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Intersective polynomials are polynomials in Z[x] having roots
every modulus. For example, P1(n) = n2 and P2(n) = n2 − 1 are
intersective polynomials, but P3(n) = n2 + 1 is not. The purpose
of this note is to deduce, using results of Green and Tao (2006)
[8] and Lucier (2006) [16], that for any intersective polynomial h,
inside any subset of positive relative density of the primes, we
can find distinct primes p1, p2 such that p1 − p2 = h(n) for some
integer n. Such a conclusion also holds in the Chen primes (where
by a Chen prime we mean a prime number p such that p + 2 is
the product of at most 2 primes).

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In the late 1970s, Sárközy and Furstenberg independently proved the following, which had previ-
ously been conjectured by Lovasz:

Theorem 1. (See Sárközy [18], Furstenberg [9,10].) If A is a subset of positive upper density of Z, then there are
two distinct elements of A whose difference is a perfect square.

While Furstenberg used ergodic theory, Sárközy actually proved the following finitary, quantitative
form:

Theorem 2 (Sárközy). Let δ > 0. Then provided N is sufficiently large depending on δ, N > N0(δ), any subset
A of {1, . . . , N} of size δN contains two distinct elements a,a′ ∈ A such that a − a′ is a perfect square.

We have the same conclusion if the set of the squares is replaced by {p + 1: p prime} or
{p − 1: p prime}. More generally, we say that a set H ⊂ Z+ is intersective if H ∩ (A − A) �= ∅ for
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any set A of positive upper density. We say that a polynomial h ∈ Z[x] is intersective if the set
{h(n): n ∈ Z} ∩ (0,∞) is intersective. Thus Sárközy’s theorem says that the polynomial h(n) = n2

is intersective.
Kamae and Mendès France [11] proved a criterion about intersective sets. This gives a necessary

and sufficient condition for a polynomial to be intersective:

Theorem 3 (Kamae–Mendès France). A polynomial h ∈ Z[x] is intersective if and only if for every d > 0, there
exists n such that P (n) ≡ 0 (mod d).

For example, the polynomials x2 and x2 − 1 are intersective, while x2 + 1 is not (think of ob-
struction modulo 3). A polynomial having an integer root is certainly intersective, but there are
intersective polynomials which do not have an integer root, e.g. the polynomials (x3 − 19)(x2 + x + 1),
or (x2 − 5)(x2 − 41)(x2 − 205). Berend and Bilu gave in [1] a procedure to determine whether or not
a given polynomial is intersective.

If h is an intersective polynomial, denote by D(h, N) the maximal size of a subset A of {1, . . . , N}
such that we cannot find distinct elements a,a′ ∈ A such that a − a′ = h(n) for some integer n.
Thus necessarily D(h, N) = o(N). It should be mentioned that like Furstenberg’s method, Kamae and
Mendès France’s is qualitative, i.e., does not give any bound on D(h, N). In the case where h(n) = n2,
and more generally h(n) = nk , the best bound is due to Pintz, Steiger and Szemerédi [17] and Balog,
Pelikán, Pintz and Szemerédi [3]. They proved that

D
(
nk, N

) 
k N(log N)−(1/4) log log log log N

for every N . Note that this density already includes the primes. For general intersective polynomials,
such a quantitative bound was obtained recently by Lucier [16]. He proved that, for any intersective
polynomial h of degree k,

D(h, N) 
h N
(log log N)μ/(k−1)

(log N)1/(k−1)

for every N , where μ =
{

3, if k = 2;
2, if k � 3.

This density is weaker and does not include the primes. It may well be the case that the correct
density includes the primes. However, we don’t seek to improve upon Lucier’s result, but rather use
it, coupled with a “transference principle” to deduce a corresponding result for the primes.

Let P be a subset of N . For any subset A ⊂ P , define the upper relative density of A with respect
to P by dP (A) = limN→∞ �{n�N: n∈A}

�{n�N: n∈P } . We will obtain the following:

Theorem 4. For any intersective polynomial h, for any subset A of positive upper relative density of the primes,
there exist distinct elements p1, p2 of A such that p1 − p2 = h(n).

Remarks 1.1. If h(0) = 0, then this is a very special case of the result of Tao and Ziegler [20], which
says that configurations a+ P1(d), . . . ,a+ Pk(d), d �= 0 exist in dense subsets of the primes, where Pi ∈
Z[x], Pi(0) = 0. Their starting point is a uniform version of the Bergelson–Leibman theorem, which
says that such configurations exist in dense subsets of the integers. Tao–Ziegler’s proof of the uniform
version uses a lifting to a multidimensional version of the Bergelson–Leibman theorem and relies on
the very fact that each Pi(0) = 0. Therefore, it is not applicable to general intersective polynomials.

Following Green and Tao, let us call a prime p a Chen prime if p + 2 is either a prime or a product
p1 p2 of primes with p1, p2 > p3/11. The following result is due to Chen [4]:

Theorem 5 (Chen). Let N be a large integer. The number of Chen primes in the interval [1, N] is at least
c1N/ log2 N for some absolute constant c1 > 0.
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For a proof of Chen’s theorem, see [13]. Using this result as a “black box” we can show that the
same conclusion holds for dense subsets of the Chen primes:

Theorem 6. For any intersective polynomial h, for any subset A of positive upper relative density of the Chen
primes, there exist distinct elements p1, p2 of A such that p1 − p2 = h(n).

The idea of transferring results on dense subsets of the integers to the primes originates with
Green [6], in which he proved an analog of Roth’s theorem for the primes. Later on, other transference
principles have been devised by Green and Tao in [8] in which they proved the analog of Roth’s
theorem in the Chen primes, and in [7] in which they proved that the primes contains arbitrarily
long arithmetic progressions. These machineries have been used in a number of settings, such as
random sets [19,12] or the ring of polynomials over a finite field [14]. We opt for the transference
principle in [8] since it is relatively simpler and more general than that in [6]. In a similar spirit, Li
and Pan [15] proved that if Q is a polynomial in Z[x] such that Q (1) = 0, then inside any dense
subset of the primes, we can find two distinct elements whose difference is of the form Q (p) where
p is a prime number. It would be interesting to determine the class of all the polynomials Q such
that the same conclusion holds (other than those vanishing at 1).

2. Notation and preliminaries

For two quantities A, B , we write A = O (B), or A 
 B , or B � A if there is an absolute positive
constant C such that |A| � C B . If A and B are functions of the same variable x, we write A = ox→∞(B)

if A/B tends to 0 as x tends to infinity. If the constant C , (respectively, the rate of convergence of A/B)
depends on a parameter, e.g. m, then we write A = O m(B) (respectively, A = om(B)). Quantities de-
noted by the C, c will stand for constants, which may change from line to line. We denote by ZN the
cyclic group on N elements. This is not to be confused with the ring of p-adic integers, which we
also denote by Zp , since we will make use of the latter very briefly (in the introduction of auxiliary
polynomials).

2.1. Fourier analysis on ZN

We will work primarily in a group ZN where N is a large number. For a function f : ZN → C let us

define its Fourier transform by f̂ (ξ) = Ex∈ZN f (x)eN (xξ), where eN(t) = e
2π it

N , and E is the expectation.
If f , g : ZN → C are two functions, then f ∗ g , the convolution of f and g , is defined by f ∗ g(x) =
Ey∈ZN f (y)g(x − y). We also define the lp-norm of f to be ‖ f ‖p = (

∑
ξ∈ZN

| f (ξ)|p)1/p . We will often
use a subset of ZN to denote its characteristic function.

We recall the basic properties of the Fourier transform:

• (Fourier inversion formula) f (x) = ∑
ξ∈ZN

f̂ (x)eN(−xξ);

• (Plancherel)
∑

ξ∈ZN
f̂ (ξ )̂g(ξ) = Ex∈ZN f (x)g(x);

• (Parseval) ‖ f̂ ‖2
2 = ∑

ξ∈ZN
|̂ f (ξ)|2 = Ex∈ZN | f (x)|2;

• (Fourier transform of a convolution) f̂ ∗ g(ξ) = f̂ (ξ )̂g(ξ) for every ξ ∈ ZN .

2.2. Intersective polynomials

Let h(x) = akxk + · · · + a0 be a fixed intersective polynomial of degree k � 2 throughout the paper.
By a change of variables if need be, we may assume that h and h′ are positive and increasing for
x � 0.

If f (x) = bkxk + · · · + b0, let us denote by b( f ) = bk and B( f ) = 2
|bk| (|bk−1| + · · · + |b0|). Then if

b( f ) > 0, we have B( f ′) � B( f ) and

1

2
b( f )xk � f (x) � 3

2
b( f )xk (1)

for x � B( f ) [16, Lemma 3].
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If f has integer coefficients, let us denote by c( f ) = gcd(bk, . . . ,b1), the content of f .
Suppose f = a(x − η1)

e1 · · · (x − ηr)
er in some splitting field. Let us denote by �( f ) =

a2k−2 ∏
i �= j(ηi − η j)

ei e j , the semidiscriminant of f . The semidiscriminant was first introduced by
Chudnovsky [5]. When f is separable then the semidiscriminant is simply the discriminant. It can be
shown that �( f ) is always a non-zero integer when f ∈ Z[x].

In order for the transference principle to work, we need not only one solution to a − a′ = h(n),
but “many” (i.e., of the “right” order) of them. This is already established by Lucier. Another issue
is that we will not be working directly with the primes, but rather affine images of primes (in con-
gruences classes modulo W , where W is a product of small primes meant to absorb obstruction
at these primes). This technique is called the “W -trick” and is quite common in situations in arith-
metic combinatorics where we want to transfer results on dense subsets of the integers to the primes
[6,8,7,20].

Thus instead of a single polynomial h, we will work with a family of polynomials hW parametrized
by W , which are compositions of h with affine maps. Our bounds need to be independent of W . As
mentioned earlier, Tao–Ziegler’s proof of the uniform version of the Bergelson–Leibman theorem does
not apply to general intersective polynomials. Fortunately, the auxiliary polynomials introduced by
Lucier serve well our purposes.

Note that the condition that h has roots every modulo is equivalent to saying that h has a root in
Zp for every prime p, where Zp is the ring of p-adic integers. For each p let us fix a root zp ∈ Zp

of h. If m is the multiplicity of zp as a root of h then we define λ(p) = pm . We can then extend λ to
a completely multiplicative arithmetic function on N. It is easy to see that for every d, d|λ(d)|dk .

Suppose d = pα1
1 · · · pαs

s is the prime factorization of d. By the Chinese remainder theorem, let rd

be the unique integer satisfying −d < rd � 0 and rd ≡ zp (mod pαi
i Zpi ) for every i = 1, . . . , s.

For any positive integer d we define the polynomial hd(x) = h(rd+dx)
λ(d)

. The properties of hd , proved
in [16], are summarized in the following lemma:

Lemma 1.

(1) For every d, hd is a polynomial with integer coefficients and degree k. Furthermore, hd is also intersective.
(2) The polynomials h(d),h′(d),h′′(d) are positive and increasing for x � 1.
(3) For every d,q > 0 then (hd)q = hdq.
(4) b(hd) � b(hd) � dk−1b(h).
(5) B(hd) � 2k−1k(B(h) + 2).

(6) c(hd) � |�(h)| k−1
2 c(h), where �(h) is the semidiscriminant of h.

Remark 2.3. The last property is by far the most important, since our bounds on exponential sums in-
volving hd will depend on c(hd). The last two properties ensure that B(hd) and c(hd) can be bounded
uniformly, no matter what d is. The only quantity that can grow is b(hd). We will see that this quan-
tity is also within control if we keep d smaller than a small power of N .

3. A uniform version of Lucier’s theorem

Let us first recall Lucier’s main result in [16]. Let δ > 0 and A be a subset of {1, . . . , N} such
that |A| = δN . For every n let r(h,n, A) be the number of couples (a,a′) of elements in A such that
a − a′ = h(n). Let R(A,h) = ∑

n�0 h′(n)r(h,n, A).

Theorem 7. (See [16, Theorem 5].) There is a constant C(h, δ) depending on h and δ alone such that whenever
N is sufficiently large in terms of h and δ, the following estimate holds:

R(A,h) � c(h, δ)|A|2.
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Actually Lucier obtained the following estimate for c(h, δ):

c(h, δ) = exp

(
−c1δ

−(k−1) logμ

(
2

δ

))

which is valid for δ � c2
(log log N)μ/(k−1)

log N1/(k−1) where c1, c2 are constants depending on h alone, and μ ={
3, if k = 2;
2, if k � 3.

As mentioned earlier, we need to work with the family (hW ) rather than with h alone.

The following gives a uniform version of Theorem 7.

Theorem 8. There is a constant κ1 = κ1(k) depending on k alone, and a constant C(h, δ) depending on h and
δ alone such that whenever N is sufficiently large in terms of h, the following estimate holds:

R(A,hW ) � C(h, δ)|A|2

for every W < Nκ1 , where the constant C(h, δ) is the same as in Theorem 7 (but the range of validity of N may
be slightly different).

Proof. Only a minor modification of Lucier’s proof is needed. Lucier used a density increment argu-
ment based on the following:

Lemma 2. (See [16, Lemma 31].) Let � = �(k) be defined by

� =
{

1/4, if k = 2;
1/(8k2(log k + 1.5 log log k + 4.2)), if k � 3.

Define the function

θ(x) =
{

x
2 log(2x−1)

, if k = 2;
xk−1, if k � 3.

Let N be large in terms of h, and assume that

d � Nρ/4k2
.

Let A be a subset of {1, . . . , N} with size δN such that

δ � N−�/2k.

If R(hd, A) � 1
64 |A|2 , then there exist positive integers d′ and N ′ , and a set A′ ⊂ {1, . . . , N ′} such that the

following holds:

• W (hd′ , A′) � W (hd, A),
• δ′ � δ(1 + C1θ(δ)),
• C2δ

2k2
N � N ′ � N,

• d � d′ � C3δ
−kd,

where C1, C2, C3 are positive constants that depend only on h.
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Following Lucier, suppose that

δ � C
(log log N)μ/(k−1)

(log N)1/(k−1)

for C a constant chosen later, that depends on h alone. Let

Z = [
8C−1

1 δ−(k−1)
(
log 2δ−1)μ−1]

.

Suppose, for a contradiction, that R(h, A) � 1
64 (C2

2δ4k2
)Z |A|2. Lucier constructed a sequence of quadru-

ples {(Ni, Ai, δi,di)}Z
i=0, where Ni,di are positive integers, Ai ⊂ {1, . . . , N}, δi = |Ai|/Ni , satisfying the

properties:

• (N0, A0, δ0,d0) = (N, A, δ,1),

• R(hdi , Ai) � 1
64 (C2

2δ4k2
)Z−i |Ai |2,

• δi � δi−1(1 + C1θ(δi−1)),

• C2δ
2k2

i−1Ni−1 � Ni � Ni−1,

• di−1 � di � C3δ
−k
i di−1,

where C1, C2, C3 are constants as in Lemma 2 above. We can perform the iteration at step l as long
as the conditions of Lemma 2 is valid:

(1) Nl is large in terms of h. Indeed, if we choose C large enough we can ensure that Nl � N1/2 for
all 0 � l � Z .

(2) dl � Nρ/4k2

l . Indeed, we have the inequality log dl 
h C−1 log N + log d0, so if C is large enough in
terms of h this is satisfied.

(3) δl � N
−�/2k
l . This too is ensured if C is large enough.

A calculation shows that we will end up with δZ > 1, a contradiction.
Now if the initial values are (N0, A0, δ0,d0) = (N, A, δ, W ) (instead of (N, A, δ,1)) then the same

iteration goes through. The only thing that needs to be checked is the condition (2) above. But we
can ensure this by choosing C sufficiently large depending on h alone, as long as we keep W smaller
than Nκ1 , for κ1 = �

16k2 , say. �
4. A transference principle for intersective polynomials

4.1. An exponential sum estimate

Lemma 3. Let f ∈ Z[x] be a polynomial of degree k, and assume that f is positive and increasing for x � 0.
Then there is an integer s0(k) depending on k alone, such that whenever s � s0 , we have

∫
T

∣∣∣∣∣
N∑

n=1

f ′(n)e
(
α f (n)

)∣∣∣∣∣
2s


s c( f ) f (N)2s−1

for N � B( f ).

Remarks 4.2. This is essentially [15, Lemma 2.6], where Li and Pan showed that we can take
s0 = k2k+1. This result is standard in the context of Waring’s problem, so we will skip the proof.
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It may be possible to improve upon the value of s0 using Vinogradov’s method, but this is not im-
portant since all we need is the existence of such a number s0. The condition N � B( f ) is needed in
order to guarantee that

∑N
n=1 f ′(n) 
 f (N).

Let us denote S f (x) = SN, f (x) =
{

f ′(n), if 0 < x < N/2 and x = f (n) for some n ∈ Z;
0, otherwise

and con-

sider S f as a function on ZN .

Corollary 1. For s � s0(k), and for N � b( f )B( f )k, we have

‖ Ŝ f ‖2s 
s
(
c( f )

)1/2s
.

Proof. Let M be the largest integer such that f (M) < N
2 . In view of (1), if b( f )B( f )k 
 N then

M � B( f ). We can therefore apply Lemma 3 and have:

‖ ŜN, f ‖2s
2s = 1

N2s

∑
ξ∈ZN

∣∣∣∣ ∑
x∈ZN

S f (x)eN (ξx)

∣∣∣∣2s

= 1

N2s−1

∑
n1,...,ns,m1,...,ms∈{1,...,M}

f (n1)+···+ f (ns)= f (n1)+···+ f (ns)

f ′(n1) · · · f ′(ns) f ′(m1) · · · f ′(ms)

= 1

N2s−1

∫
T

∣∣∣∣∣
M∑

n=1

f ′(n)e
(
α f (n)

)∣∣∣∣∣
2s


s
1

N2s−1
c( f ) f (M)2s−1


s c( f ). �
From this it immediately follows that

Corollary 2. There is a constant κ2 = κ2(k) such that for s � s0 , and for N sufficiently large depending on h,
we have

‖ ŜN,hW ‖2s 
s,h 1

for every W < Nκ2 .

Proof. Lemma 1 tells us that c(hW ) is uniformly bounded in terms of h. Thus we need
b(hW )B(hW )k 
 N for all W � Nκ2 . But this also follows from Lemma 1. Actually we may take
κ2(k) = 1/k. �
4.3. A transference principle

Let us reformulate Theorem 7 under the following form:

Proposition 1. There is a constant c(h, δ) such that the following holds. If f : ZN → [0,∞) is a function such
that EZN f � δ, then ∑

a∈ZN

∑
d∈ZN

f (a) f (a + n)Sh(d) � c(h, δ)N2

for N sufficiently large depending on h and δ.
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We are now in a position to state the following transference principle for intersective poly-
nomials:

Proposition 2. Let η, δ, M,q be positive parameters such that 2 < q <
4s0

2s0−1 , where s0 = s0(k) as in Lemma 3.
Suppose f , ν are function ZN → R satisfying the following conditions:

(1) 0 � f � ν ,
(2) En∈ZN f (n) � δ,
(3) ν satisfies the pseudorandom condition |̂ν(ξ) − 1ξ=0| � η for all ξ ∈ ZN ,
(4) ‖ f̂ ‖q � M.

Then for N large enough depending on h and δ, we have

∑
a∈ZN

∑
d∈ZN

f (a) f (a + d)Sh(d) �
(

1

2
c(h, δ) − O M,q,δ(η)

)
N2.

We proceed as in [8, Proposition 5.1]. Let us recall in the form of a lemma the following decom-
position result contained in the proof of [8, Proposition 5.1]:

Lemma 4. Suppose 0 < ε < 1. Let

Ω = {
a ∈ ZN :

∣∣ f̂ (a)
∣∣ � ε

}
and

B = B(Ω,ε) = {
m ∈ ZN :

∣∣1 − eN(am)
∣∣ � ε for all a ∈ Ω

}
.

Let

f1(n) = Em1,m2∈B f (n + m1 − m2)

and f2 = f − f1 is the uniform part. Then f1 and f2 satisfy the following properties:

(1) 0 � f1 � 1 + (N/|B|)η,
(2) EZN ( f1) = EZN ( f ),
(3) ‖ f̂2(ψ)‖∞ � 3(1 + η)ε ,
(4) for every ξ ∈ ZN , we have | f̂1(ξ)|, | f̂2(ξ)| � |̂ f (ξ)|.

Proof of Proposition 2. We write∑
a,d∈ZN

f (a) f (a + d)Sh(d) =
∑

a,d∈ZN

f1(a) f1(a + d)Sh(d) +
∑

a,d∈ZN

f1(a) f2(a + d)Sh(d)

+
∑

a,d∈ZN

f2(a) f1(a + d)Sh(d) +
∑

a,d∈ZN

f2(a) f2(a + d)Sh(d).

Note that since ‖ f̂ (ξ)‖q � M , we have |Ω| � (M/ε)q . Also, |B| � (ε/C)|Ω| for some absolute con-
stant C . Thus we have 0 � f1 � 1 + (C/ε)(M/ε)q

η = 1 + O M,ε,q(η). Applying Proposition 1 to the
function f1 (possibly modified by O M,q,ε (η)), we have∑

a∈Z

∑
d∈Z

f1(a) f1(a + d)Sh(d) �
(
c(h, δ) − O M,q,ε(η)

)
N2.
N N
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Our goal is to show that the three last terms are small in absolute value. We consider the second
term; the other two terms are treated similarly. We have∣∣∣∣ ∑

a,d∈ZN

f1(a) f2(a + d)Sh(d)

∣∣∣∣ = N

∣∣∣∣ ∑
a∈ZN

f1(a) f2 ∗ Sh(a)

∣∣∣∣
= N2

∣∣∣∣ ∑
ξ∈ZN

f̂1(ξ) f̂2(ξ) Ŝh(ξ)

∣∣∣∣
� N2

∑
ξ∈ZN

∣∣ f̂1(ξ)
∣∣∣∣ f̂2(ξ)

∣∣∣∣ Ŝh(ξ)
∣∣.

By Hölder’s inequality,∑
ξ∈ZN

∣∣ f̂1(ξ)
∣∣∣∣ f̂2(ξ)

∣∣∣∣ Ŝh(ξ)
∣∣ � ‖ f̂2‖t∞‖ f̂1‖q‖ f̂2‖1−t

q ‖ Ŝh‖2s0

where t > 0 is such that 2−t
q + 1

2s0
= 1. By Corollary 2 we know that ‖ Ŝh‖q 
q 1. Thus∑

a,d∈ZN
f (a) f (a + d)Sh(d) 
q (1 + η)tεt M2−t . We have similar estimates for the other two terms.

Thus by choosing ε sufficiently small depending on M,q, δ, the contribution of the three last terms is
less than 1

2 c(h, δ).
Therefore,

∑
a∈ZN

∑
d∈ZN

f (a) f (a + d)S(d) �
(

1

2
c(P , δ) − O M,q(η)

)
N2

as required. �
From Proposition 2 we immediately have the following:

Corollary 3. Let κ = min(κ1, κ2) where κ1 is the constant in Theorem 8 and κ2 is the constant in Corollary 2.
Then under the same hypothesis as in Proposition 2, we have

∑
a∈ZN

∑
d∈ZN

f (a) f (a + d)ShW (d) �
(

1

2
c(h, δ) − O M,q,δ(η)

)
N2

for all N large enough depending on h and δ, and W < Nκ .

5. Construction of a pseudorandom measure that majorizes the primes

In this section we will find functions f , ν satisfying the conditions of Proposition 1 such that f is
supported on the Chen primes. This is done exactly the same way as in the proof of [8, Theorem 1.2],
the main tool being the Hardy–Littlewood majorant property for objects called “enveloping sieves”.

Let us recall the settings from [8]. Consider F = ∏k
j=1(a jn + b j), a product of k linear factors with

integer coefficients, no two linear factors are rational multiples of each other.
Let X = X(F ) = {n ∈ Z+: F (n) is the product of k primes}. For any q � 1, let Xq = {n ∈ Zq:

(F (n),q) = 1}. Thus XR! = {n ∈ Z: (d, F (n)) = 1 for all 1 � d � R}. Let γ (q) = |Xq |
q . We assume that

γ (q) > 0 for all q � 1. Let SF be the singular series SF = ∏
p prime

γ (p)

(1− 1 )k .

p
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Proposition 3. (See [8, Proposition 3.1].) Let F be as above, with coefficients ai,bi satisfying |ai |, |bi | � N. Let
R � N be a large integer. Then there is a non-negative function β := βR : Z → R+ , called the envelopping sieve
associated to F and R, with the following properties:

(i) (Majorant property) We have

β(n) �k S
−1
F logk R1XR!(n) (2)

for all integers n. In particular, β(n) is non-negative.
(ii) (Crude upper bound) We have

β(n) 
k,ε Nε (3)

for all 0 < n � N and ε > 0.
(iii) (Fourier expansion) We have

β(n) =
∑

q�R2

∑
a∈Z∗

q

w(a/q)eq(−an), (4)

where w(a/q) = w R(a/q) obeys the bound∣∣w(a/q)
∣∣ 
k,ε qε−1 (5)

for all q � R2 and a ∈ Z∗
q . Also we have w(0) = w(1) = 1.

(iv) (Fourier vanishing properties) Let q � R2 and a ∈ Z∗
q . If q is not square-free, then w(a/q) = 0. Similarly,

if γ (q) = 1 and q > 1, then w(a/q) = 0.

It should be mentioned that all the implied constants depend on k, but not on F . Moreover, βR
enjoys the following properties:

Proposition 4 (Discrete majorant property). (See [8, Proposition 4.2].) For every q > 2, we have( ∑
b∈ZN

∣∣E1�n�NanβR(n)eN (−bn)
∣∣q

)1/q


q,k
(
E1�n�N |an|2βR(n)

)1/2
.

Proposition 5. (See [8, Lemma 4.1].) Suppose R �
√

N. Then E1�n�NβR(n) 
 1.

Suppose A is a subset of positive relative density of the primes. Let t be a large number (in-
dependent of N), and W = Wt = ∏

p�t p. We will assume at all times that W < Nκ , where κ is
the constant as in Corollary 3. By the pigeonhole principle we can choose b ∈ XW such that the set
X = {0 � n � N/2: λ(W )n + b ∈ A} satisfies

|X | � 1

φ(λ(W ))

Nλ(W )

log(Nλ(W ))

� λ(W )

φ(λ(W ))

N

log N

�
∏
p�t

(1 − 1/p)−1 N

log N

� log t
N

(6)

log N
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for infinitely many N . We may assume henceforth that N satisfies inequality (6). Let us now consider
the polynomial F (n) = λ(W )n + b. Then it is easy to see that S = ∏

p�t(1 − 1/p)−1 
 log t .

Now let R = [N1/20] and let βR : Z → R+ be the enveloping sieve associated to F and R . Let ν
be the restriction of β on {1, . . . , N} which may be regarded as a function on ZN . Then we have
ν(n) � S−1 log N1X (n) � 1

log t log N1X (n).

Lemma 5. (See [8, Lemma 6.1].) ν̂(a) = δa,0 + O (t−1/2).

Proof of Theorem 4. Let us now define the function f : ZN → R+ by

f (n) = c
log N

log t
1X (n).

Let us verify the conditions of Proposition 2. Clearly 0 � f � ν for c appropriately chosen, and EZN f �
δ > 0, where δ depends only on the upper relative density of A in the primes.

Fix any 2 < q < 4s0/(2s0 − 1). By Propositions 4 and 5 (for the sequence an = f (n)
ν(n)

, with the
convention that an = 0 if f (n) = ν(n) = 0), we have

‖ f̂ ‖q =
( ∑

b∈ZN

∣∣E1�n�N f (n)eN(−bn)
∣∣q

)1/q



(

E1�n�N
f (n)2

ν(n)

)1/2


 (
E1�n�Nν(n)

)1/2 
 1.

Thus the condition (4) of Proposition 2 is satisfied. Finally, the condition (3) of Proposition 2 follows
from Lemma 5 with η = O (t−1/2).

Proposition 2 now tells us that∑
a,d∈ZN

f (a) f (a + d)ShW (d) � c(h, δ) − O
(
t−1/2) (7)

for some constant c depending on h and δ, for N sufficiently large depending on h, and for every
W � Nκ . Thus for t sufficiently large depending on h and δ, for N sufficiently large depending on t ,
we have

∑
a,d∈ZN

f (a) f (a+d)ShW (d) > 0, which implies the existence of a couple a,a′ ∈ X and d such
that

a − a′ = hW (d) = h(W d + rW )

λ(W )
�= 0.

A priori, this is an equality in ZN , but since a,a′,hW (d) < N
2 , this is an equality in Z. Therefore,

h(W d + rW ) = (λ(W )a + b) − (λ(W )a′ + b) is the difference of two elements of A, as desired. �
Proof of Theorem 6. The proof goes along the lines that of Theorem 4. Suppose A is a sub-
set of positive relative density of the Chen primes. This time, we consider X = {0 � n � N/2:
λ(W )n + b ∈ A} for some appropriately chosen b, F = (λ(W )n + b)(λ(W )n + b + 2), and f =
c log N

log2 t
1X (n). �

Remarks 5.1. What we have proved so far is that not only is there a couple p1, p2 such that p1 − p2 =
h(n) for some n, but the number of such couples is of the correct magnitude. More precisely, if A is
a subset of positive upper relative density of the primes, then we have

�
{
(p1, p2): p1, p2 ∈ A, p1, p2 � N, p1 − p2 = h(n) for some n

} � N1+1/k

2
log N
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where the implied constant depends only on h and the upper relative density of A. A similar conclu-
sion holds for subsets of positive relative density of the Chen primes.

6. Further discussions

6.1. A word on bounds

Recall that in the estimate (7), c(h, δ) has the form

c(h, δ) = exp

(
−c1δ

−(k−1) logμ

(
2

δ

))
while the error term O (t−1/2) takes the form (C/ε)(M/ε)q

t−1/2, where M, C are constants depending
at most on k, c1 is a constant depending on h, and ε is a power of c(h, δ). Recall that t 
 log W 
k
log N . A calculation shows that the error term is dominated by the main term as long as

δ �h
(log4 N)μ/(k−1)

(log3 N)1/(k−1)

(where logi denotes the number of times the log has to be taken). Thus we have proved that, inside

any subset of size �h
N

log N
(log4 N)μ/(k−1)

(log3 N)1/(k−1) of the primes in {1, . . . , N}, there must exist two distinct

elements p1, p2 such that p1 − p2 = h(n) for some n ∈ Z. A similar conclusion holds for the Chen
primes. Such a bound is of course far weaker than Pintz–Steiger–Szemerédi type bounds.

6.2. On the transference principle

Our transference principle relies on two properties of the intersective set H = {h(n): n ∈ Z}, namely
Theorem 7 and Proposition 3. Theorem 7 says that the number of solutions to a − a′ = m where a,a′
are in any given dense set and m ∈ H is of the expected order of magnitude. Proposition 3 requires
that the number of representations of any number as a sum of elements of H be bounded by the
expected order of magnitude. We may ask for which other classes of intersective sets these two prop-
erties hold. A natural candidate is the set of values of polynomials of prime variables. It is known
that the set {Q (p): p prime} is intersective, where Q ∈ Z[x] is such that Q (1) = 0; however there
are other examples such as Q (p) = (p − 3)(p − 5). Other examples of intersective sets include {[αn2]:
n ∈ Z+} for irrational α, and more generally the set of values of certain generalized polynomials
(whose intersectivity is established in [2]). We may ask the same question for generalized polyno-
mials in prime variables such as {[αp2]: p prime} for α irrational (whose intersectivity is not yet
established yet but very plausible). However, as we have seen how the W -trick comes into play, we
will have to take into account uniform versions of the two properties, which don’t seem to be a
simple matter.
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