecting dopaminergic neurons and, possibly, new tools applicable
to clinical practice.
Methods: Primary fibroblast cultures were established from skin biopsies. Increased susceptibility to the
PD-related toxin rotenone was determined with apoptosis- and necrosis-specific cell death assays. Protein
quality control was evaluated assessing the efficiency of the Ubiquitin Proteasome System (UPS) and protein
levels of autophagic markers. Changes in cellular bioenergetics were monitored bymeasuring oxygen consump-
tion and glycolysis-dependent medium acidification. The oxido-reductive status was determined by detecting

mitochondrial superoxide production and oxidation levels in proteins and lipids.
Results: PDfibroblasts showedhigher vulnerability to necrotic cell death induced by complex I inhibitor rotenone,
reduced UPS function and decreased maximal and rotenone-sensitive mitochondrial respiration. No changes in
autophagy and redox markers were detected.
Conclusions: Our study shows that increased susceptibility to rotenone and the presence of proteolytic and
bioenergetic deficits that typically sustain the neurodegenerative process of PD can be detected in fibroblasts
from idiopathic PD patients. Fibroblasts might therefore represent a powerful and minimally invasive tool to
investigate PD pathogenic mechanisms, which might translate into considerable advances in clinical manage-
ment of the disease.
© 2014 Elsevier B.V. All rights reserved.
1. Introduction

A number of converging, still incompletely characterized factors
contribute to the pathogenesis of Parkinson's disease (PD). Age,
predisposing genetic background and exposure to environmental
stressors may cooperate in triggering the disease by affecting neuronal
mechanisms responsible for cellular homeostasis, such asmitochondrial
itin Proteasome System; OCR,
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function and protein quality control [1,2]. Mitochondrial dysfunctions
have been repeatedly shown in PD patients and experimental PD
models [3] and the resulting alterations in cellular redox and energy ho-
meostasis might be crucial to PD pathobiology [4]. Decreased efficiency
of the Ubiquitin Proteasome System (UPS) and autophagic pathways –
two major cellular systems of protein quality control – is also likely
to contribute to PD pathogenesis [5]; the presence of aggregated, poly-
ubiquitinated proteins in Lewy Bodies (LBs) clearly indicates that
proteolytic dysfunction and proteo-toxicity are critical steps in the
pathogenic cascade of PD [6]. Direct evidence of these pathobiological
processes can be obtained only in postmortem brains; it is therefore
essential to identify and develop peripheral markers of biomolecular
dysfunctions relevant to PD that might have a substantial impact in
the clinical setting. Such biomarkers could be used to monitor disease
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progression, efficacy of new therapies, as well as to investigate whether
the complexity of phenotypes shown by PD patients is paralleled by
heterogeneity of biomolecular responses. Numerous studies have been
conducted in peripheral cells of PD patients, mostly isolated from
venous blood (i.e. lymphomonocytes, platelets, red blood cells), on the
assumption that a generalized biomolecular defect associated with a
predisposing genetic background could be detectable in any cell of the
body. Results have been often contradictory and, in most cases, the
influence of pharmacological treatments (levodopa, in particular) has
represented a strong confounding factor [7]. Several studies have been
recently relying on fibroblasts, as a substrate to investigate PD mecha-
nisms [8]. Fibroblasts represent an easily accessible source of proliferat-
ing cells that share the same genetic complexity of neurons [9]; cultured
fibroblasts have also the advantage, compared to peripheral blood cells,
of being exposed to the effects of anti-PD drugs at much lower concen-
trations as compared to peripheral blood cells, since they need to be
grown and replicated in culture for several days before being used for
the experiments. The aim of this study was, therefore, to use primary
fibroblasts derived frompatients with sporadic PD and healthy controls,
to investigatewhether and how the pathogenicmechanisms knowingly
associated with neurodegeneration in PD can be detected in these pe-
ripheral cells. In particular, we focused on the exacerbated susceptibility
to pro-oxidant drugs, the impaired function of quality control systems,
especially the machinery involved in protein degradation, and
mitochondrial defects, both in terms of redox control and respiratory
capacity [1]. The more general and ambitious objective was to identify
markers of PD-related pathobiology that might be used to develop
predictive models for the identification of PD patients within the elder
population.
2. Subjects and methods

2.1. Cell culture

Fibroblasts were obtained from sporadic PD patients and age- and
sex-matched healthy controls (Table 1). The research was approved
by the Ethic Committee of the National Neurological Institute “C.
Mondino” of Pavia, and informed consent was obtained from all sub-
jects. All fibroblast strains were isolated from skin biopsies of the
upper medial arm and cultured under highly standardized conditions
in RPMI 1640-AQmedia (Sigma) complemented with 1% Streptomycin
and Penicillin antibiotics and 20% Fetal Bovine Serum (FBS, Sigma).
Cells used in the experiments were grown in adhesion and expanded
in flasks up-to a maximum of 13 passages. Indeed, the number of pas-
sages can affect cell senescence and impact on biomolecular responses.
Therefore the number of passages in vitro for each fibroblast cell line
used in the experiments was controlled and kept consistent within
groups to avoid biases associated with cell replication [10]. Further-
more, fibroblasts were used for the experiments only when the cell
culture had reached at least 80% confluency, with the only exception
of the respirometry experiments in the Seahorse XF Extracellular Flux
Analyzer, in which cells were confluent (see Section 2.6).
Table 1
Clinical data of subjects involved in the study.

Controls PD patients

N (M/F) 7 (3/4) 11 (6/5)
Age (years) 62.8 ± 4.8 64.1 ± 5.3
Disease duration (years) – 12.1 ± 6
UPDRS (subscale III) score – 19.8 ± 5.3
Hoehn and Yahr stage – 2.3 ± 0.7
L-dopa daily intake (mg) – 738.9 ± 362.3

All patients were undergoing treatment with levodopa. Five out of eleven were taking
dopamine agonists as adjunctive therapy. UPDRS-III score (motor subscale) and Hoehn
and Yahr stage were evaluated in the “ON” phase. Values are expressed as mean ± sd.
In some experiments fibroblasts were treated with PD-associated
neurotoxin rotenone (Sigma). Rotenone was dissolved in DMSO and a
100 mM stock was prepared. Rotenone was subsequently diluted
directly in the medium to the final concentrations of 500 and 20 μM
and cells were exposed to the toxin for 6 h for the evaluation of protein
quality control system and cell viability/apoptosis. Lower concentra-
tions (100 nM, 1 μM and 10 μM) and shorter time of exposure (1 h)
were adopted for the redox experiments.

2.2. Autophagicmarkers, poly-ubiquitination andmacromolecule oxidation

Protein lysates were obtained by resuspending fibroblast pellets in
ice-cold lysis buffer (CelLytic, Sigma) containing sodium fluoride
(1:100, Sigma) and diluted Phosphatase (1:10, Roche) and Protease
inhibitors (1:25, Roche). After centrifugation, the supernatant was col-
lected and protein concentration was measured using a Bicinchoninic
Acid (BCA) Protein Assay (Sigma).

For poly-ubiquitinated proteins, crude cell lysates were obtained by
resuspending fibroblast pellets in SDS-containing loading buffer (Tris–
HCl 0.5 M pH 6.8, 10% SDS, 25% Glycerol, 0.5% bromophenol blue and
5% β-mercaptoethanol in milliQ water).

All of the protein lysateswere run on 4–12% gels (Invitrogen) or 10%
gels (Biorad), transferred onto nitrocellulose membranes (Invitrogen)
and western blot was performed. Membranes were blocked (Odyssey
blockingbuffer, LiCor) and incubated overnightwithprimary antibodies
(actin (sc-1616, 1:8000), ubiquitin (sc-166553, 1:1000) and LAMP2 (sc-
5571, 1:2000)), Santa Cruz; mTOR (#4517, 1:1000), phospho-mTOR
(#2971, 1:500) and parkin (#2132, 1:500), Cell Signaling; beclin1
(3663-100, 1:500), BioVision; LC3 (L7543, 1:500) and p62/SQSTS1
(P0067, 1:2000), Sigma; 4-Hydroxynonenal or 4-HNE (ab46545,
1:500), phospho-Ser129 α-synuclein (ab59264, 1:500), α-synuclein
(ab51252, 1:1000), and Abcam and secondary antibodies (IRDye®
700 goat anti-mouse, IRDye® 800 goat anti-rabbit (1:10,000), LiCor,
Biosciences). Image analysis was performed using the fluorescent
near-infrared Odyssey®scanner and software (LiCor, Biosciences) and
fluorescence was normalized with the corresponding Actin signal.

Protein carbonyls were measured following derivatization with 2,4-
Dinitrophenylhydrazine (DNPH). Briefly, samples were prepared in
H2O2 containing 12% SDS. Positive samples were incubated 15 min
with a solution containing 20 mM DNPH in 5% TFA and the reaction
was stopped by adding 6.7 μl of neutralization solution (2 M Trizma
base containing 30% Glycerol and 2-mercaptoethanol). Samples
were loaded onto 4–12% precast gel (Invitrogen), transferred onto
PVDF membranes (Millipore) after SDS electrophoresis, finally 2,4-
Dinitrophenylhydrazone (DNP)-derivates were detected after incuba-
tion with anti-dinitrophenyl (DNP) primary antibody (D8406, 1:1000,
Sigma) and a rat anti-mouse IgE-HRP secondary antibody (1130-05,
1:1000, SouthernBiotech) diluted in PBS + 5% milk. Blots were devel-
oped by chemiluminescence. Negative controls were prepared by
avoiding DNPH addition. To normalize the DNP signal, amine reactive
carboxylic-acid succimidyl (CAS) ester conjugated to Alexa680 (1:100,
Invitrogen) was added to each sample and analyzed using the fluores-
cent near-infrared Odyssey®scanner and software. The chemilumines-
cent signal was detected using an Alliance 2.7 scanning system.
Images were quantified using Metamorph software.

2.3. 20S proteasome and caspase 3 activity

Activities of 20S proteasome and caspase 3 were assessed on
fibroblast lysates with ELISA commercial kits (Enzo Life Science and
Molecular Probes). The 20S proteasome is the catalytic subunit of the
UPS and is thereforemarker of proteolytic activity/homeostasis. Caspase
3 is one of the major downstream factors involved in the apoptotic
cascade and is therefore marker of programmed cell death. Briefly,
fibroblast pellets were resuspended in ice-cold PBS, lysed by freezing–
thawing cycles and centrifuged. Protein-containing supernatants were
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loaded together with standards, positive and negative controls in
96-well plates and incubated with a fluorogenic substrate (Suc-LLVY-
AMC and Z-DEV-R110, for detecting respectively the 20S proteasome
and caspase 3 activity), following the manufacturer's instructions.
Results were expressed as a measure of fluorescence produced after
enzymatic cleavage and were detected with a microplate reader
(Molecular Devices). Values of fluorescence were normalized with the
protein content in each sample.

2.4. Cell viability and apoptosis

Cell viability and apoptosis were evaluated by staining fibroblasts
with SYTOX Green nucleic acid stain (Invitrogen) and Annexin V (BD
Biosciences) dyes. SYTOXGreen is a dyewhich specifically binds nucleic
acids in cells and is able to access DNA only when cell membranes are
disrupted and cells are dead. SYTOX Green is therefore marker of
necrotic cell death. Differently, Annexin V is a dye which selectively
binds phosphatidylserine, a phospholipid typically localized on the
inner side of the plasmamembrane. During the initial phases of apopto-
sis, phosphatidylserine residues are flipped on the outer side of the
membrane and can be detected by the dye. Annexin V is therefore
marker of early apoptosis. Cells were treated for 6 h with rotenone
(20 and 500 μM), washed in 1× Annexin V binding Buffer (0.1 M
HEPES, pH 7.4; 1.4 M NaCl; 25 mM CaCl2, diluted 1:10) and incubated
in the dark with 0.5 μM SYTOX Green and 5 μl Annexin V, following
manufacturer instructions. Negative controls were also included. After
15min, 400 μl 1×Annexin V binding Bufferwas added andfluorescence
was detected for each sample using a FACS analyzer (FASCanto-BD Bio-
sciences). Measures were taken in duplicates and normalized by
subtracting the blank. Analysis was performed with FlowJo software
(TreeStar).

2.5. Evaluation of cellular thiol redox status and mitochondrial superoxide
production

Before performing these experiments, fibroblasts were exposed to
rotenone as described in Section 2.1. The redox immunocytochemistry
is a double-labeling technique, in which two different fluorophore-
conjugated dyes are used to detect reduced and oxidized cysteines in
tissues and cell preparations [11,12]. The assay consisted in 3 steps:
cells were fixed, permeabilized and thiols (SH) were labeled with
2 μM AlexaFluor555-maleimide dye (Invitrogen) in the presence of
1 mM N-ethylmaleimide (NEM, Sigma); disulfides (SS) were reduced
by the addition of 5 mM tris(2-carboxyethyl)phosphine (TCEP, Sigma)
and were finally labeled by the addition of 2 μM AlexaFluor488-
maleimide (Invitrogen) in the presence of 1 mM NEM. Images were
taken in both AlexaFluor555 and AlexaFluor488 emission channels
using a confocal microscope; the redox state (SS/SH) was calculated as
the ratio between the images in the two channels. Analysis was subse-
quently carried out using MetaMorph software (Olympus).

Mitochondrial superoxide production was detected by staining cells
with MitoSOX dye (Invitrogen). Fibroblasts were incubated in the dark
at 37 °C for 20minwith 2 μMMitoSOXdiluted inHBSS (Hanks balanced
salt solution, Gibco), according to the cell type and following manufac-
turer instructions. Negative controls were also included. At the end of
the incubation, cells were centrifuged and resuspended in 500 μl of
FACS resuspending buffer (PBS, 0.2% FBS and 0.02% Sodium Azide).
Fluorescence was immediately detected for each sample using a FACS
analyzer (FASCanto-BDBiosciences).Measureswere taken in duplicates
and normalized by subtracting the blank. Analysis was performed with
FlowJo software (TreeStar).

2.6. Mitochondrial respiration and glycolysis

The Seahorse XF Extracellular Flux Analyzer enables to measure si-
multaneously and in real-timemitochondrial respiration and glycolysis
in cultured cells. Respiration and glycolysis are respectivelymeasured as
the rate of oxygen consumption (OCR) and extracellular acidification
(ECAR); the latter is principally caused by conversion of pyruvate to
lactate and therefore provides an estimate of the glycolytic flux. The
system also allows to inject up-to four drugs during the experimental
run and to monitor their effects over time. According to the standard
protocol, we injected in the following order (final concentrations are in-
dicated): 1 μM oligomycin (ATP-synthase inhibitor); 0.4 μM carbonyl,
cyanide-4-(trifluoromethoxy) phenylhydrazone (or FCCP, oxidative
phosphorylation uncoupler); 0.5 μM rotenone (complex I inhibitor)
and 1 μM antimycin A (complex III inhibitor). Cells were plated the
day before the experiment and optimal cell density (60000 cells/well)
was determined experimentally to ensure a proportional response to
FCCP with cell number (data not shown). This density resulted in con-
fluent cultures, in which cell growth was blocked due to contact inhibi-
tion, thereby avoiding potential biases due to different growth rates in
PD and control fibroblasts. Absence of cell replication was verified in a
parallel experiment, in which control fibroblasts were seeded at the
same density used in the Seahorse experiment and counted after 16 h
in culture, using a Beckman Coulter Z2 Cell and Particle Counter. No
cell replication was detected in this timeframe. Moreover, we observed
no differences in mitochondrial morphology, density and distribution,
after staining control and PD-derived fibroblasts with the potentiomet-
ric dye CMXRos MitoTracker Red (Invitrogen), which labels functional
mitochondria with active membrane potential. MitoTracker quantifica-
tion was performed in an unbiased fashion, using the MetaMorph soft-
ware (Olympus), to quantify emission intensity and total area (i.e.
mitochondrial polarization levels and area of polarized mitochondria
per cell). The analysis did not show any statistical difference between
PD and control cells (data not shown).

Five measurements were taken for both OCR and ECAR at baseline
and four measurements after each toxin injection. The cumulative OCR
and the ECAR were calculated at baseline and over time after each
drug injection. The values of both OCR and ECAR at any time point
were calculated as the average of multiple measurements for the
same cell line (n = 5). No cell death was observed throughout the
experiment.

Eight bioenergetic parameterswere also calculated from the analysis
of the OCR values, according to previously published reports [13,14].
Basal respirationwasmeasured as the average of OCR values at baseline,
before toxin injections. Non-mitochondrial respiration is the final OCR
measure after antimycin A. Values for each one of the remaining
parameters were calculated as the difference of OCR measures after
and before injection of specific toxins. Respiration for ATP-synthesis:
OCR (basal-oligomycin); proton leakage: OCR (oligomycin–antimycin
A); maximum respiration: OCR (FCCP–antimycin A); rotenone-
sensitive respiration (mainly complex I-driven): OCR (FCCP–rotenone);
rotenone-insensitive respiration: OCR (rotenone–antimycin A); and
reserve capacity (FCCP-basal).

2.7. ATP levels

ATPlite 1 step (PerkinElmer) is a luminescence assay that monitors
ATP levels in living cells. Fibroblasts were plated in a 96-well plate
(CulturPlate, PerkinElmer) and luminescence wasmeasured in amicro-
plate reader after the addition of ATP-dependent enzyme luciferase and
its substrate luciferin, followingmanufacturer's instructions. A standard
curve was prepared to calculate the ATP values of the samples. Final
values were normalized with the protein content in each sample.

2.8. Statistical analysis

Statistical analysis was performed with Prism5 (GraphPad soft-
ware). Unpaired t-test was applied and 95% confidence interval was
set for statistical significance. Results were considered significant with
p-value b 0.05.
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3. Results

3.1. Cell viability and apoptosis

Cell viability and early apoptosis were evaluated at baseline and
after incubation with 20 and 500 μM of rotenone. Rotenone is a
mitochondrial complex I inhibitor which interferes with oxidative
phosphorylation by depleting energy production, augmenting ROS for-
mation and eventually causing cell death. At the highest dose, rotenone
induced necrotic cell death in both PD patients and controls. This effect,
however, was significantly enhanced in PD fibroblasts (Fig. 1A). The
percentage of apoptotic cells did not change after rotenone administra-
tion and no differences were observed between PD patients and control
fibroblasts. In untreated cells, there were no differences in necrosis or
apoptosis among the groups, as also indicated by unchanged basal
caspase 3 activity (Fig. 1B and C).
3.2. Proteolytic mechanisms part I: 20S proteasome and UPS

Basal activity of 20S proteasome, the catalytic subunit of the UPS,
was significantly reduced in PD as compared to control fibroblasts.
Higher accumulation of ubiquitinated proteins, representative of
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Fig. 1. Cell viability and apoptosis in control and PD fibroblasts. Cell death assays after
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impaired 26S proteasome function, and increased levels of parkin
protein, encoded by PD-associated gene PARK2, were found in PD as
compared to control cells at baseline (Fig. 2A, C and D). In order to
investigate themechanisms underlying the increase in necrosis after ro-
tenone administration, we measured possible changes in the activity of
20S proteasome and in the expression of autophagic markers (see
Section 3.3.).We observed no significant changes in 20S proteasome ac-
tivity after rotenone exposure as compared to baseline in either control
or PD fibroblasts. However, we observed significantly higher induction
(expressed as % baseline-vehicle) of 20S proteasome activity in PD fi-
broblasts as compared to controls after both 20 and 500 μM rotenone
administration (Fig. 2B).

We also checked for α-synuclein and phosphorylated-Ser129
α-synuclein protein levels, but they were far too low for validation by
western blotting (data not shown).
3.3. Proteolytic mechanisms part II: autophagy

We analyzed basal levels of autophagy modulators such as
phosphorylated-mTOR and beclin1, LAMP2, a marker associated to
chaperone-mediated autophagy, as well as LC3-II/LC3-I ratio and p62,
representative of autophagic vesicle accumulation. None of these
markers were significantly different between groups at baseline (Fig. 3).

After treating cells with rotenone (20 and 500 μM),we could not de-
tect any significant change in protein levels for any of these markers as
compared to baseline, except from increased LC3-II accumulation in
both groups after exposure to 500 μM rotenone (Fig. 3A). When com-
paring control and PD fibroblasts, most of the changes in the expression
of autophagicmarkerswere detectable after administration of 20 μMro-
tenone. At this concentration, p62, mTOR phosphorylation and LAMP2
were down-regulated, but not significantly different between groups
(Fig. 3B–D–E). Only beclin1 protein levels were significantly lower in
PD cells (Fig. 3C). Finally, no significant differences were detected in
the induction (expressed as % baseline-vehicle) of autophagic marker
expression between PD and controls, with the exception of LAMP2
(Supplementary Fig. 1).
3.4. Mitochondrial bioenergetics and redox homeostasis

The bioenergetic properties of PD and control fibroblasts were
assessed using the Extracellular Flux Analyzer from Seahorse Bioscience
(Fig. 4). According to the OCR values, eight bioenergetic parameters
were also calculated and significant decreasewas found inmaximal res-
piration and rotenone-sensitive respiration (Table 2). Basal ATP levels
were unchanged between groups (Supplementary Fig. 2) consistent
with the lack of changes in respiration dedicated to ATP-synthesis. We
also investigated the glycolytic capacity in our fibroblast lines by mea-
suring extracellular acidification rate (ECAR) due to augmented proton
production,which is in turn caused by increased conversion of pyruvate
to lactate (i.e. glycolysis). We measured basal and stimulated ECAR. In
the latter condition, mitochondrial function and ATP production are
perturbedby oligomycin, FCCP, or rotenone and glycolyticflux increases
to compensate (Fig. 4). Both basal and stimulated ECAR did not differ
between PD fibroblasts and respective controls (Fig. 4B).

Basal production of mitochondrial superoxide and cellular redox
status (measured as the ratio between disulfides and reduced thiols)
were unchanged in PD versus control fibroblasts. Also, no significant
changes and differences could be observed in protein thiol oxidation
whenfibroblastswere exposed to rotenonewithin a range of concentra-
tions similar to the one (0.5 μM) adopted to challenge complex I in the
bioenergetic experiments (Fig. 5A to C). Finally, no differences could be
detected in the accumulation of irreversibly oxidized macromolecules,
such as protein carbonyls and lipid peroxidation markers at baseline
(Fig. 5D to G).
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4. Discussion

In this study we compared cell viability, redox homeostasis, protein
quality control and cellular bioenergetics in fibroblasts derived from
patients with sporadic PD and controls.

According to recent publications, the identification of diagnostic and
prognostic biomarkers of PD needs to fulfill essential, scientifically
shared criteria. For instance, candidate biomarkers should be represen-
tative of disease status and/or progression andmost importantly should
be linked to fundamental features and mechanisms underlying PD neu-
ropathology [7,15,16]. Also, the use of skin-derived cells to investigate
brain diseases with the aim of identifying biomarkers and potentially
new treatments is attracting increasing interest [17–19]. Several studies
have been performed on fibroblasts derived from genetic and sporadic
patients with neurodegenerative diseases, in particular Alzheimer's
disease [20–22], Huntington's disease [23] and, very recently, also
genetic forms of Amyotrophic Lateral Sclerosis [24–26]. All these studies
have used fibroblasts as a model to investigate the mechanisms under-
lying the pathology with the idea of describing how peripheral cells
express the molecular and metabolic defects that are typical of the
degenerating neurons. Many papers have also been published using
fibroblasts as a model to investigate PD pathogenesis. Most of these
published data focus on specific pathological features and use cells
from patients with genetic PD, carrying PINK1, parkin or LRRK2 muta-
tions [27–30]. In this study we used fibroblasts obtained from patients
with idiopathic PD, in which the etiopathogenesis is due to contribution
of a complex genetic background rather than monogenic causes. We
analyzed a broad panel of markers to identify significant differences
between PD and control fibroblasts and possibly to test the predictive
potential of this cell type in the investigation on PD pathobiology.

The main achievement of this study is that we could detect, in skin
fibroblasts, some deficits associated with PD pathogenesis that are
typically reported at central level.

We demonstrated a critical impairment in the activity of the 20S
proteasome, the catalytic subunit of the UPS and significantly higher
accumulation of poly-ubiquitinated proteins, indicating that the proteo-
lytic function of the UPS is affected in PD fibroblasts as well as in the
brain. Previous data from our lab showed impaired 20S proteasome ac-
tivity also in lymphocytes derived from patients with sporadic PD [31],
confirming that alterations in UPS activity are generally detectable in
peripheral cells. Differently, we could not detect differences in the
basal levels of autophagic markers between PD and control fibroblasts.
Our results are in contrast with previously published data showing
that autophagic marker expression is increased in peripheral blood
cells derived from PD patients as compared to controls [32,33]. Howev-
er, themismatchmight be attributed to the differences between the two
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cellular systems (fibroblasts versus blood cells) and the effect of levodo-
pa treatment on leukocytes. We found that parkin protein levels are
higher in fibroblasts from sporadic PD patients. Parkin is a cytoplasmic
E3 ubiquitin ligase, which catalyzes ubiquitination of target proteins.
Mutations in the PARK2 gene lead to loss of function of parkin protein
and therefore accumulation of non-degraded proteins. Also, parkin is
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involved in signaling and maintenance of mitochondria, especially by
sustaining ATP synthesis and promoting mitophagy [34–36]. In our
study, increased levels of parkin might be associated with the impair-
ment of UPS function in two different ways. The UPS is responsible for
parkin degradation and increased levels of the proteinmight be a conse-
quence of such deficit. Alternatively, parkin might be over-expressed in
order to compensate for UPS impaired function [37], for its own loss of
function [38] and possibly, in line with recent evidence, to sustain the
bioenergetic requirement of cells [39]. Indeed in our study, basal respi-
ration and respiration dedicated to ATP synthesis were lower, but not
significantly different between PD and control fibroblasts, in line with
the observation that no changes in basal ATP levels could be detected.

We found that protein levels for both non-phosphorylated and
phosphorylated-Ser129 α-synuclein were below detection capacity, as
also shown by others [40]. In their study, Hoepken and collaborators
showed that α-synuclein mRNA, but not protein levels is detectable in
fibroblasts fromPINK1gene (PARK6) and sporadic PDpatients. Interest-
ingly, they found that α-synuclein expression was consistently in-
creased in patients carrying mutations in PINK1-encoding gene, but
not in all the sporadic ones, indicating that in fibroblasts from idiopathic
PD patients mRNA levels for α-synuclein are highly variable.

Similarly, we could not observe differences in any of the markers
reflecting intracellular redox state, despite it was previously found in fi-
broblasts carryingmutations in PINK1 that redox state is altered already
at basal level [41]. However, Del Hoyo and collaborators [42], who ana-
lyzed the levels of antioxidant defenses such as coenzyme Q10 and the
activity of superoxide-dismutase, glutathione peroxidase and catalase
in fibroblasts from sporadic patients, found no differences in the
comparison with the control samples, thereby supporting our findings.
We hypothesize that other compensatory mechanisms scavenging
Table 2
Bioenergetic parameters (nmol/min).

Controls PD patients p-value

Basal respiration 198.90 ± 51.89 160.53 ± 37.72 0.09
Respiration for ATP-synthesis 154.25 ± 41.23 125.32 ± 33.21 0.12
Proton leakage 44.66 ± 14.26 35.05 ± 8.95 0.09
Maximum respiration 352.22 ± 136.03 244.74 ± 68.31 0.04⁎

Rotenone-sensitive respiration 264.68 ± 114.84 174.74 ± 48.71 0.03⁎

Rotenone-insensitive respiration 87.54 ± 27.01 70.01 ± 27.21 0.19
Reserve capacity 153.31 ± 100.44 84.36 ± 54.70 0.07
Non-mitochondrial respiration 43.19 ± 10.64 32.63 ± 17.81 0.18

Bioenergetic parameters obtained from OCR values measured on PD patient and control
fibroblasts. Maximum respiration and rotenone-sensitive respiration were significantly
lower in PD fibroblasts as compared to controls. Results are expressed as mean ± sem.
⁎ p b 0.05 vs. controls.
ROS andprotecting cell viability are active already at baseline and signif-
icant changes on cell viability and oxidative stress tolerance in PD fibro-
blasts might be observed only after critical challenge and perturbations
occur, as already suggested by others [43]. In line with this affirmation,
our data offer further support to the hypothesis that PD cells respond
differently to stressing conditions and activate a different pattern of
compensatory mechanisms to counteract perturbations. In PD fibro-
blasts, we demonstrated increased vulnerability to the administration
of complex I inhibitor rotenone, in agreement with previous findings
from Cooper and collaborators, who showed that iPSC-derived neural
cells are susceptible to the same drugs that affect viability in the fibro-
blast strains from which they were reprogrammed [27]. Interestingly,
they highlighted that fibroblasts respond to the same pro-oxidants, pro-
teasome inhibitors and mitochondrial stressors, but at much higher
concentrations as compared to iPSC-derived neural cells, thereby
supporting our observation that PD fibroblasts show differences in
viability only after exposure to high doses of rotenone.

Rotenone is a complex I inhibitor and can also interferewith autoph-
agy and UPS activity [44]. Although in PD fibroblasts the UPS is already
inhibited at baseline, these cells tend to activate the proteasome rather
than autophagy in response to rotenone, as represented by higher in-
duction of 20S proteasome activity and lower levels of autophagic
marker expression. This evidence suggests that PD cells are less capable
of activating the proper systems to maintain homeostasis which,
as highlighted earlier, is already altered at basal level. These results
might explain why PD fibroblasts show higher mortality rate as
compared to controls.

As formitochondrial function, the data on fibroblast bioenergetic be-
havior demonstrates that exposure to even lower concentrations of ro-
tenone can discriminate PD cells. In fact, when fibroblast respiratory
capacity was challenged with the toxin, we found that the drop (i.e. re-
duction) of respirationwas significantly smaller in PD cells as compared
to controls, consistent with the role that defective complex I activity
might play in PD fibroblasts' bioenergetics. Indeed, complex I deficiency
is one of the milestones in PD pathogenesis and evidence has been col-
lected from human brains and specimens together with several cellular
and animal models of PD [45]. Also, in previous studies performed on
peripheral cells obtained frompatients, reducedmitochondrial complex
I activity was identified as a critical feature to discriminate PD samples
from controls, as well as patients with other neurodegenerative disor-
ders [8,9,46,47]. Furthermore, no striking evidence has so far demon-
strated that complex I activity and more generally mitochondrial
respiration is affected by anti-PD therapy, in particular chronic levodopa
administration [48]. Previous studies report that complex I activity is al-
tered in platelets derived from untreated PD patients [49,50], while it is
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normal and does not correlate with levodopa usage in patients with
multiple system atrophy [51]. This evidence further stresses that
complex I impairment is a PD-specific pathogenic feature and not a
consequence of neurodegeneration and/or pharmacological treatment.

Together with the exacerbated sensitivity to rotenone, we found a
blunted response to oxidative phosphorylation uncoupler FCCP in PD
fibroblasts, compared to control fibroblasts. In fact, the boost in mito-
chondrial respiration triggered by FCCP (maximal respiratory capacity)
was significantly reduced in PD cells, suggesting that conditions of high
energy requirement causing hyperactivation and overload of the
electron transport chain are more challenging for PD cells, as already
shown by other groups [52,53,42].

5. Conclusions

Our study shows that proteolytic defects and bioenergetic deficits
that typically sustain the neurodegenerative process of PD can be
detected in fibroblasts from idiopathic PD patients. Also, increased
susceptibility to a PD-inducing toxin such as rotenone was detected in
PD fibroblasts, thereby supporting the idea that patient-derived cells
have a different and less prompt capacity of compensating to stressing
conditions, likely because of basal defects such as those affectingUPS ac-
tivity. These intrinsic deficits might trigger the activation of inefficient
responses and enhance cell vulnerability, eventually leading to
increased cell mortality rates [54]. Fibroblasts therefore represent a
powerful and minimally invasive tool to investigate PD pathogenic
mechanisms and, together with other cellular models, might be critical
not only for understanding the basis of the selective vulnerability of do-
paminergic neurons in PD, but also for discriminating salient features
that contribute to the specific susceptibility across different neurode-
generative disorders.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbadis.2014.05.008.
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