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Abstract

We discuss a semiclassical treatment to inflationary models from Kaluza–Klein theory without the cylinder condit
conclude that the evolution of the early universe could be described by a geodesic trajectory of a cosmological 5D m
proposed, so that the effective 4D FRW background metric should be a hypersurface on a constant fifth dimension.
 2003 Elsevier B.V.

PACS:04.20.Jb; 11.10.Kk; 98.80.Cq

1. Introduction and motivation

In the last years cosmological models with extra dimensions has been studied by many authors [1] with
approaches. One of these is the space–time–matter theory (STM) developed by Wesson and co-workers
is one of the versions of the Kaluza–Klein (KK) theory. There are three versions of the Kaluza’s theory. T
one is known as compactified KK theory. In this approach, the Kaluza’s cylinder condition is explained th
a physical mechanism of compactification for the fifth dimension proposed by Klein. In the second vers
condition is explained using projective geometry, in which the fifth dimension is absorbed into ordinary 4D
time provided the (affine) tensors of general relativity are replaced with projective ones [3]. In the third vers
cylinder condition is not imposed and there are no assumptions about the topology of the fifth dimension
the usual scenario in non-compact KK theories.

In the STM theory of gravity the 5D metric is an exact solution of the 5D field equations in apparent vacuu
The interesting here, is that matter appears in four dimensions without any dimensional compactificat
induced by the 5D vacuum conditions. In this framework, the study of the early universe has great intere
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equivalence between STM theory and brane-world (BW) theories [5] has been studied recently [6]. In BW t
the usual matter in 4D is a consequence of the dependence of 5D metrics on the extra coordinate. If the
metric is independent of the extra dimension, then the brane is void of matter. Thus in brane theory, ma
geometry are unified. In particular, in this Letter we are interested in the study of inflationary models from th
formalism. Inflationary cosmology has been studied from the STM formalism for de Sitter (with a scale fac
evolves asa(t) ∼ eH0t ) and power-law inflation (fora ∼ tp) [4,8] using respectively the metrics

(1)dS2 = ψ2 dt2 −ψ2e2
√

Λ/(3ψ2)t dR2 − dψ2,

(2)dS2 = ψ2 dt2 −ψ2p/(p−1)t2p dR2 − t2

(p − 1)2
dψ2.

In metric (1), the Hubble parameter is given by the cosmological constant and the fifth coordinate:H 2
0 = Λ/(3ψ2).

As has been demonstrated, both metrics describe inflationary expansions on a 4D space–time embedde
manifold withψ constant [9]. These 5D metrics on comoving spatial coordinates and constantψ has an interva
given bydS = ψ dt [10]. This should be consistent with 4D particle dynamics, whose corresponding inter
action is defined byds = mdt . So, ifψ is constant the rest massm of a given particle should be constant in th
particular frame. However, we could choose a frame in whichψ varies and hence the mass of the 4D particle w
variable. For example, as was demonstrated in [10], by means of the 5D geodesic equation

(3)
dUC

dS
+ Γ C

ABU
AUB = 0,

we can see that in the metric (2) we obtain the temporal dependence of the fifth coordinate:ψ(t) = (t/t0)
(p−1)2

when the spatial velocitiesU1 = U2 = U3 = 0. Here,Γ C
AB (A,B,C = 0,1,2,3,4) are the 5D Christoffel symbol

and the velocities are given byUA = dxA/dS. From the point of view of a 5D general relativity theory (which w
are working here), it implies that the action is minimized in this particular frame.

The metrics (1) and (2) are the 5D extension of a 4D spatially isotropic, homogeneous and flat Fried
Robertson–Walker (FRW) space–time. These can be written in a more general manner [9]

(4)dS2 = −eα(ψ,t) dt2 + eβ(ψ,t) dR2 + eγ (ψ,t) dψ2,

wheredR2 = dx2+dy2+dz2 andψ is the fifth coordinate. The equations for the relevant Einstein tensor elem
are

(5)G0
0 = −e−α

[
3β̇2

4
+ 3β̇γ̇

4

]
+ e−γ

[
3
��

β

2
+ 3

�

β2

2
− 3

�
γ

�

β

4

]
,

(6)G0
4 = e−α

[
3

�

β

2
+ 3β̇

�

β

4
− 3β̇

�
α

4
− 3

�
γ γ̇

4

]
,

(7)

Gi
i = −e−α

[
β̈ + 3β̇2

4
+ γ̈

2
+ γ̇ 2

4
+ β̇γ̇

2
− α̇β̇

2
− α̇γ̇

4

]
+ e−γ

[
��

β + 3
�

β 2

4
+

��
α

2
+

�
α2

4
+

�

β
�
α

2
−

�
γ

�

β

2
−

�
α

�
γ

4

]
,

(8)G4
4 = e−α

[
3β̈

2
+ 3β̇2

2
− 3α̇β̇

4

]
+ e−γ

[
3

�

β 2

4
+ 3

�

β
�
α

4

]
,

where overstars and overdots denote respectively∂
∂ψ

and ∂
∂t

, andi = 1,2,3. Following the signature(−,+,+,+)

for the 4D metric, we defineT 0
0 = −ρ andT 1

1 = p, whereρ is the total energy density and p is the pressure.
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5D-vacuum conditions (GA
B = 0) are given by [10]

(9)8πGρ = 3

4
e−αβ̇2,

(10)8πGp= e−α

[
α̇β̇

2
− β̈ − 3β̇2

4

]
,

(11)eα
[

3
�

β 2

4
+ 3

�

β
�
α

4

]
= eγ

[
β̈

2
+ 3β̇2

2
− α̇β̇

4

]
.

Hence, from Eqs. (9) and (10) and takingα̇ = 0, we obtain the equation of state for the induced matter

(12)p= −
(

4

3

β̈

β̇2
+ 1

)
ρ.

Notice that forβ̈/β̇2 � 0 and |β̈/β̇2| 	 1 (or zero), this equation describes an inflationary universe. Ifβ̇ = 2Hc

(Hc is the classical Hubble parameter), the equalityβ̈/β̇2 = 0 corresponds with a 4D de Sitter expansion for
universe (metric (1)). Inflationary models like a de Sitter expansion or whose in whichHc(t) ∼ t−1 (metric (2))
can be studied by means of above approach [8]. However, chaotic inflation cannot be studied in this fram
The generalization of this formalism to inflationary models with potentialsV (ϕ) ∼ ϕn is one of the aims of this
Letter.

2. Formalism

In order to develop a different approach to the reviewed in the last section, we can propose the following
to describe the universe

(13)dS2 = ψ2 dN2 −ψ2e2N dr2 − dψ2.

Here, the parameters(N, r) are dimensionless and the fifth coordinateψ has spatial unities. As can b
demonstrated, the metric (13) describes a flat 5D manifold in apparent vacuum (GAB = 0). In the metric (13) the
parameterN could be a general function oft , r andψ (and perhaps of additional coordinatesχi with i = 5, . . . , n
anddχi = 0), but in this Letter we are going to study the particular case whereN only depends on the cosm
time t : N = N(t). Using Eqs. (9) and (10), we can calculate the vacuum solutions of the metric (13). We
the following expressions for the 4D induced pressure (p) and radiation energy density (ρ)

(14)8πGp= −3ψ−2,

(15)8πGρ = 3ψ−2.

It implies that all the matter (here described byρ) is given byψ . More exactly, as the metric (13) withN = N(t)

describes a extended spatially flat FRW metric, the results (14) and (15) indicate thatψ−1(N) = Hc(N), where
Hc(N) is the classical Hubble parameter (see Section 3). Note that the induced 4D equation of state g
vacuum one p= −ρ.

Before study some inflationary example we can discuss the properties of the metric (13). We cons
geodesic equations for the metric (13) in a comoving frameUr = ∂r/∂S = 0. The relevant Christoffel symbols a

(16)Γ N
ψψ = 0, Γ N

ψN = 1/ψ, Γ
ψ
NN = ψ, Γ

ψ
Nψ = 0,
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C

dS
= Γ C

ABU
AUB is described by the following equations of motion for t

velocitiesUA

(17)
dUψ

dS
= − 2

ψ
UNUψ,

(18)
dUN

dS
= −ψUNUN,

(19)ψ2UNUN −UψUψ = 1,

where Eq. (19) describes the constraint conditiongABU
AUB = 1. From the general solutionψUN = cosh[S(N)],

Uψ = −sinh[S(N)] (whereS(N) = N ), we obtain the equation that describes the geodesic evolution forψ

(20)
dψ

dN
= Uψ

UN
= −ψ tanh

[
S(N)

]
.

If we define tanh[S(N)] = −1/p(N), we obtain

(21)ψ(N) = ψ0e
∫
dN/p(N)

for the velocities

(22)Uψ = − 1√
p2(N) − 1

, UN = p(N)

ψ
√
p2(N)− 1

,

whereψ0 in Eq. (21) is a constant of integration. The resulting 5D metric is given by

(23)dS2 = dt2 − e2
∫
Hc(t) dt dR2 − dL2,

with t = ∫
ψ(N)dN , R = rψ andL = ψ0 for Hc(t) = 1/ψ(t). With this representation, we obtain the followin

velocitiesUA:

(24)UT = 2p(t)√
p2(t) − 1

, UR = r√
p2(t) − 1

, UL = 0.

The solution|S| = arctanh[1/p(t)] corresponds to a power-law expanding universe with time dependent p
p(t) for a scale factora ∼ tp(t). SinceHc(t) = ȧ/a, the resulting Hubble parameter is

(25)Hc(t) = ṗ ln(t/t0)+ p(t)/t,

wheret0 is the initial time.
From the above results we can propose that the universe was born in a state withS � 0 (i.e., in a vacuum

state p� −ρ) and evolved through the geodesic|S| = arctanh[1/p(t)] in a comoving framedr = 0, such that the
effective 4D space–time is a FRW metric

(26)dS2 = dt2 − e2
∫
Hc(t) dt dR2 − dL2 → ds2 = dt2 − e2

∫
Hc(t) dt dR2.

Note thatL depends on the initial value ofψ : L = ψ0. In this framework we can define the 5D Lagrangian

(27)L(ϕ,ϕ,A) = −
√

−(5)g

[
1

2
gABϕ,Aϕ,B + V (ϕ)

]
,

for the scalar fieldϕ(N, r,ψ) with the metric (13). Here,(5)g is the determinant of the 5D metric tensor in (1
andV (ϕ) is the potential. On the geodesic|S| = arctanh[1/p(t)] in the comoving framedr = 0, the effective
Lagrangian for the metric (26) is

(28)L(ϕ,ϕ,A) →L(ϕ,ϕ,µ) = −
√

−(4)g

[
1

2
gµνϕ,µϕ,ν + V (ϕ)

]
,
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where(4)g is the determinant of the metric tensor in the 4D effective FRW background metric (26) andϕ ≡ ϕ(t,R).
In this frame the energy density and the pressure, are

(29)8πGρ = 3H 2
c ,

(30)8πGp= −(
3H 2

c + 2Ḣc

)
,

with Hc(t) = ȧ/a for a given scale factora(t) ∼ tp(t).

3. An application: semiclassical chaotic inflation

The inflationary universe scenario asserts that, at some very early time, the universe went thr
superluminical expansion with a scale factor growing asa ∼ tp(t) (with p � 1). Inflation is needed because
solves the horizon, flatness and monopole problems of the very early universe and also provides a mech
the creation of primordial density fluctuations. For these reasons it is an integral part of standard cosm
model.

To illustrate the results of the last section we can develop a semiclassical treatment [13] to a chaotic infl
model [11] with a potential

(31)V (ϕ) = m2

2
ϕ2 + λ2

24
ϕ4,

wherem is the mass of the inflaton field andλ 	 1 describes the self-interaction. The equation of motion foϕ

and the Friedmann equation (in an effective 4D FRW metric (26)), are

(32)ϕ̈ + 3Hϕ̇ − 1

a2
∇2ϕ + V ′(ϕ) = 0,

(33)H 2 = 8π

3M2
p

〈
ϕ̇2

2
+ 1

2a2
(∇ϕ)2 + V (ϕ)

〉
.

We can make a semiclassical treatment [7] for the scalar fieldϕ = φc(t)+φ( �R, t), whereφc(t) = 〈ϕ〉 and the smal
inflaton fluctuations are zero-mean-valued〈φ〉 = 0. If the cosmological constantΛ is given by

(34)Λ = 2m2

9
+ 4m4π

λ2M2
p

+ λ2M2
p

182π
,

the classical Hubble parameter will be related with the classical potential through the Einstein equation [1

V (φc) = 3M2
p

8π

[
H 2

c − M2
p

12π
(H ′

c)
2 −Λ

]
,

whereMp = G−1/2 is the Planckian mass andHc = 8π
3M2

p
[φ̇2

c /2 + V (φc)]. The classical Hubble parameter for t

potential (31) is given by

(35)Hc(φc) = λ

3Mp

√
πφ2

c + 2m2π1/2

λMp

+ λMp

18π1/2
.

However, the effective Hubble parameterH , is given by the expression [12] (there is a little mistake in [12]—
correct expression is the following)

(36)H(t) = Hc

[
1+ 4π

3H 2
c

〈
φ̇2

2
+ 1

2a2
(∇φ)2 +

∑ V (n)(φc)

n! φn

〉]
,

n=1
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where we denoteHc ≡ Hc(φc) = ȧ/a andV (n)(φc) ≡ dV (ϕ)
dϕ

|φc . If the inflaton fluctuations are small, we can ma
a first order expansion onφ for V (ϕ), and the following approximation is valid

(37)H = Hc

[
1+ 4π

3H 2
c

〈
φ̇2

2
+ 1

2a2(∇φ)2
〉]

.

The treatment ofH in the context of semiclassical inflation is very problematic because the terms insid
brackets include back-reaction effects [14]. As was demonstrated by Nambu, back-reaction effects are
on super-Hubble and sub-Hubble scales. On sub-Hubble scales such that effects are important and the
curvature is increases, but on super-Hubble scales the consequences of back-reaction are no very impo
this reason, the standard approximation that appears in the literature (see, for example, [12,13,15]) co
makingH = Hc, because(∇φ)2/a2 and〈φ̇2〉 become negligible on cosmological scales at the end of inflation
simplicity, in this Letter we adopt this approximation.

Sinceφ̇c = − 4π
M2

p
H ′

c, we can describe the temporal evolution for the spatially homogeneous componen

inflaton field

(38)φc(t) = φ0e
− λMp

6
√
π
t
,

whereφ0 is φc(t0). If we replace (38) in the expression for the Hubble parameter (35), we obtain its tem
dependence

(39)Hc(t) = λ
√
πφ2

0e
− λMp

3
√
π t

3Mp

+ 2m2√π

λMp

+ λMp

18
√
π
,

such that, for a scale factor that evolves asa(t) ∼ tp(t) (i.e.,a(N) ∼ eN in the representation (13)), we obtain t
differential equation

(40)ṗ(t) ln(t/t0)+ p(t)/t = Hc(t).

Fig. 1. Evolution of|S(t)| (dotted line) andp(t) (continuous line).
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Here,Hc(t) is given by Eq. (39). If we replace Eqs. (39) in (40), we obtain the temporal evolution forp(t)

(41)p(t) = 18CM2
pλ

√
π + t (36m2πMp + λ2M3

p)− 18π3/2φ2
0λe

− λMp

3
√
π
t

18M2
pλ

√
π ln(t/t0)

,

whereC is a dimensionless constant of integration. Note that the last term in the numerator approaches
before inflation ends.

In Fig. 1 we show|S(t)| (dotted line) andp(t) (continuous line) form = 0.8× 10−17Mp (i.e., 1.5× 102 GeV),
λ = 10−15, C = 30 andφ0 = 0.1Mp. Note thatp(t) → 1 at the end of inflation (i.e., fort � 1013M−1

p ), but |S(t)|
increases from its initial valueS(t0) = 0. The interesting here is that the mass value of the inflaton field agree
the expected for the Higgs mass:MHiggs� 150 GeV [16].

4. Final comments

We have developed a cosmological model from non-compact Kaluza–Klein theory, in which the evolu
the early universe is described by a geodesic trajectory|S(N)| = arctanh[1/p(N)] in a comoving framedr = 0 of
a 5D metric

dS2 = ψ2 dN2 −ψ2e2N dr2 − dψ2,

such that, by means of the transformationt = ∫
ψ dN , R = rψ andL = ψ0, the resulting 5D background metr

for ψ = H−1
c is described by

dS2 = dt2 − e2
∫
Hc(t) dt dR2 − dL2,

which give us an effective 4D FRW background metric

ds2 = dt2 − e2
∫
Hc(t) dt dR2,

on the hypersurfaceL = ψ0. In this model, the 4D effective dynamics is governed by the temporal evolutio
the fifth dimension. Physical properties such as the mean energy density and pressure of matter are we
consequences of how the extra coordinate enters the metric. That is, matter is explained as the conse
geometry in five dimensions.

To illustrate the model we have studied a chaotic inflationary model withp(N) > 1 for a massive inflaton
field which is self-interacting. An interesting result is that the mass of the inflaton field here obtainedm =
1.5 × 102 GeV), agrees quite well with the expected value for the Higgs mass [16]. Of course, the m
could be applied to other inflationary models with potentialsV (ϕ) ∼ ϕn. Moreover, the formalism also cou
be developed for more general cosmological models where|S(N)| = arctanh[1/p(N)] would give us the evolution
of the universe from its creation to the present epoch. For example, a cosmological model in which the u
evolves from a “big bounce” was considered in [17]. However, this issue go beyond the scope of this Lette
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