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Abstract

We discuss a semiclassical treatment to inflationary models from Kaluza—Klein theory without the cylinder condition. We
conclude that the evolution of the early universe could be described by a geodesic trajectory of a cosmological 5D metric here
proposed, so that the effective 4D FRW background metric should be a hypersurface on a constant fifth dimension.
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1. Introduction and motivation

In the last years cosmological models with extra dimensions has been studied by many authors [1] with different
approaches. One of these is the space—time—matter theory (STM) developed by Wesson and co-workers [2], which
is one of the versions of the Kaluza—Klein (KK) theory. There are three versions of the Kaluza’s theory. The first
one is known as compactified KK theory. In this approach, the Kaluza’s cylinder condition is explained through
a physical mechanism of compactification for the fifth dimension proposed by Klein. In the second version this
condition is explained using projective geometry, in which the fifth dimension is absorbed into ordinary 4D space—
time provided the (affine) tensors of general relativity are replaced with projective ones [3]. In the third version the
cylinder condition is not imposed and there are no assumptions about the topology of the fifth dimension. This is
the usual scenario in non-compact KK theories.

In the STM theory of gravity the 5D metric is an exact solution of the 5D field equations in apparent vacuum [4].
The interesting here, is that matter appears in four dimensions without any dimensional compactification, but
induced by the 5D vacuum conditions. In this framework, the study of the early universe has great interest. The
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equivalence between STM theory and brane-world (BW) theories [5] has been studied recently [6]. In BW theories
the usual matter in 4D is a consequence of the dependence of 5D metrics on the extra coordinate. If the 5D bulk
metric is independent of the extra dimension, then the brane is void of matter. Thus in brane theory, matter and
geometry are unified. In particular, in this Letter we are interested in the study of inflationary models from the STM
formalism. Inflationary cosmology has been studied from the STM formalism for de Sitter (with a scale factor that
evolves as: (1) ~ ¢0') and power-law inflation (for ~ 1) [4,8] using respectively the metrics

dSZ — ,(//2 dlZ _ 262«//\/(31ﬁ2)l dRZ _ d,(//Z, (1)

dS? =2 dr® — y2r/P=D2P g R? — dy?. 2

(p—172
In metric (1), the Hubble parameter is given by the cosmological constant and the fifth coorHi(fuaied/(3w2).

As has been demonstrated, both metrics describe inflationary expansions on a 4D space—time embedded in a 5C
manifold with ¢y constant [9]. These 5D metrics on comoving spatial coordinates and cotistat an interval

given bydS = v dt [10]. This should be consistent with 4D particle dynamics, whose corresponding interval or
action is defined byls =mdt. So, if ¥ is constant the rest massof a given particle should be constant in this
particular frame. However, we could choose a frame in wifickaries and hence the mass of the 4D patrticle were
variable. For example, as was demonstrated in [10], by means of the 5D geodesic equation

c
ddLS +r5utut =o, (3)
we can see that in the metric (2) we obtain the temporal dependence of the fifth coordi@rate: (r /to)(l’—b2
when the spatial velocitigg! = U2 = U3 = 0. Here,I'$, (A, B, C =0, 1, 2, 3, 4) are the 5D Christoffel symbols
and the velocities are given liy4 = dx4 /dS. From the point of view of a 5D general relativity theory (which we
are working here), it implies that the action is minimized in this particular frame.
The metrics (1) and (2) are the 5D extension of a 4D spatially isotropic, homogeneous and flat Friedmann—
Robertson-Walker (FRW) space—time. These can be written in a more general manner [9]

dS§? = —e* WD gi? 4 PUD GR2 4 ¥ WD) gyp2, 4

whered R? = dx?+dy?+dz? andy is the fifth coordinate. The equations for the relevant Einstein tensor elements
are
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where overstars and overdots denote respectiﬁ;lynd%, andi =1, 2, 3. Following the signaturé—, +, +, +)

for the 4D metric, we defing% = —p andT'1; = p, wherep is the total energy density and p is the pressure. The



D.S. Ledesma, M. Bellini / Physics Letters B 581 (2004) 1-8 3

5D-vacuum conditions§4 = 0) are given by [10]

87 Go = 2o ©)
J[eB 3B
_ ap _n  oP 1

ancp—c |7~ -2, (10)

o lgz + @ —eV E + % — % (11)
“Ia T4 |72 2 T4

Hence, from Egs. (9) and (10) and taki@g= 0, we obtain the equation of state for the induced matter
4 B

=—|==+1)p. 12

P (3 izt )p (12)

Notice that for3/42 < 0 and /A% <« 1 (or zero), this equation describes an inflationary universg.2f2H.

(H. is the classical Hubble parameter), the equdityy2 = 0 corresponds with a 4D de Sitter expansion for the
universe (metric (1)). Inflationary models like a de Sitter expansion or whose in whieh ~ =1 (metric (2))

can be studied by means of above approach [8]. However, chaotic inflation cannot be studied in this framework.
The generalization of this formalism to inflationary models with potentialg) ~ ¢" is one of the aims of this

Letter.

2. Formalism

In order to develop a different approach to the reviewed in the last section, we can propose the following metric
to describe the universe

dS?=y2dN? — %N dr? — dy®. (13)

Here, the parametereN,r) are dimensionless and the fifth coordinate has spatial unities. As can be
demonstrated, the metric (13) describes a flat 5D manifold in apparent vacupgn=£ 0). In the metric (13) the
parameteV could be a general function of » andys (and perhaps of additional coordinatgswithi =5, ..., n
anddy; = 0), but in this Letter we are going to study the particular case wiveanly depends on the cosmic
timez: N = N(¢). Using Eqgs. (9) and (10), we can calculate the vacuum solutions of the metric (13). We obtain
the following expressions for the 4D induced pressure (p) and radiation energy density (

8rGp=—3y 2, (14)
87Gp =3y 2. (15)

It implies that all the matter (here described byis given byiyr. More exactly, as the metric (13) with = N (z)
describes a extended spatially flat FRW metric, the results (14) and (15) indicaieth@t) = H.(N), where
H.(N) is the classical Hubble parameter (see Section 3). Note that the induced 4D equation of state give us a
vacuum one g= —p.

Before study some inflationary example we can discuss the properties of the metric (13). We consider the
geodesic equations for the metric (13) in a comoving frafe= dr/3.S = 0. The relevant Christoffel symbols are

ry,=0.  IYy=1y. Tyy=v. Iy,=0 (16)
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so that the geodesic dynamiégg£ = FfBUAUB is described by the following equations of motion for the
velocitiesU 4

vy 2

—=——vuMNyv, (17)
ds v

auv

WZ—WUNUN, (18)

v2UNUN —uvuY =1, (19)

where Eq. (19) describes the constraint conditigpU4 U8 = 1. From the general solutionU”" = cosiS(N)],
UV = —sinhS(N)] (whereS(N) = N), we obtain the equation that describes the geodesic evolutiah for

dy  UY

NN = —y tan S(V)]. (20)
If we define tanhS(N)] = —1/p(N), we obtain

Y(N) = yoe/ NPV (21)
for the velocities

1 P(N)
Uw:_i’ UN=7, (22)
VP3(N) -1 ¥/ p?(N) -1

wherey in EqQ. (21) is a constant of integration. The resulting 5D metric is given by

dS? =di? — 2/ HWdrgR2 _ g1 2, (23)

with ¢ = [Y(N)dN, R =ry andL = vy for H.(t) = 1/ (¢). With this representation, we obtain the following
velocitiesUA:
2p(t) R r L
Ul = | U' = —, U~=0. (24)
Vi -1 VA -1
The solution|S| = arctantil/p(t)] corresponds to a power-law expanding universe with time dependent power
p(t) for a scale facton ~ tP"). SinceH,(t) = a/a, the resulting Hubble parameter is

He(1) = pIn(t/10) + p(1)/1, (25)

wherer is the initial time.

From the above results we can propose that the universe was born in a statewih(i.e., in a vacuum
state p~ —p) and evolved through the geodegit = arctaniil/p(¢)] in a comoving framelr = 0, such that the
effective 4D space—time is a FRW metric

dS2=di? — 2/ Hdi g2 _ 12, g2 — g42 _ (2 He)di gR2 (26)

Note thatL depends on the initial value @f: L = . In this framework we can define the 5D Lagrangian

1
L(p,9.4) =— —(5>g[§gAB<p,A<p,B + V(w)}, (27)

for the scalar fieldpo(N, r, ) with the metric (13). Here(®¢ is the determinant of the 5D metric tensor in (13)
and V() is the potential. On the geodesi§| = arctankil/p(¢)] in the comoving framelr = 0, the effective
Lagrangian for the metric (26) is

1
L(p,9.4) = L9, p.) =—/ —(4’g[§g“”¢,u<p,v + V(w)}, (28)
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whereg is the determinant of the metric tensor in the 4D effective FRW background metric (26)=ard?, R).
In this frame the energy density and the pressure, are

8t Gp = 3HCZ, (29)
87Gp=—(3H? + 2H,), (30)

with H.(r) = a/a for a given scale factar(r) ~ tP®).

3. An application: semiclassical chaotic inflation

The inflationary universe scenario asserts that, at some very early time, the universe went through a
superluminical expansion with a scale factor growingzas ”*) (with p > 1). Inflation is needed because it
solves the horizon, flathess and monopole problems of the very early universe and also provides a mechanism for
the creation of primordial density fluctuations. For these reasons it is an integral part of standard cosmological
model.

To illustrate the results of the last section we can develop a semiclassical treatment [13] to a chaotic inflationary
model [11] with a potential

2 22

m- 5 4
\% = — — 31
(@) ARy (31)

wherem is the mass of the inflaton field and« 1 describes the self-interaction. The equation of motioryfor
and the Friedmann equation (in an effective 4D FRW metric (26)), are

.. .1 /
$+3Hp— V% +V'(9) =0, (32)
87 [¢? 1
H?= W<% + E(V(ﬂ)z + V(¢)>- (33)
p

We can make a semiclassical treatment [7] for the scalardietdp. () + ¢>(13, 1), whereg. (1) = (¢) and the small
inflaton fluctuations are zero-mean-valygd = 0. If the cosmological constant is given by

om?  Amim  AZM3

A ..o ]
9 + AZM[% + 187

(34)

the classical Hubble parameter will be related with the classical potential through the Einstein equation [12]

3M32 M2
V(ge) = S—n” [Hf - ?’;(HQZ - A],

whereM, = G~1/2 is the Planckian mass ari. = %127[453/2 + V(¢)]. The classical Hubble parameter for the
potential (31) is given by

A ,  2m?mY? M,
3M, Vst AM), T

However, the effective Hubble parame#ér is given by the expression [12] (there is a little mistake in [12]—the
correct expression is the following)

dr [$% 1 2 V(o)
H(t)=H{1+—<—+ﬁ(V¢) +n§7l¢ , (36)

Hc(¢c) =

(35)

3HC2 2 n
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where we denotél, = H.(¢.) = a/a andV ™ (¢.) = d‘;% l¢.. If the inflaton fluctuations are small, we can make
a first order expansion api for V (¢), and the following approximation is valid
Hemfie 2P0 vy 37
=1+ g G + 5 0?) | @)
The treatment off in the context of semiclassical inflation is very problematic because the terms inside the
brackets include back-reaction effects [14]. As was demonstrated by Nambu, back-reaction effects are different
on super-Hubble and sub-Hubble scales. On sub-Hubble scales such that effects are important and the effective
curvature is increases, but on super-Hubble scales the consequences of back-reaction are no very important. Fo
this reason, the standard approximation that appears in the literature (see, for example, [12,13,15]) consists on
makingH = H,, becaus€V¢)2/a2 and(¢2) become negligible on cosmological scales at the end of inflation. For
simplicity, in this Letter we adopt this approximation.
Sinceg, = —%HC’, we can describe the temporal evolution for the spatially homogeneous component of the

inflaton field
_iMp
$e(t) = doe 7, (38)
wheregg is ¢.(to). If we replace (38) in the expression for the Hubble parameter (35), we obtain its temporal

dependence

_Mp
A Tre Wt 2mPym LMy
3M, AM, 187’

Hc(t) = (39)

such that, for a scale factor that evolvesigg ~ r?® (i.e.,a(N) ~ ¢V in the representation (13)), we obtain the
differential equation

p®In(t/t0) + p(1)/t = He(1). (40)

351 4

251 b""

151 ©

051

2et12 4et12 Be+12 Be+12 1e+13
t

Fig. 1. Evolution of|S(z)| (dotted line) andp(¢) (continuous line).
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Here,H.(t) is given by Eq. (39). If we replace Egs. (39) in (40), we obtain the temporal evolutign(fpr

_aMp
_ 18CM2A/T +1(36mPm My, + 12M3) — 187%/2¢Zhe” 7 !
18M§Aﬁ|n(t/to) ’

whereC is a dimensionless constant of integration. Note that the last term in the numerator approaches to zero
before inflation ends.

In Fig. 1 we showS(¢)| (dotted line) andp(¢) (continuous line) forn = 0.8 x 1071'M,, (i.e., 15 x 10? GeV),
A =101, C =30 andgo = 0.1M,,. Note thatp(r) — 1 at the end of inflation (i.e., far~ 10'3M,1), but|S ()|
increases from its initial valug(zp) = 0. The interesting here is that the mass value of the inflaton field agrees with
the expected for the Higgs masdiiiggs >~ 150 GeV [16].

p(0) (41)

4. Final comments

We have developed a cosmological model from non-compact Kaluza—Klein theory, in which the evolution of
the early universe is described by a geodesic trajediiy )| = arctaniil/p(N)] in a comoving framelr = 0 of
a 5D metric

dS? =2 dN? — y2e2N dr? — ay?,
such that, by means of the transformatioa [ ¢ dN, R = ry and L = vy, the resulting 5D background metric
for y = H1is described by

dS? =dr? — 2/ HDdrgR2 _ g1 2,
which give us an effective 4D FRW background metric

ds? = di® — 2 HeWdt g2,

on the hypersurfacé = yro. In this model, the 4D effective dynamics is governed by the temporal evolution of
the fifth dimension. Physical properties such as the mean energy density and pressure of matter are well-defined
consequences of how the extra coordinate enters the metric. That is, matter is explained as the consequence o
geometry in five dimensions.

To illustrate the model we have studied a chaotic inflationary model p/i¥) > 1 for a massive inflaton
field which is self-interacting. An interesting result is that the mass of the inflaton field here obtained (
1.5 x 10? GeV), agrees quite well with the expected value for the Higgs mass [16]. Of course, the method
could be applied to other inflationary models with potentiglg) ~ ¢". Moreover, the formalism also could
be developed for more general cosmological models wisré)| = arctantil/p(N)] would give us the evolution
of the universe from its creation to the present epoch. For example, a cosmological model in which the universe
evolves from a “big bounce” was considered in [17]. However, this issue go beyond the scope of this Letter.
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