
Theoretical Computer Science 387 (2007) 113–124
www.elsevier.com/locate/tcs

An infinite hierarchy induced by depth synchronization✩
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Abstract

Depth-synchronization measures the number of parallel derivation steps in a synchronized context-free (SCF) grammar. When
not bounded by a constant the depth-synchronization measure of an SCF grammar is at least logarithmic and at most linear with
respect to the word length. Languages with linear depth-synchronization measure and languages with a depth-synchronization
measure in between logarithmic and linear are proven to exist. This gives rise to a strict infinite hierarchy within the family of SCF
(and ET0L) languages.
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1. Introduction

Context-free languages are among the best studied and understood families of formal languages. Unfortunately,
their generative power is insufficient to model phenomena of formal and natural languages, see e.g. [1]. Context-
sensitive languages, the next level in the Chomsky-hierarchy, are so powerful that they become difficult to handle. For
this reason different extensions of context-free grammars have been proposed, see e.g. [1–3], in order to increase the
generative capacity while maintaining as many of the desired properties of context-free languages as possible.

In [4], Jürgensen and Salomaa introduced synchronized context-free (SCF) grammars as well as block-synchro-
nized context-free (BSCF) grammars, in which independent paths in a context-free derivation can communicate in
order to synchronize by means of situation symbols. Different aspects of SCF and BSCF grammars where studied in
[4–7]. The idea of synchronization as a method of communication was proposed in a similar way for automata in [8].
Measuring the amount of synchronization in SCF grammars and languages by functions was first done in [9], where
the total number of situation symbols used to generate a word was used as a measure.

✩ A preliminary version of this paper appeared in DCFS 2006 [F. Biegler, I. McQuillan, K. Salomaa, An infinite hierarchy induced by depth
synchronization, in: H. Leung, G. Pighizzini (Eds.), 8th International Workshop on Descriptional Complexity of Formal Systems, Las Cruces, NM,
USA, 2006, pp. 82–93].
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In this paper we measure the amount of synchronization used in an SCF grammar by mapping an integer onto the
number of symbols in the longest situation sequence needed to derive a word of this length. This definition is then
extended to languages.

As our main results we show that any non-context-free language generated by an SCF grammar requires at least
logarithmic and at most linear synchronization depth and that there exist languages that require linear synchronization
depth. Furthermore we show that for each natural number k ≥ 1 there are languages that, modulo a constant, require

exactly synchronization depth n
1
k and, thus, the depth measure gives rise to a strict infinite hierarchy of language

families between logarithmic and linear depth.

2. Preliminaries

Let N0 and N be the set of non-negative and positive integers, respectively, and let R
+
0 be the set of non-negative

real numbers.
An alphabet A is a finite, non-empty set of symbols. The set of all words over A is denoted by A∗, and this set

contains the empty word, λ. A language L over A is any subset of A∗. For a word x ∈ A∗ let |x | denote the length of
x . We let |x |a be the number of occurrences of a’s in x , for a ∈ A, and we let alph(x) = {a | a ∈ A, |x |a > 0}. We
say x is a prefix (suffix, infix) of y, denoted x ≤p y (x ≤s y, x ≤i y), if y = xu (y = ux , y = uxv) for some words
u, v ∈ A∗. Also, w1�pw2 if and only if one of w1 or w2 is a prefix of the other. We also say w1�ew2 if and only if
w1 = w2. For a word w with |w| = n and k ≤ n we denote by w[k] the prefix of length k of w. We use ⊆, ⊂ and \ to
denote subset, proper subset and set difference.

A context-free grammar is denoted by G = (N, T, P, I ), where N and T are disjoint alphabets of nonterminals
and terminals respectively, I ∈ N is the starting nonterminal, and P is a finite set of productions of the form X → w

where X ∈ N and w ∈ (V ∪ T )∗. Derivations of context-free grammars can be represented as trees. A tree domain D
is a non-empty finite subset of N

∗ such that

1. if μ ∈ D, then every prefix of μ belongs to D;
2. for every μ ∈ D there exists i ≥ 0 such that μj ∈ D if and only if 1 ≤ j ≤ i .

Let A be a set. An A-labelled tree is a mapping t : D → A, where D is a tree domain. Elements of D are called
nodes of t and D is said to be the domain of t , dom(t). A node μ ∈ dom(t) is labelled by t (μ). A node λ ∈ dom(t),
denoted by root(t), is called the root of t . The set of leaves of t is denoted by leaf(t). The subtree of t at node μ is
t/μ. The set of subtrees of t is sub(t) which we extend to sets of trees T by sub(T ) = ⋃

t∈T sub(t). When there is no
confusion, we refer to a node simply by its label.

Nodes of a tree t that are not leaves are called inner nodes of t . The inner tree of t, inner(t) is the tree obtained
from t by cutting off all the leaves. The yield of an A-labelled tree t , yd(t), is the word obtained by concatenating the
labels of the leaves of t from left to right; the leaves are ordered by the lexicographic ordering of N

∗. For μ ∈ dom(t),
patht (μ) is the sequence of symbols of A occurring on the path from the root of t to the node μ. A node μ of a tree t
is said to be of maximal distance from the root with respect to a certain property if for each other node ν of t which
also has the property we have |patht (ν)| ≤ |patht (μ)|.

Let G = (N, T, P, I ) be a CF grammar. A (N ∪ T ∪ {λ})-labelled tree t is a derivation tree of G if it satisfies the
following conditions.

1. The root of t is labelled by the initial nonterminal, that is, t (λ) = I .
2. The leaves of t are labelled by terminals or by the symbol λ.
3. Let μ ∈ dom(t) have k immediate successors μ1, . . . , μk , k ≥ 1. Then t (μ) → t (μ1) · · · t (μk) ∈ P .

The set of derivation trees of G is denoted T (G). The derivation trees of G are in one-to-one correspondence with
the derivations of G producing terminal words, and thus L(G) = {yd(t) | t ∈ T (G)}. Above, in the word yd(t), we
identify occurrences of the symbol λ with the empty word. The family of context-free languages is denoted L(CF)

(see [10,11] for more details on context-free grammars and languages).
The family of ET0L (extended tabled Lindenmayer systems without interaction) languages is denoted by L(ET0L)

(see [12] for more details on ET0L systems and languages).
We define asymptotic representations of functions as in [13]. Note that the definition of Ω given in other

publications might differ. Let f : N0 → R
+
0 and g : N0 → R

+
0 be functions, then
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• g ∈ O( f ) if and only if there exist constants c > 0 and n0 ∈ N0, such that g(n) ≤ c · f (n) for all n ≥ n0;
• g ∈ Ω( f ) if and only if there exist constants c > 0 and n0 ∈ N0, such that f (n) ≤ c · g(n) for all n ≥ n0;
• g ∈ Θ( f ) if and only if there exist constants c1, c2 > 0 and n0 ∈ N0, such that c1 · f (n) ≤ g(n) ≤ c2 · f (n) for

all n ≥ n0;

The function f is called an upper, lower or tight bound of g if g ∈ O( f ), g ∈ Ω( f ) or g ∈ Θ( f ), respectively.

3. Synchronization functions

3.1. Synchronized context-free grammars

We define synchronized context-free grammars and languages as in [4].

Definition 1. A synchronized context-free (SCF) grammar is a five-tuple

G = (V , S, T, P, I )

such that G′ = (V × (S ∪ {λ}), T, P, I ) is a context-free grammar and V , S and T are the alphabets of base
nonterminals, situation symbols and terminals, respectively. The alphabet of nonterminals is V × (S ∪ {λ}), where
elements of V × S are called synchronized nonterminals and elements of V × {λ} are called non-synchronized
nonterminals which are usually denoted by their base nonterminals only. We define the morphism hG : (V × (S ∪
{λ}))∗ −→ S∗ by the condition hG((v, x)) = x for all v ∈ V and x ∈ S ∪ {λ}.

Each node in a derivation tree of an SCF grammar has a situation sequence associated with it.

Definition 2. Let G be an SCF grammar. For a derivation tree t of G, t1 = inner(t) and a node μ ∈ leaf(t1), the
synchronizing sequence (sync-sequence) corresponding to μ is seqt1(μ) = hG(patht1(μ)). Also, define seqt = {s |
seqt1(μ) = s, μ ∈ leaf(t1) and s′ ∈ seqt1(μ

′), μ′ ∈ leaf(t1) implies |s′| ≤ |s|}. If this set is a singleton, we will use
seqt to refer to the element in the set.

Next we define which derivation trees contribute to the languages generated by an SCF grammar.

Definition 3. Let G = (V , S, T, P, I ) be an SCF grammar and z ∈ {p, e}. A derivation tree t of G is said to be
z-acceptable if, for each μ, ν ∈ leaf(inner(t)), seqinner(t)(μ) �z seqinner(t)(ν). The set of z-acceptable derivation
trees of G is denoted by Tz(G).

Notice that if t is an e- or p-acceptable derivation, then seqt is a singleton.

Definition 4. For z ∈ {p, e}, the z-synchronized language of G is Lz(G) = yd(Tz(G)). The families of z-SCF
languages, for z ∈ {p, e}, and SCF languages are denoted Lz(SCF) and L(SCF) = Le(SCF) ∪ Lp(SCF).

It was proven in [4] that p- and e-synchronization generate the same family of languages, i.e. Le(SCF) =
Lp(SCF) = L(SCF). In [6] it was proven that SCF grammars generate the family of ET0L languages, i.e.
L(SCF) = L(ET0L), and given an SCF grammar and a derivation mode one can effectively construct an equivalent
ET0L system and vice versa. The length synchronization context-free grammars of [14] have the same generative
capacity.

3.2. Basic definitions

In this section, we will recall the synchronization functions used to describe the total amount of synchronization,
from [9], as well as define a new measure of synchronization, used to define the total length of the synchronization
sequence.

Definition 5. The synchronization count of a derivation tree t of an SCF grammar G = (V , S, T, P, I ) is the
number of situation symbols c-sitG(t) occurring in the tree. The synchronization depth of t is d-sitG(t) = |seqt |.
The synchronization count (respectively depth) of a word, of G in z-mode, for z ∈ {p, e} and y ∈ {c, d}, is

(y, z)-sitG(w) =
{

min{y-sitG(t) | t ∈ Tz(G), yd(t) = w}, w ∈ Lz(G)

0, w ∈ T ∗ \ Lz(G).
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Definition 6. Let G be an SCF grammar. The count-(respectively depth-)synchronization function (y, z)-synchG :
N → N, of G in z-mode, z ∈ {p, e}, y ∈ {c, d}, is

(y, z)-synchG(n) = max{(y, z)-sitG(w) | |w| ≤ n}.
Naturally there can be two SCF grammars for the same language with (asymptotically) different synchronization

functions.

Definition 7. An SCF grammar G is said to be (y, z)-synchronizationally representative (or (y, z)-representative),
z ∈ {p, e}, y ∈ {c, d}, for its generated language Lz(G) if and only if , for all SCF grammars G′ with Lz(G) = Lz(G′),
(y, z)-synchG ∈ O((y, z)-synchG ′).

The synchronization measure for a given mode of an SCF language is bounded by the functions of the grammars
generating the language in that mode.

Definition 8. Let L ∈ L(SCF) and z ∈ {e, p}, y ∈ {c, d}. Let f : N → N be a function. We say that the (y, z)-
synchronization measure of L

• has upper bound f , denoted by (y, z)-synchL ∈ O( f ), if there exists a grammar G, such that Lz(G) = L and
(y, z)-synchG ∈ O( f );

• has lower bound f , denoted by (y, z)-synchL ∈ Ω( f ), if for all grammars G with Lz(G) = L we have
(y, z)-synchG ∈ Ω( f );

If (y, z)-synchL ∈ O( f ) and (y, z)-synchL ∈ Ω( f ), then f is called a (y, z)-synchronization representative of L,
denoted by (y, z)-synchL ∈ Θ( f ).

Note that, for an SCF language L, z ∈ {e, p} and y ∈ {c, d}, the existence of a representative grammar and a
function f with (y, z)-synchL ∈ Θ( f ) does not follow from the definition.

Definition 9. Let z ∈ {e, p}, y ∈ {c, d} and let f : N → N be a function. Let

L( f )

(y,z)(SCF) = {L | L ∈ L(SCF), (y, z)-synchL ∈ O( f )}
be the language family of all SCF languages with the (y, z)-synchronization measure having upper bound f .

The following example should help to clarify the definitions.

Example 10. We define an SCF grammar G = (V , S, T, P, I ) by V = {I, A, B, C, A′, B ′, C ′}, S = {s0, s1},
T = {a, b, c} and the following productions are, for i, j ∈ {0, 1} and X ∈ {A, B, C}, in P .

I → (A, si )(B, si )(C, si ), (X, s0) → (X, si ) | λ,

(X, s1) → (X ′, si )(X, si ) | x, (X ′, si ) → (X ′, s j )(X ′, s j ) | xx .

The tree t in Fig. 1 is an e-synchronized derivation tree of G with situation sequence s1s0s1, d-sitG(t) = 3,
c-sitG(t) = 18 and yd(t) = a5b5c5.

In equality mode, G generates Le(G) = {anbncn | n ∈ N0} and, as n is encoded in binary, we have
(d, e)-synchG ∈ Θ(log n).

The following normal form was originally defined in [9].

Definition 11. An SCF grammar G = (V , S, T, P, I ) is in λ-free normal form if all productions in P are either of
the form I → λ or (X, f ) → w, where X ∈ V , f ∈ S ∪ {λ}, w ∈ ((V \ {I }) × (S ∪ {λ}) ∪ T )+.

From the construction used to show that Le(SCF) = Lp(SCF) in [4] it follows that an arbitrary e-synchronized
grammar can be simulated by a p-synchronized grammar of (essentially) same synchronization depth, and vice versa.
This property is stated below.

Lemma 12. Let G be an SCF grammar and let z, z′ ∈ {e, p}. Then there exists an SCF grammar G′, such that
Lz′(G′) = Lz(G) and (d, z′)-synchG ′ ∈ Θ((d, z)-synchG).
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Fig. 1. e-synchronized derivation tree of G of Example 10.

It was proven in [9] that for each SCF grammar G and z ∈ {e, p} one can effectively construct an SCF grammar G′
in λ-free normal form such that Lz(G′) = Lz(G) and (c, z)-synchG ′ ∈ O((c, z)-synchG). From the construction of
the proofs it also follows that (d, z)-synchG ′ ∈ O((d, z)-synchG). Also recall the following definition from [9]:

Definition 13. Let G be an SCF grammar, let y ∈ {c, d}, z ∈ {e, p} and let k ∈ N. The (y, z)-synchronization function
of G is said to be bounded by k if and only if (y, z)-synchG(n) ≤ k for all n ∈ N. The synchronization function of G
is said to be bounded if and only if there exists a constant k such that it is bounded by k. An SCF language L is called
(y, z)-bounded if and only if there exists an SCF grammar G with Lz(G) = L such that (y, z)-synchG is bounded.
The family of all (y, z)-bounded SCF languages is denoted by L(y,z)(bSCF).

Note that bounded synchronization count always implies bounded synchronization depth. The following results are
immediate consequences of the proofs of the results in [9].

Lemma 14. Let G be an SCF grammar, let k ∈ N and let y ∈ {c, d}, z ∈ {p, e}. If the (y, z)-synchronization function
of G is bounded by k then Lz(G) ∈ L(CF) and a context-free grammar G ′ with L(G′) = Lz(G) can be effectively
constructed.

As every context-free language can be generated by an SCF grammar with bounded synchronization, the following
is an immediate consequence.

Proposition 15. L(y,z)(bSCF) = L(CF), for y ∈ {c, d}, z ∈ {p, e}.

3.3. Lower and upper bounds

In the following we establish an upper and a lower bound on depth-synchronization functions of non-context-free
SCF languages, similarly to the following two bounds for count-synchronization from [9].

For count-synchronization functions the following results were proven in [9].

Lemma 16. Given an SCF grammar G and z ∈ {p, e}, if (c, z)-synchG is not bounded by a constant then
(c, z)-synchG ∈ Ω(n).

Lemma 17. Let G be a synchronized context-free grammar in λ-free normal form. Then, for z ∈ {p, e},
(c, z)-synchG ∈ O(n2).

Theorem 18. Let L ∈ L(SCF) \ L(CF) and z ∈ {p, e}. Then (c, z)-synchL ∈ Ω(n) and (c, z)-synchL ∈ O(n2).

For depth-synchronization functions we get analogous results:

Lemma 19. Given an SCF grammar G and z ∈ {e, p}, if (d, z)-synchG is not bounded by a constant then
(d, z)-synchG ∈ Ω(log n).
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Proof. By Lemma 16, we know that (c, z)-synchG ∈ Ω(n). As the branching degree of the derivation trees is
bounded by the maximal length of the right-hand sides of the productions, (d, z)-synchG ∈ Ω(log n) is an immediate
consequence. �
Lemma 20. Let G be an SCF grammar. Then, for z ∈ {e, p}, (d, z)-synchG ∈ O(n).

Proof. Let G = (V , S, T, P, I ),w ∈ Le(G),w 
= λ and let t be an optimal, (d, e)-synchronized derivation tree of G
for w, i.e. d-sitG(t) = (d, e)-sitG(w).

As t is an optimal derivation tree, we will show next that the number of consecutive synchronized derivation steps
during which no terminal symbols are produced and all paths which are branched off only generate the empty word is
bounded by (|V | · |S|)! · 2|V |·|S|.

Let i satisfy 1 ≤ i ≤ |d-sitG(t)| and define f (i) to be the string over V × S obtained by concatenating the
synchronizing nonterminals that appear in t at the i th position of the synchronizing sequence, from left to right.

Let i be some fixed number satisfying 1 ≤ i ≤ |d-sitG(t)| and let f (i) = A0,1 · · · A0,n, where A0, j ∈ V × S and
n > 0. Assume that there exists l such that, for every k, 0 < k ≤ l, f (i + k) = Rk,0 Ak,1 Rk,1 · · · Rk,n−1 Ak,n Rk,n

where Ak, j ∈ V × S, Rk, j ∈ (V × S)∗, Ak, j is a descendant of Ak−1, j and the yield of the subtree at each nonterminal
of Rk, j is λ, for each 0 ≤ j ≤ n.

For each k, 0 < k ≤ l, let ξ(k) = {V | V ∈ alph(Rk, j ), for some 0 ≤ j ≤ n}. If there exist k1 and k2 such that
Ak1,1 = Ak2,1, . . . , Ak1,n = Ak2,n and ξ(k1) ⊆ ξ(k2) then we can replace the subtrees at synchronization depth i + k1
with those at i + k2, and then the tree t were not optimal. If l > (|V | · |S|)!, then there must exist k1 and k2 such that
Ak1,1 = Ak2,1, . . . , Ak1,n = Ak2,n . If l > 2|V |·|S|, then there must exist k1 and k2 such that ξ(k1) ⊆ ξ(k2). Thus, if
l > (|V | · |S|)! · 2|V |·|S| then there exists k1 and k2 such that Ak1,1 = Ak2,1, . . . , Ak1,n = Ak2,n and ξ(k1) ⊆ ξ(k2).
Thus, l ≤ (|V | · |S|)! · 2|V |·|S|.

Let m be the greatest synchronization depth at which a terminal is generated. By a similar argument, d-sitG(t) ≤
m + (|V | · |S|)! · 2|V |·|S|. Thus, for every (|V | · |S|)! · 2|V |·|S| situation symbols in the tree there is at least one terminal
symbol in the tree and hence, (d, e)-synchG ∈ O(n). By Lemma 12 we also obtain (d, p)-synchG ∈ O(n). �

By combining the upper and lower bounds from Lemmas 19 and 20 we obtain the following result.

Theorem 21. Let L ∈ L(SCF) \ L(CF) and z ∈ {p, e}. Then (d, z)-synchL ∈ Ω(log n) and (d, z)-synchL ∈ O(n).

Applying a homomorphism with a bounded erasing property, as defined below, to an SCF language or intersecting
it with a regular language increases the synchronization function in any mode by at most a constant factor, thus
preserving the asymptotic upper bound.

Lemma 22. Let f : N → N be a function and z ∈ {e, p}.
i. Let h : Σ∗ → 2Γ ∗

be a finite substitution and L ⊆ Σ∗ such that there exists a constant c < 1 such that in any
word w ∈ L, h erases at most c · |w| symbols. If G is an SCF grammar for L such that (d, z)-synchG ∈ O( f ) then
(d, z)-synchh(L) ∈ O( f ).

ii. Let L ⊆ Σ∗ and assume that R is a regular language over Σ . If (d, z)-synchL ∈ O( f ) then (d, z)-synchL∩R ∈
O( f ).

Proof. i. From an arbitrary SCF grammar G for L we get an SCF grammar G′ for h(L) by replacing in the productions
each terminal symbol b by an arbitrary word in the finite set h(b). The transformation changes the synchronization
depth of the grammar only by the linear factor c (it is, of course, possible that h(L) may be generated by other
grammars with “smaller” depth).

ii. We use the construction used in [11] to show that context-free languages are closed under intersection with
regular languages. The transformation does not increase the synchronization depth of the grammar. The construction
has to be modified slightly as the original construction uses Chomsky normal form. �

4. An infinite hierarchy

4.1. Languages with linear depth synchronization

In [9] the question whether or not there exists an SCF language that can only be generated by SCF grammars
with quadratic count-synchronization functions remains open. We will now solve the analogous question for
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depth-synchronization functions and prove that there are SCF languages that can only be generated by SCF grammars
with a linear depth-synchronization function. For the remainder of this paper we fix

L0 = {w$w | w ∈ {0, 1, #}+}. (1)

The next technical lemma is used to prove the main result.

Lemma 23. For z ∈ {e, p} and every SCF grammar G with Lz(G) = L0 there exists a constant δ ∈ N such that
for any m ≥ 1 and 0 ≤ k < m for every word w ∈ {0, 1, #}m there exists a derivation tree t ∈ Tz(G) with
yd(t) = wδw[k]$wδw[k] and a subtree t ′ ∈ sub(t) such that |yd(t ′)| < 1

2 |yd(t)| and w is a subword of yd(t ′).

Proof. Let l be the maximum length of any right-hand side of a production of G and let δ = l + 2. Let m ≥ 1,
0 ≤ k < m and w ∈ {0, 1, #}m be arbitrary and let x = wδw[k]$wδw[k]. Since x ∈ L0, there exists a t ∈ Tz(G) such
that x = yd(t). Let u be a node of t of maximal distance from the root such that

|yd(t/u)| ≥ 1

2
|yd(t)|. (2)

Thus yd(t/u) contains entirely at least δ − 1 copies of the subword w, i.e. there exist p, q ∈ N, p + q = δ − 1 such
that wpw[k]$wq or wδ−1 is a subword of yd(t/u). Now δ − 1 = l + 1 and by the pigeon hole principle some child u′
of u contains at least one of the copies of the subword w. Also we have |yd(t/u′)| < 1

2 |yd(t)| since u was chosen to
be of maximal distance from the root such that (2) holds. �

Lemma 24. For z ∈ {e, p}, (d, z)-synchL0
∈ Ω(n).

Proof. Assume that (d, z)-synchL0
/∈ Ω(n). Thus there exists an SCF grammar G = (V , S, T, P, I ), such that

L0 = Lz(G) and (d, z)-synchG /∈ Ω(n), that is

∀c > 0, ∀n0 ∈ N, ∃nc ≥ n0 such that (d, z)-synchG(nc) < c · nc. (3)

Let δ be the constant for G obtained from Lemma 23.
There exist constants α > 0 and mα ≥ 0 such that for all m ≥ mα and 0 ≤ k < m we have

|V | · (|S| + 1) · (|S| + 1)α(2δm+2k+1) < 2m−2. (4)

Let m0 = max{mα, δ}. By (3) for c = α and a word length n0 = 2δm0 + 2m0 + 1 there exists nc ≥ n0 such
that (d, z)-synchG(nc) < c · nc and, therefore, we have (d, z)-sitG(nc) < c · nc. Without loss of generality, we
can assume the constant nc to be odd, as all words in L0 have odd length and by Definition 6 we therefore have
(d, z)-synchG(2n) = (d, z)-synchG(2n − 1), for n ≥ 1.

Furthermore there are constants m ≥ m0 and 0 ≤ k < m such that nc = 2δm + 2k + 1 and if m is assumed to
be maximal, then m and k are uniquely determined by nc and δ (as m ≥ m0 ≥ δ). Among the words of length nc are
the 2m−2 words of the form wδw[k]$wδw[k] where w ∈ #{0, 1}m−2# is arbitrary. By Lemma 23, we obtain for each
such w a derivation tree tw with yd(tw) = wδw[k]$wδw[k] such that tw has a subtree t ′w , such that w is a subword of
yd(t ′w) and yd(t ′w) < 1

2 |yd(tw)|. By (3) |seq(tw)| < c ·nc. Now (4) implies that there are words w1, w2 ∈ #{0, 1}m−2#,
w1 
= w2, such that

seq(t ′w1
) = seq(t ′w2

) and root(t ′w1
) = root(t ′w2

). (5)

Let t12 be the tree obtained from tw1 by replacing t ′w1
with t ′w2

. By (5), t12 is a synchronized derivation tree of G. We
write

yd(twi ) = wi,1,1wi,2,1 · · · wi,δ,1wi [k]$wi,1,2wi,2,2 · · · wi,δ,2wi [k].
Here each word wi, j,k , 1 ≤ j ≤ δ, 1 ≤ k ≤ 2, is equal to wi and we use the additional subindices only to differentiate
between subword occurrences. If the marker $ is not in yd(t ′w2

), then clearly yd(t12) 
∈ L0 since we replace something
only on one side of the marker. Now knowing that $ is in yd(t ′w2

), it has to be also in yd(t ′w1
), since otherwise the yield

of t12 would have two symbols $.
The word yd(t ′w2

) contains at least one complete occurrence of w2, and without loss of generality we can assume
that it occurs before the middle marker $. The other case is symmetric (and slightly easier). As shown in Fig. 2, since
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tw1

t ′w2

...................................................................................................................................................

t12 :

· · ·w1w1[k]
seq(t ′w2

) = seq(t ′w1
)

root(t ′w1
) = root(t ′w2

)

· · ·w2w2[k]$ · · ·
Fig. 2. The derivation tree t12, obtained from tw1 by replacing the subtree t ′w1

by the subtree t ′w2
, which has the same situation sequence.

yd(t ′w2
) contains $, it follows that yd(t ′w2

) contains the subword occurrence w2,δ,1 (i.e., the last complete occurrence
of w2 before the middle marker).

If a part of w1,δ,2 (i.e., a part of the last complete occurrence of w1) is in yd(t ′w1
) then, since |yd(t ′wi

)| < 1
2 |yd(twi )|,

i = 1, 2, it is easy to see that in yd(t12) the prefix before the marker $ must be longer than the suffix after $.
Thus, we know that the subword occurrence w1,δ,2 remains in the tree t12 after replacing t ′w1

with t ′w2
. Hence

in the yield of t12 the prefix before $ ends with w2,δ,1w2[k] = w2w2[k] and the the suffix after $ ends with
w1,δ,2w1[k] = w1w1[k]. Since w1 
= w2, this means that yd(t12) 
∈ L0.

As the above holds for any odd nc ≥ 2δm0 + 2m0 + 1, we have seen that any SCF grammar with less than linear
synchronization depth cannot generate L0. �

By Lemma 20, the following main theorem follows.

Theorem 25. For z ∈ {e, p}, (d, z)-synchL0
∈ Θ(n).

The language used in Theorem 25 is over a four letter alphabet. Below we show that there is a language over a
binary alphabet that has synchronization depth Θ(n).

Corollary 26. There exists L ⊆ {0, 1}∗ such that (d, z)-synchL ∈ Θ(n), for z ∈ {e, p}.
Proof. By Theorem 25 there exists a language L0 over a four letter alphabet Σ with (d, z)-synchL0

∈ Θ(n). Let
g : Σ → {0, 1}2 be an injective mapping. By Lemma 22(i), (d, z)-synchg(L0)

∈ O(n). We need to show that
(d, z)-synchg(L0)

∈ Ω(n).

We set Γ = {0, 1}2 × {1, 2} and define the finite substitution h : {0, 1}∗ → 2Γ ∗
by setting for i ∈ {0, 1},

h(i) = {( j1, j2, k) | j1, j2 ∈ {0, 1}, jk = i, 1 ≤ k ≤ 2}. Let R ⊆ Γ ∗ be the regular language R =
{( j1, j2, 1)( j1, j2, 2) | j1, j2 ∈ {0, 1}}∗.

Finally we define the morphism s : Γ ∗ → Σ∗ by setting s(( j1, j2, 1)) = g−1( j1, j2) and s(( j1, j2, 2)) = λ, where
j1, j2 ∈ {0, 1}.

Intuitively, s maps elements of Γ where the last component is 1, to the element of Σ represented by the first two
components (if the element exists). We observe that

s(h(g(L0)) ∩ R) = L0. (6)
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For the sake of contradiction assume that (d, z)-synchg(L0)
is not in Ω(n). Thus there exists an SCF grammar G for

g(L0) such that (d, z)-synchG 
∈ Ω(n). Now (6) and Lemma 22 imply that (d, z)-synchL0
∈ O((d, z)-synchG)) and,

thus, (d, z)-synchL0

∈ Ω(n), which is a contradiction to Theorem 25. �

4.2. Depth synchronization in between logarithmic and linear

In the following we show that there are languages with depth-synchronization functions strictly in between
logarithmic and linear, and that these languages form a strict infinite hierarchy. For this purpose we construct, for
each natural k ≥ 1, a language

L ′
k = {w$w$a fk(|w|) | w ∈ {0, 1, #}+}, (7)

where fk ∈ Θ(nk+1), and we prove that, for z ∈ {e, p}, (d, z)-synchLk
∈ Θ(n

1
k+1 ).

First we show that, if such languages exist, then their lower bounds follow from Lemma 24.

Lemma 27. Let k ∈ N, k > 1, let f : N → N, f ∈ Θ(nk) and L ′ ∈ L(SCF) with L ′ = {w$w$a f (|w|) | w ∈
{0, 1, #}+}. Then, for z ∈ {e, p}, (d, z)-synchL ′ ∈ Ω(n

1
k ).

Proof. If f ∈ Θ(nk), there exist c1, c2 > 0, n1 ∈ N, such that for all n > n1, c1 · nk ≤ f (n) ≤ c2 · nk . Let

z ∈ {e, p} and assume that (d, z)-synchL ′ /∈ Ω(n
1
k ). Thus there exists an SCF grammar G′, such that L ′ = Lz(G′) and

(d, z)-synchG ′ /∈ Ω(n
1
k ), that is

∀c > 0, ∀n0 ∈ N, ∃nc ≥ n0 such that (d, z)-synchG ′(nc) < c · n
1
k
c . (8)

If nc is the length of some word in L ′, there exists a n′
c ∈ N with nc = 2n′

c + 2 + f (n′
c). Let G′′ be the SCF

grammar obtained from G′ by replacing each occurrence of a in the right-hand side of a production with λ. Then for
all c, c2 > 0 and for all n0 ∈ N there exists n′

c ≥ n0 such that

(d, z)-synchG ′′(2n′
c + 2) < c · (2n′

c + 2 + c2 · (n′
c)

k)
1
k < c · c2 · (2n′

c + 2). (9)

Thus, (d, z)-synchG ′′ /∈ Ω(n), which is a contradiction as Lz(G′′) = L0, as defined in (1), and by Lemma 24,
(d, z)-synchL0

∈ Ω(n). �

Below we construct, for each k ≥ 1, an SCF grammar Gk that is subsequently proven to generate a language L ′
k as

defined in (7).

Definition 28. For k ∈ N, let Gk = (Vk, S, T, Pk , I ) be a synchronized context-free grammar with Vk =
{I, A, A′, B, B1, . . . , Bk}, S = {s0, s1, s#}, T = {0, 1, #, $, a} and the following set of productions Pk where
i, j ∈ {0, 1, #} and 1 ≤ l ≤ k:

I → (A, si )(A, si )(Bk, si ), (A, si ) → i(A, s j ) | i$,

(A′, si ) → a(A′, s j ) | a, (Bl, si ) → (Bl−1, s j )(A′, s j )(Bl, s j ) | a,

(B1, si ) → (B, s j )(A′, s j ) | a, (B, si ) → (B, s j )(A′, s j ) | a.

For k ∈ N, let Lk = Le(Gk) and let, for X ∈ Vk , n ∈ N,

L X
k (n) = {yd(t) | t ′ ∈ Te(Gk), t ∈ sub(t ′), ∃ f ∈ S ∪ {λ}, root(t) = (X, f ), |seqt | = n}

be the set of words derivable from (X, f ), for some f ∈ S ∪ {λ} with an e-synchronized tree and a situation sequence
of length n, and let f X

k (n) = {|w| | w ∈ L X
k (n)}. Furthermore we define, for k, n ∈ N, fk(n) = f I

k (n).

We now prove some auxiliary results about the languages Lk , which lead up to the result that Lk is of the form L ′
k ,

as defined in (7). First observe that, for k ∈ N, we have

Lk ⊆ {w$w$am | w ∈ {0, 1, #}+, m ∈ N}. (10)
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Also, for k, k ′ ∈ N,

f X
k (n) = f X

k′ (n) if X ∈ {A, A′, B, Bl | l ≤ min{k, k ′}}. (11)

We now show that all words generated by Gk in equality mode with situation sequences of equal length have the same
length.

Lemma 29. For k ∈ N, X ∈ Vk and n ∈ N, we have | f X
k (n)| = 1.

Proof. For X ∈ {A, A′} and k, n ∈ N the result trivially holds. Furthermore, for k ∈ N, | f B
k (1)| = 1 and by induction

| f B
k (n + 1)| = 1, for n ∈ N, if | f B

k (n)| = 1, as (B, s) ⇒ (B, s′)(A′, s′) and | f A′
k (n)| = 1, for s, s′ ∈ S. Similarly,

for k ∈ N, l ≤ k, | f Bl
k (1)| = 1 and by induction, for l ≤ k, | f Bl

k (n + 1)| = 1, for n ∈ N, if | f Bl
k (n)| = 1,

as (Bl, s) ⇒ (Bl−1, s′)(A′, s′)(Bl, s′) and | f A′
k (n)| = 1, for s, s′ ∈ S. Then, also for k, n ∈ N, | f I

k (n)| = 1, as

I ⇒ (A, s)(A, s)(Bk, s) and | f A
k (n)| = | f Bk

k (n)| = 1, for s ∈ S. �

For the remainder of this paper we write f X
k (n) = m instead of f X

k (n) = {m}.
Lemma 30. For k ≥ 1 and w1$w1$am1, w2$w2$am2 ∈ Lk, we have |w1| = |w2| if and only if m1 = m2, and
|w1| > |w2| if and only if m1 > m2.

Proof. For words w1, w2 ∈ {0, 1, #}+, we have |w1| = |w2| if and only if d-sitGk (w1$w1$am1) =
d-sitGk (w2$w2$am2), as, whenever a terminal 0, 1 or # is produced, so is exactly one synchronized nonterminal
and vice versa. As the length of the situation sequence is in one-to-one correspondence with the word length by
Lemma 29, d-sitGk (w1$w1$am1) = d-sitGk (w2$w2$am2) if and only if m1 = m2.

Similar to the above argument, for w1, w2 ∈ {0, 1, #}+, we have |w1| > |w2| if and only if d-sitGk (w1$w1$am1) >

d-sitGk (w2$w2$am2). We have f A′
k (n + 1) > f A′

k (n), for all n ∈ N and from this it follows that, for all n ∈ N,

f B
k (n + 1) > f B

k (n) and f Bk
k (n + 1) > f Bk

k (n), which is the case if and only if m1 > m2. �

By the previous two lemmata we know that fk for k ≥ 1 is a strictly monotonically increasing function. The next
proof uses the structural properties of the derivation trees, as shown in Fig. 3.

Lemma 31. For k ≥ 1, fk ∈ Θ(nk+1).

Proof. We know from Lemma 30, that the length of w$w$w′ ∈ Lk is in one-to-one correspondence to the length of
w and that a longer w implies a longer w′ and, therefore a longer word of Lk .

For X ∈ {A, A′} and k, n ∈ N we obviously get f X
k (n) = n, and f B

k (1) = 1 and f B
k (n + 1) = f B

k (n) + n and,
hence, f B

k ∈ Θ(n2).

We now show that, for k ≥ 1, fk ∈ Θ(nk+1). Observe first that, for k, n ≥ 1, fk(n + 1) = 2 · f A
k (n) + f Bk

k (n). It
is easy to verify, that f1 ∈ Θ(n2), as

f B1
1 (n) = f B

1 (n − 1) + f A′
1 (n − 1) ∈ Θ(n2). (12)

Now assume that f Bk
k ∈ Θ(nk+1). Thus, there exist constants c1, c2 > 0 and n0 ∈ N, such that for all n ≥ n0

c1 · nk+1 ≤ f Bk
k (n) ≤ c2 · nk+1.

For n ∈ N, we have, as depicted in Fig. 3,

f Bk+1
k+1 (n) = f Bk

k+1(n − 1) + n + f Bk+1
k+1 (n − 1)

(11)= f Bk
k (n − 1) + n + f Bk+1

k+1 (n − 1)

=
n−1∑
i=1

( f Bk
k (n − i) + i) =

n−1∑
i=1

( f Bk
k (i) + i).

Thus, there exists c3 ≥ 0, such that for all n ≥ n0,

f
Bk+1

k+1 (n) ≥
n−1∑
i=1

c1 · i k+1 ≥ c3 · nk+2, (13)



F. Biegler et al. / Theoretical Computer Science 387 (2007) 113–124 123

adkj

I

A A Bk+1

w$ w$ an−1a f
Bk

k+1(n−1) a f
Bk+1

k+1 (n−1)

Bk A′ Bk−1

Fig. 3. Structure of derivation trees of Gk+1 with synchronization depth n, and thus |w| = n.

and there exists c4 ≥ 0, such that for all n ≥ n0,

f Bk+1
k+1 (n) ≤

n−1∑
i=1

(1 + c2) · i k+1 ≤ c4 · nk+2. (14)

Thus fk ∈ Θ(nk+1), for k ∈ N. �

We can now prove our second main theorem.

Theorem 32. For k ≥ 1 and z ∈ {e, p}, (d, z)-synchLk
∈ Θ(n

1
k+1 ).

Proof. By Lemma 27, for k ≥ 1 and z ∈ {e, p}, (d, z)-synchLk
∈ Ω(n

1
k+1 ), as fk ∈ Θ(nk+1) by Lemma 31 and

Lk = {w$w$a fk(|w|) | w ∈ {0, 1, #}+}.
Furthermore (d, z)-synch(Gk)

∈ O(n
1

k+1 ), as each word w$w$a f (|w|) is mapped to |w| and f ∈ Θ(nk+1). Thus,

(d, z)-synchLk
∈ Θ(n

1
k+1 ). �

The languages used in Theorem 32 are over a five letter alphabet. Similar to Corollary 26, one can show the
following result.

Corollary 33. Let k ≥ 1 and z ∈ {e, p}. There exists a language L ⊆ {0, 1}∗ such that (d, z)-synchL ∈ Θ(n
1
k ).

By combining Proposition 15, Lemmas 19 and 20, Theorems 25 and 32 we obtain the following strict infinite
hierarchy of SCF languages.

Theorem 34. For k ≥ 1, z ∈ {e, p}, we have

L(CF) = L(1)
(d,z)(SCF) ⊂L(log n)

(d,z) (SCF) ⊂ · · · ⊂ L(n
1

k+1 )
(d,z) (SCF) ⊂L(n

1
k )

(d,z)(SCF) ⊂ · · · ⊂ L(n)
(d,z)(SCF) = L(SCF).

5. Conclusion

We have demonstrated that the depth-synchronization measure gives rise to a strict infinite hierarchy of language
families within the family of SCF languages and is, thus, a valid way of measuring the descriptional complexity of
SCF and ET0L languages.

The problem whether or not there exist languages which require synchronization depth in between logarithmic and

linear other than n
1
k for some k ≥ 1 remains open. We have not been able, so far, to even find an SCF grammar with a

depth-synchronization function in Θ(n
2
3 ), which seems to be the simplest function outside of the hierarchy presented

in this paper.
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While we have shown the upper bound of the depth-synchronization measures for SCF languages to be tight, the
analogous question still remains open for count-synchronization.

It also remains open where restricted classes of SCF languages, like the counter SCF languages defined in [5], lie
within the hierarchy.

It remains to be shown that every SCF grammar has a representative grammar for count and depth synchronization.
We conjecture that this is the case.
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