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We study the Z/2 x N-graded abelian group which for 4_< n e N is generated by the irreducible 
projective representations of  A n (respectively of S n) in Z/2-grading 0 (respectively 1). This has 
Hopf  algebra structure over L = Z[2]/(23 = 22), where the action of ;t is inducing and restricting 
between S n and A n. Working over L results in a considerable simplification to the proof of our 
structure theorem for the above. Our method is similar to Liulevicius' idea for studying the Z- 
Hopf  algebra of ordinary representations of S n . Among the results is the determination of all 
primitives in the above L-Hopf  algebra. 

1. Introduction 

In [2], the authors introduced a ring structure in a Z/2  × N-graded abelian group 
which is freely generated, except in a few low gradings, by the isomorphism classes 
of irreducible projective representations of Sn and of An. Determining the algebra 
structure involved some awkward manipulations with Hopf algebras at odd primes 
and more complicated structure at p =  2. By working systematically over a certain 
Z/2-graded ring L rather than over Z, these proofs are much improved. The above 
ring becomes an ~q-graded Hopf algebra over L, whose components are Z/2-graded 
L-modules which admit an L-valued inner product. An interesting feature here is 
that it becomes unnecessary to construct generators using Clifford modules. 
Algebra generators arise naturally and uniquely from the formal algebra, once the 
'bottom generator' is specified. 

We work in the category of L-PSH-algebras, introduced in [1]. Zelevinski intro- 
duced PSH-algebras over Z in [3], where details and references on Hopf algebras 
may be found. 
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Definition 1.1. The ring L : = Z [ 2 ] / ( 2 3 - 2 2 )  is graded over Z/2  by Lo)=AZ and 
L(0) = 1 Z (~ QZ where ~ := 22 - 1. 

Definition 1.2. An L-PSH-algebra K is an IN-graded object which in each degree is 
a Z/2-graded L-module. K is endowed with L-algebra structure and coproduct 
A : K ~ K ®  z K, giving a graded connected Hopf  algebra over L, where the co- 
product and product in K ®  L K are defined using the shuffle map 

aQb~c(~d--*Qe~+iJa(~c~)b(~d for beKE, i, ceK&j.  

Furthermore in K there is specified a set I of homogeneous elements called basic 
elements such that 

(i) x e I implies x ¢ Ox e I; 
(ii) If X C I  satisfies X U Q X = I ,  X O o X  is empty, then K is the free L-module 

on X. 
The Y-basis IU 2I  defines a positive cone IN- (IU 2I)  and we require that the multi- 

plication, comultiplication, unit, and counit maps be positive, where L and K®L K 
are given the obvious positive cones. A symmetric inner product ( , ) :  K(~L K-~L 
is determined by requiring X to be orthonormal; this is independent of choice of 
X. We require the multiplication and comultiplication to be adjoint with respect 
to ( , ) .  Here the inner product on  K(~LK is determined by ( (a®b ,c®d) )=  
(a,c)(b,d); note that no 'pseudo-sign' ~o ~6+ij is used. 

It follows that the multiplication is necessarily 'pseudo-commutative'  in that 
xy = ~ ~ ÷ (iyx for x ~ Ke, i, Y ~ K,~, j .  By adjointness, A is 'pseudo-cocommutative'. 

An element x e K~,i will be called odd or even according as e + i is odd or even, 
and deg x := i. 

Let {x~,:/z e M }  be a Z/2 × N-graded set. For later use we record the structure of 
the free pseudo-commutative L-algebra on this set, denoted L Ix  u:/1 e M ] .  With a 
fixed linear order for M, it is the direct sum of cyclic modules generated by mono- 
mials xu,xu2 ...xu, with/h---/z2---"'"-</zt- Make this summand isomorphic to L un- 
less there is at least one i with ~i=[Lli+l and xu, odd, in which case the summand is 
L/(O - 1)L. Multiplication is given in the obvious way, using pseudo-commutativity. 

A related construction is B [x ] ,  where B is some pseudo-commutative L-algebra 
and x is an object with a given Z/2 × IN grading. As a module, B[x l  is a direct 
sum of m o d u l e s  {nxi: i>_ 0}. All the summands are isomorphic to B if x is even. 
When x is odd, Bx°=B_~Bx I and, for i >  1, Bxi-~B/(Q - 1)B. One can construct 
L Ix u: ~ e M 1 iterating this last construction after giving M a well-ordering. 

Definition 1.3. Let W(~,n)=GR-(Xn)(~R-(Z,n) where -Pn is the double cover of 
Z'n, and where R -  and GR-  are Grothendieck groups of negative representations, 
as defined in [2]. 

The constructions and the proof  of the following theorem are contained in [2], 
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to which the reader should refer for representation-theoretic motivation. 

Theorem 1.4. There is an L-PSH-algebra structure on H=(~n>_o W(Xn) which has 
the following two properties: 

(i) H has a basic primitive pair {hi, Qhl } C Ht0), 1 and no other basic primitives in 
any grading; 

(ii) Hn is a free Z/2-graded L-module whose rank is at most # ~ n, where ff) n is 
the set o f  partitions o f  n into distinct parts. [] 

Statement (i) is clear since Xl is cyclic of order 2 and since for larger n, the 
restriction of  an irreducible representation in W(2~,,) is certainly non-zero in 
W(2~i) ®L W(Xn_i) = W(-ri'2-rn_i). As for (ii), the rank is exactly # ~ by the con- 
jugacy class counts in [2], but only the inequality is needed to prove Theorem 1.5 
below. For representations over ©, for example, rather than C, the strict inequality 
will hold, but the coalgebra structure would not exist. Finally, as noted above, the 
proof of Theorem 1.4 does not require Clifford modules. 

Theorem 1.5. l f  H is any L-PSH-algebra satisfying (i) and (ii) in Theorem 1.4, then 
there is a sequence hn ~ H<n+ l),n o f  basic elements such that, as an algebra, 

H = L  rhl, h2, h3, . . . ] / J  

where J is the ideal generated by the elements 

h 2 - ( -  1)n+ lA(h2n + A 
° l  ) 
~, (_ i f o r n > l  1) hih2n_ i _ . 

i = l  

The coproduct is determined by the formula 

A h n = h n ® l  + 1 ® h n + 2  
n - 1  

h i ~ h n - i .  
i=1 

The rest of  this paper is devoted to the proof of Theorem 1.5. 

2. Proof of Theorem 1.5 

The result classifying atoms in [1] shows that assuming (ii) is unnecessary in 
Theorem 1.5. However the only known proof of that result depends on Theorems 
1.4 and 1.5; more precisely, it depends on the existence of  an L-PSH-algebra with 
structure as given in Theorem 1.5. However [1, Lemma 4.3] depends only on the 
hypotheses of  Theorem 1.5 (with (ii) omitted), so we state this first. 

Proposition 2.1. If H satisfies the hypotheses o f  Theorem 1.5, there is a Q-unique 
sequence hn e H<n + O, n o f  basic elements for  which 
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hlhn- 1 = Ahn + un, 

where u n is a sequence with u 2 = 0 and un is basic for  n > 2. (To call hn Q-unique 
means that Qhn is the only other element with the property.) 

Furthermore Ah n and h 2 are given by the formulae in the conclusion o f  Theorem 
1.5. [] 

Let K be the L-algebra generated by {hi: i>  0}. By Proposit ion 2.1, K is a sub- 
Hopf  algebra of  H,  but is not obviously PSH. We shall first prove that K has the 
algebra structure asserted for H in Theorem 1.5, and then prove that K = H. 

Definit ion.  In Kfo), 2k + 1, define 

k 

r2k+l =(1 + kA2)h2k + l + A ~ ( -  1)i(2k- 2i + 1)h2k_i+ lh i. 
i=1 

Proposit ion 2.2.  rzk + 1 is p r i m i t i v e .  

Proof .  Working in l-I~=0Hn with the obvious filtration topology, we have a 
continuous extension z~ of d If we define h =  1 + Y.n>0Ahn; d =  ~,n>on2hn, it is 
easy to compute that  z~h=h@h; z ~ h - l = h - l ( ~ h - l ;  z ~ d = d ® h + h ~ d .  Thus 
zS(dh- 1) =z~(d)zl(h - 1) = (dh - l) ~ 1 + 1 @ (dh- 1). So each homogeneous compo- 
nent of dh - l  is primitive, and in grading 2 k +  1, this component  is ,~r2k+l. (The 
components in even degrees are zero by the squaring relations in Theorem 1.5. In 
fact the arguments below could be altered to make this into another proof  of the 
squaring relations. See [2, 4.10] for more details of this type of  algebraic manipula- 
tion.) Now let us prove that r2k+l itself is primitive. We have 

Arzk+l = 1 ®rzk+ I -t-r2k+ 1 (~) 1 +Ay 

for some y ~ ~i, j>o n i ~ I " I j "  This follows from the definition of  r2k+l and because 
h2k+l has this property of projecting to a primitive in H / 2 H .  But since 2r2k+1 is 
primitive we get 0 = 2 2 y = ( 1  +Q)y. It follows from freeness of  H that y = ( 1 - Q ) z  
for some z. Hence 2y = 0, as required. [] 

Lemma 2.3. Let  B be a connected pseudo-commutative L - H o p f  algebra. Suppose 
B is a submodule o f  some free L-module H. Assume B is generated as an algebra 
by B'N {x} where B'  is a connected sub-Hopf  algebra. Let C be the cyclic submodule 
o f  B/B '  generated by the image o f  x. 

(i) I f  C is free and x is even, then B = B' Fx7; 
(ii) I f  C is free and x is odd, then 

B = B ' F x ] / z x 2 = O  V z e B ' n ( o -  1)H; 

(iii) l f  C ~ L / A L ,  x is odd and 2x=0 ,  then 

B = B ' [ x ] / O = A x = x 2 = ~ c  V z ~ B ' N 2 H .  
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proof. Since B6 = B 0 we see deg x >  0. Let A 
! 

~n>0 Bn. Define A' as the composite 

A ~®n 
B "B®LB B®L(B/A) 

be the ideal in B generated by 

where 17 is the canonical projection. Then A' is an algebra morphism, d' f l=fl® 1 
for f leB' ,  and A ' x = x ®  1 + 1 ®r/(x) since Ak=B'g=Bk for 0 < k < d e g x .  Adegx = 

B'degx since A = { ~i>_o fli Xi; fli E B; deg fli> 0}. 
(i) We must prove that for file B', if r i ~,i-_ofliX =0, then all fli=O. To obtain a 

contradiction, choose such a relation with f l ~ 0  and with r minimal. We have 

-~-O<_j~<i<_r(~) ~iXi-j(~(]7(X))j" 

The only term in B®(B/A)degx is (F~r=l i~ixi-l)(~l~(X). But r/(x) generates a free 
cyclic submodule and H is free, so m ® r/(x) = 0 in H ®  (B/B') implies m = 0. Thus 
Xi ifli xi-  1 _ 0, contradicting minimality of r. 

(ii) We must show that ~ri=oflixi=O with fliEB' implies f l0=f l l=0  and file 
( 0 -  1)H for all i>  1. To obtain a contradiction, suppose we have such a relation 
with r minimal but with the condition on the fli not holding. Clearly r = 0 is im- 
possible, and r =  1 (so 8 1 , 0 )  would contradict the freeness of C. Thus r >  l and 

fir t~ (0 -- 1)H. Now 

O=A'(  ~i f l ixi)= ~ (~i@ l)[x@ l + l i 

= ~ (ai, jd- bi, jO)flixJ(~iT(x) i - j  
O<_j~_i<_r 

for certain coefficients with ai, j + bi, j = i + j ! / i  !j !. The only term in B ® (B/A )deg x is 

r 

(1 + 0 +  " ' " - b o i - l ) B i x i - l @ r l ( x ) .  
i = I  

F As in the previous case, I2i= 1 (1 + 0 +  " ' "  "t-oi-1)~iXi-I =0. 
By minimality of r, we obtain 

(1 +0)] /2=0 if r=2 ,  

(1 + 0 + " "  + O r - l ) f l r ~ ( 0 -  1)H if r>2 .  

In both cases, freeness of H easily implies that ErE (Q-1)H,  giving the contra- 
diction. 

(iii) Since Xx=0, there exists y e l l  with ( 0 -  l )y=x .  Now 0 y 2 = y  2 by pseudo- 
commutativity, so x2=0 .  Thus the map B'(~B'  ¢.,B sending (y,z) to y + z x  is 
onto. It remains to prove that Ker ~ = 0 0 ( 2 H N B ' ) .  If (y ,z )eKer  ~, then 
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O= A' (y  + zx)= y @  1 + ( z® 1)(x® 1 + 1 ®rl(X))=Z®rl(X). 

Since H is free, and r/(x) generates a cyclic module isomorphic to L/) tL  in B/B',  and 
s i n c e z ® r l ( x ) = O i n H ® ( B / B ' ) ,  we find2 divides z i n H .  N o w z x = 0 ,  s o y = 0 .  [~ 

Proposit ion 2.4. Let H be a connected pseudo-commutative L - H o p f  algebra which 
is free as an L-module. Let  

be a submodule o f  primitives, where each r is odd and 

Lru=_L and Lrv= L/AL.  

Then the subalgebra generated by R is 

LF{r,:u M}U{r.: 2 rurv= O. 

Choose linear orders in M and N so that monomials ,n n [Ii= l ru, YI~= 1% are always 
written with increasing subscripts. Then the module structure o f  the above sub- 
algebra is the direct sum o f  cyclic modules generated by the monomials in which all 
vj are distinct, and, i f  n > O, then also all iti are distinct. Other monomials are zero. 
The above cyclic module is isomorphic to 

L, i f  n = 0 and all iti are distinct, 

L / ( O -  1)L, i f  n = 0 and iti=iti+l f o r  some i, 

L/)~L, i f  n > 0 and all iti are distinct. 

Proof .  Well-order M. First we prove the case where N is empty by showing in- 
ductively on i t0~M that the subalgebra generated by {ru:it<it0} has structure 
L P{ru: i t<it0}]-  The inductive step at a limit ordinal is evident. So we must show 
that {ru: it-<ito} generates L[{ru: i t<it0}] assuming it holds with < in place of <. 
We use Lemma 2.3(ii), taking B ' = L  [ru: it<ito] and x=ruo. We need only verify 

(i) B' N (O - 1)H = (~ - 1)B', and 
(ii) ru0 projects to a generator of a free cyclic submodule of H/B ' .  
For (ii), note that B '  is the direct sum of the cyclic modules generated by 

{ru,ru2 "'" rus: Ul < " "  <its<Uo} and 

Ar~= ~ (a+bo)r~,®r~,  for sequences g2',~", ~=(it l , i t2,- .-) ,  

summation over pairs (~', Q") with g2'U 1"2" = 1"2, where a and b are non-negative in- 
tegers, not both zero, depending on (1"2', g2"). Thus 

Prim B ' =  Span/. {ru: it <it0}- 

But ruo is primitive, so the linear independence of { r u : i t e M  } completes the 
argument. 
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To verify (i), write z • B ' N ( # - 1 ) H  as a linear combination of  the generators 
{ l] ru,} for B'. Since Az = 0, we find, using the inductive assumption, that the 
coefficients ~, satisfy ;ty = 0 when all fli are distinct and 2y • (~0- 1)L otherwise. In 
both cases, it is easy to deduce that ), • ( ~ -  1)L, as required. 

Now to proceed to the general case where N is non-empty, we know the structure 
of the algebra generated by {ru: l z e M }  and proceed by adding the generators r~, 
y e N ,  one at a time. Note that freeness of H and ( Q - 1 ) r 2 = 0  implies 2 r u = )ts u for 
some s u • H .  Thus rZrv=O since 2rv=0.  Also Arv=0 implies r ~ = ( Q -  1)tv for some 
t~ e H. But (Q-  1)t 2 = 0 by pseudo commutativity. Thus rv2 =(Q_ 1)2t2 = 0. 

Choose a well-ordering for N. We prove inductively on v0 that 

AlgL({ru: /zeM} I,J {rv: v< v0} ) 

has the structure given in the theorem with N replaced by { v • N: v < v0}. At limit 
ordinals the inductive step is trivial. Now in Lemma 2.3, set 

B,= L F {ru: ~ e M}  U {r~: v < vo} l/r#rv = Ar v = rv2 = 0 

and set x =  r~o. To show that the algebra generated by B 'U {x} is 

B'Frvol/r#rvo=Zrvo:r2o:O, 

using Lemma 2.3(iii), it remains to show that 
(i) rv0 generates a cyclic submodule of B/B" isomorphic to L / A L ,  and 

(ii) for all z • B', if z • 2H, then z • ~.B' + the ideal in B'  generated by { r E: g • M }. 
As for (ii), writing z as a linear combination of the monomials I]iml rui 1-I~= 1% 

which span B '  by the inductive hypothesis, we must show that the coefficients y are 
in AL in the cases where all gi are distinct. Since (Q - 1)z--0 and using the structure 
of these cyclic modules we find (•-  1)~, = 0 in the case n = 0 and (Q-  1)), • 2L in the 
case n > 0. It follows that y • AL. 

To prove (i), suppose a e L and arvo • B'. Then 

arvo • Prim(B')  = S p a n  L ( {rz } M U {r v } v< Vo). 

By the structure of R we see that a • ;tL, as required. The above calculation of 
Prim B'  i s  immediate from the formula 

A (r~)= ~ ( a + b o ) . r a , ® r Q .  

as in the earlier part of  the proof  except that the multi-index f2 may contain both 
/J's and v's  here. [] 

Corollary 2.5. Let  r2k = (Q - 1)h2k. Then the subalgebra o f  H generated by { ri: i >_ 1 } 
is @ (ri, "" ris)L, direct sum over all partitions, where, with ~ odd denoting the set 
o f  part i t ions into odd  parts,  we have 
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L/(Q _ I)L 

r i , ' " r i s L = ~ o / 2  L 

Note  that r2k is primitive. [] 

P. Hoffman, J. Humphreys 

i f  ( i l , . . . ,  is) e ~ °dd CI ~ ,  

i f ( i l ,  . .- ,  is) E ~ ° d d  \ ~ ,  
i f  (i 1, . . . , i s ) 6 ~  \ ~odd, 

otherwise. 

Proposition 2.6. Let  M be an L-module  generated by {Xl, ..., xk }. In order to prove 
M is free over L on {xl , . . . ,  xk } it suffices to f i nd  submodules N I and N 2 such that 

N I = L a @ ( L / A L )  b with a+b>_k, 

Nz~_LC@(L/(Q - 1)L) a with c+d>_k. 

Proof. L / A L  ~ Z and N 1/AN 1 is a free submodule of M / A M  with a + b generators. 
Hence a + b = k and M / A M  is L/AL- free  on {xi + AM: 1 < i < k }. L/(O - 1)L ~ Z[V~] 
is a principal ideal domain and N2/ (O-1)N2  is a free submodule of M/(~o-1)M 
with c + d  generators. Hence c + d = k  and M / ( ~ o - 1 ) M  is L / ( o - 1 ) L - f r e e  on 
{ x i + ( Q - 1 ) M :  l<__i<k}. But now an L-linear relation among the xi's has coeffi- 
cients all of  which project to zero in both L/AL  and L / ( Q -  1)L. It follows easily 
that all these coefficients are zero. [] 

Proposition 2.7. K has the algebra structure as given in Theorem 1.5. 

Proof. Write each element of  ~ in decreasing order for definiteness and define 
ha=ha, ha2.., for a=(al ,  a2, . . . )e f f ) .  We must show Kn is free on { h a : a e ~ n } .  
This is immediate from Proposition 2.6 and Corollary 2.5, taking 

N2 = (~) {rit . . . . .  risZ: (il, . . . ,  is) E ~q~n°dd }, 

Nl = ( ~  {ri, . . . . .  risL: (il, ... ,is) 6 ff) , } , 

and recalling that # ~ d =  # ~ n -  [] 

We now proceed with the second half  of the proof of Theorem 1.5, that is, the 
proof that K = H. 

Proposition 2.8. 

(a) ( r 2 k + l , h 2 k + l ) = l ;  

(b) ((1 - Q)h2k, h2k ) = 1 - ~. 

Proof. (b) is trivial, and (a) is an easy calculation using the formula (see [1, 4.3] for 
similar calculations) 

(hn, hn_ihi )=A for O < i < n .  
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Alternatively, an argument as in the second half of [2, 4.10] will work here. [] 

Proposition 2.9. Let  ho = 1 and let h a = hs~hsz ... f o r  a sequence tr = (sj,s2, ...). Then 

Ah,r= ~ Q~(°"~')A ~(°"°')ha,® h~,, , 
tY" -I- tT"  = t7 

where 
(i) the summation is over all pairs (tr; tr") o f  sequences o f  the same length as tr 

with entries non-negative integers and entrywise sum tr; 
(ii) n(tr; tr") e 7//2 is defined by 

ha ,ho" = p n(at a')ha I h b  l ha2hb2 .." hb ~ 

where tr'= (al , . . . ,  at) and tr"= (bl, . . . ,  bt); and 
(iii) i f  nz(tr)= # non-zero entries in tr, then 

((tr', tr") := nz(tr') + nz(tr") - nz(tr' + tr"). 

Proof. This is straightforward by induction on the length of tr. [] 

Proposition 2.10. For each integer pr ime p, the L / p L - H o p f  algebra K ® L  (L /pL)  
has in degree n the fol lowing module o f  primitives: 

f L / p L  with generator r2k+l , n = 2 k +  1, 
Prim. [K® L (L/pL)] = I. (Q - 1)L/pL with generator (Q - 1)h2k, n = 2k. 

Proof. Writing ha for the basis element h a ® 1, t~ e 9 ,  define 

0: Primn [K® L (L/pL)] ~ L / p L  

by O(~,~paha)=lZn. To prove that 0 is injective, proceed by induction on the 
length l(tt) of a to show that (~ /z~h  a primitive and lZn = 0) implies al l /za= 0. If 
t~=(al, aE,...,at), then the basis element ha~®ha2 ..... a~ occurs only in Ah~ and in 
dh~ for certain fl with l(fl)< l(a) by Proposition 2.9. Thus 

0 = coefficient of ha, ® ha2...a, in A ( ~ gBh~) 

=/z,~- coefficient of hat • ha2.., a, in A (ha) 

since, by induction,/za= 0 for l ( f l )< l(a) 

=ga ,  by Proposition 2.9, as required. 

Now consider the case n = 2 k .  The coefficient of h k ® h k  in A(~, gaha) is 
/z2kA, since A(ha) has no term h k ® h k  if a~ (2k ) .  Thus, ~ lzah a primitive in 
K2k®L(L/pL  ) implies g2kA=0 in L / p L  and thus l . t2k~(Q- l ) (L /pL) .  Since 
(Q- 1)h2k is primitive and maps by 0 to Q -  1, this completes the proof for n = 2k. 

In the case n = 2 k +  1, define 
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: Primn [K®L (L/pL)] ~ L / p L  

by ~(x) = (x, hn >. Let xE Ker 0. Then O(x)r n - O(rn)X is in Ker 0, so is zero. By Pro- 
position 2.8, g) maps O(x)rn-O(rn)x to O(x), so 0(x)=0.  Thus x = 0 ,  so ~ is injec. 
tive. But ~ maps r2k+l to 1, so this completes the proof. [] 

The following is a standard fact. 

Proposition 2.11. Let  H" and H" be graded connected T-Hopf  algebras and free as 
modules over the commutative ring T. I f  ~, : H ' - , H "  is a non-injective morphism 

o f  H o p f  algebras, then Ker ~,tq Prim H'~= {0}. 

Proof. Let x be an element of  least degree d in Ker ¢ / -  {0}. Then 

0 = d"(~ , (x) ) -  ~,(x) ® 1 - 1 ® ~,(x) =(~u® ~)[d ' (x)  - x @  1 - 1 ®x].  

But by choice of d, ~,[H~ is injective for i < d. By freeness, ~ ® ~,[H[ ®/-/j  is injec- 
tive for i and j < d .  Thus A ' ( x ) = x ®  l + l ® x ,  so x ~ K e r  ~ N P r i m H ' .  [] 

Completion of the proof of Theorem 1.5. If K=/:H, then, since K n and Hn are free 
abelian groups of equal rank, there exists an integer prime p such that K C  H induces 
a Hopf  algebra morphism 

gl : K ( ~  L (L/pL)--) H Q  L (L /pL)  

which is not injective. By Propositions 2.10 and 2.11, we have a primitive ar2k+l 
or a(1 -~))h2k which is divisible by p in H but not in K. But then in L, p divides 

(ar2k + i, h2k + l> = a or ( a ( l  - Q)h2k, h2k ) = tt (I - ~)). But then p does divide ar2k +l 
or a ( l -  Q)h2k in K, a contradiction. [] 
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