
Report
Metabolic Cycles in Yeast
Share FeaturesConserved
among Circadian Rhythms
Highlights
d Yeast respiratory oscillations (YROs) share features with

circadian rhythms

d Changes that alter the period of circadian rhythms have the

same effect on YROs

d Oxidation cycles of peroxiredoxins are a characteristic of

both oscillations

d Mechanistic similarities between these cycles may reflect a

common origin
Causton et al., 2015, Current Biology 25, 1056–1062
April 20, 2015 ª2015 The Authors
http://dx.doi.org/10.1016/j.cub.2015.02.035
Authors

Helen C. Causton, Kevin A. Feeney,

Christine A. Ziegler, John S. O’Neill

Correspondence
hc2415@columbia.edu (H.C.C.),
oneillj@mrc-lmb.cam.ac.uk (J.S.O.)

In Brief

The clock gene feedback loops thought

to drive circadian rhythms are not

conserved across eukaryotes, but,

perplexingly, several enzymes that

determine clock speed are. Causton et al.

now show that respiratory cycles in yeast

share some key features with the clock in

mammalian cells, raising questions about

the origins of biological timekeeping.

mailto:hc2415@columbia.edu
mailto:oneillj@mrc-lmb.cam.ac.uk
http://dx.doi.org/10.1016/j.cub.2015.02.035
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2015.02.035&domain=pdf


Current Biology

Report
Metabolic Cycles in Yeast
Share Features Conserved among Circadian Rhythms
Helen C. Causton,1,* Kevin A. Feeney,2 Christine A. Ziegler,1,3 and John S. O’Neill2,*
1Department of Biological Sciences, Columbia University, 617 Fairchild Building, 1212 Amsterdam Avenue, Mail Code 2442, New York,

NY 10027, USA
2MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
3Present address: Department of Chemistry, University of Rochester, Rochester, NY 14627, USA

*Correspondence: hc2415@columbia.edu (H.C.C.), oneillj@mrc-lmb.cam.ac.uk (J.S.O.)

http://dx.doi.org/10.1016/j.cub.2015.02.035

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
SUMMARY

Cell-autonomous circadian rhythms allow organ-
isms to temporally orchestrate their internal state
to anticipate and/or resonate with the external envi-
ronment [1, 2]. Although �24-hr periodicity is
observed across aerobic eukaryotes, the central
mechanism has been hard to dissect because few
simple models exist, and known clock proteins
are not conserved across phylogenetic kingdoms
[1, 3, 4]. In contrast, contributions to circadian
rhythmicity made by a handful of post-translational
mechanisms, such as phosphorylation of clock pro-
teins by casein kinase 1 (CK1) and glycogen syn-
thase kinase 3 (GSK3), appear conserved among
phyla [3, 5]. These kinases have many other essen-
tial cellular functions and are better conserved in
their contribution to timekeeping than any of the
clock proteins they phosphorylate [6]. Rhythmic
oscillations in cellular redox state are another uni-
versal feature of circadian timekeeping, e.g., over-
oxidation cycles of abundant peroxiredoxin proteins
[7–9]. Here, we use comparative chronobiology to
distinguish fundamental clock mechanisms from
species and/or tissue-specific adaptations and
thereby identify features shared between circadian
rhythms in mammalian cells and non-circadian tem-
perature-compensated respiratory oscillations in
budding yeast [10]. We find that both types of oscil-
lations are coupled with the cell division cycle,
exhibit period determination by CK1 and GSK3,
and have peroxiredoxin over-oxidation cycles. We
also explore how peroxiredoxins contribute to
YROs. Our data point to common mechanisms un-
derlying both YROs and circadian rhythms and sug-
gest two interpretations: either certain biochemical
systems are simply permissive for cellular oscilla-
tions (with frequencies from hours to days) or this
commonality arose via divergence from an ancestral
cellular clock.
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RESULTS AND DISCUSSION

A Conserved Cell-Cycle Regulator, Swe1, Also
Regulates the YRO
In order to understand why certain ubiquitous post-translational

mechanisms have a highly conserved circadian clock func-

tion, we investigated their contribution to the shorter period

(�1–5 hr, ultradian) yeast respiratory oscillations (YROs) in

Saccharomyces cerevisae, which lack robust circadian rhythms

and canonical clock proteins [11]. The YRO is a cell-autono-

mous, temperature-compensated rhythm in oxygen consump-

tion that synchronizes spontaneously when cells are grown at

high density in aerobic, nutrient-limited, continuous culture

[10, 12–14] (Figure 1A). Beyond the difference in oscillation fre-

quency (�1 day�1 versus �8 day�1), circadian rhythms and

YROs are highly similar (summarized in Table S1). In animal cells,

the circadian clock regulates the timing of cell division [15], and

in rapidly proliferating cells, the cell division cycle (CDC) and

circadian cycle can become tightly coupled [16]. This is

achieved, in part, through daily rhythms in the expression of a

conserved cell-cycle regulator, the Ser/Thr kinase Wee1

[17, 18]. The homolog ofWee1 in budding yeast, Swe1, functions

at the G2/M checkpoint, with additional roles during G1 [19]. Like

the circadian cycle, the YRO does not require cell division [20]

but does gate DNA replication so that S-phase entry does not

typically occur during the oxidative portion of the YRO (OX)

[21]. We asked whether coupling between the YRO and the

CDC in yeast might occur via Swe1 in the same way that Wee1

connects circadian rhythms and the CDC in mammalian cells.

SWE1 was deleted and synchronized respiratory oscillations

were initiated in a bioreactor. The swe1 strain underwent YROs

with significantly shorter period than wild-type (Figures 1B–1D)

but grew more slowly (44% ± 10% of wild-type; Figure S1D),

confirming that the relationship between YRO and CDC is not

fixed [20] and is regulated by Swe1. The proportion of G1/0 cells

relative to cells with replicated DNA is represented by the 1C:2C

ratio and peaks at the end of OX [12, 21]. The amplitude of 1C:2C

across the oscillation was significantly attenuated in the mutant,

with approximately half as many cells leaving G
1
each oscillation

compared with wild-type (Figures 1C, 1D, S1A, and S1B) and a

higher percentage of cells in S/G2/M overall (Figure S1C). The

YRO is specific toG1/0 [20], so it is likely that the faster respiratory

oscillation of the swe1 strain results from the relatively shorter
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Figure 1. The CDC and YROs Are Affected by Deletion of SWE1

(A) Phases of the oscillation referred to throughout the text: reductive/charging

(R/C), respiratory or oxidative (OX), and reductive building (RB).

(B) Dissolved oxygen (DO) trace showing that wild-type strains cycle with YRO

(period 2.77 hr, SD 0.26, n = 17), whereas swe1 strains cycle substantially

faster (t test, p < 0.001; period 1.62 hr, SD 0.11, n = 12). See also Figure S1.

(C andD) Dissolved oxygen traces are highly synchronizedwith DNA content in

wild-type strains and swe1 strains.

(E) Model inferred from population-based data illustrating the relationship

between the YRO and the CDC for wild-type and swe1 strains. The dotted line

represents the CDC of a single cell within the population. The population is not

synchronized with respect to cell division, but the YRO gates when a cell can

enter S phase.

Curre
duration of G1/0 in the mutant. Our data thus support a model in

which the YRO and the CDC remain coupled in the swe1mutant,

but the cell cycle is longer and fewer cells are undergoing respi-

ratory oscillations at any point in time (Figure 1E). As mammalian

cancer cell lines exhibit a wider range of circadian periods when

assessed in vitro than do primary cells, we wonder whether

altered circadian timekeeping might constitute a more general

hallmark of cells that have lost tumor suppressor genes such

as WEE1.

CK1 andGSK3Determine Period Length in Both theYRO
and Mammalian Cellular Clock
CK1 and GSK3 are two families of ubiquitous eukaryotic Serine/

Threonine kinases that regulate a broad range of cellular pro-

cesses, including metabolism, cell migration, and wnt signaling

(Table S2). These enzymes act to regulate target protein stability,

subcellular localization, and complex formation and can act syn-

ergistically with each other, e.g., in the regulation of b-catenin.

Both kinases also play a conserved role in setting the speed of

the circadian clock, although their targets are not conserved

(Table S2) [22, 23]. We postulated that these enzymes similarly

contribute to the speed of the YRO.We tested this by pharmaco-

logical inhibition of yeast CK1d/ε homologs using the selective

inhibitors PF670462 and LH846 [23, 24] and by knocking out

yeast GSK3b homolog, RIM11. In parallel, we performed exper-

iments with mouse fibroblasts expressing transcriptional or

translational clock gene::luciferase (per2:luc or PER2::LUC) re-

porters (Figures 2 and S2). In both cases, our hypothesis was

confirmed: CK1 inhibition dose dependently increased the

period of the YRO and the mammalian clock, whereas GSK3b

knockout significantly shortened the period of both. These re-

sults show that perturbation of the yeast CK1 andGSK homologs

has similar effects to those observed for circadian rhythms in

diverse species. Although we do not yet know which kinase sub-

strates are relevant, our data are consistent with a model in

which they play similar roles.

Oscillations in the Redox State of Peroxiredoxin Tsa1
Accompanies the YRO
Peroxiredoxins (PRXs) are abundant thiol-specific cellular perox-

idases that employ a conserved cysteine residue for the reduc-

tion of intracellular peroxides. Oxidized PRX usually dimerizes

via a disulphide and is re-reduced by the thioredoxin system or

may become over-oxidized to the sulphinic form (SO2) and sub-

sequently recycled by sulphiredoxin (Srx) [25]. These ubiquitous

antioxidants were recently suggested to constitute universal
nt Biology 25, 1056–1062, April 20, 2015 ª2015 The Authors 1057
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Figure 2. Perturbations that Affect the Period of Circadian Rhythms Have a Similar Effect on YROs

(A) Representative DO traces showing that pharmacological inhibition of casein kinase I in yeast increases the period of oscillation.

(B) Grouped data showing the dose dependence of CK1 inhibition on the YRO (mean ± SEM, one-way ANOVA, p = 0.0164). Although the target of PF670462 has

not been characterized in yeast, addition of LH846, another CK1 inhibitor, had a similar effect (Figure S2). These results suggest that the period increase is due to

direct inhibition of yeast CK1.

(C) Grouped data showing dose-dependent period lengthening on circadian period in immortalized mouse fibroblasts (mean ± SD, n = 4, p < 0.0001 for con-

centration effect by two-way ANOVA).

(D) PF670462 has a dose-dependent effect on circadian period in mouse fibroblasts as reported previously. Representative detrended bioluminescence traces

are shown.

(E) Representative data DO traces showing that a yeast strain deleted for RIM11, homolog of GSK3, has a shorter period of oscillation.

(F) Bar graph showing the effect (mean ± SEM) of homozygous deletion of GSK3b on the period of the circadian cellular oscillation in fibroblasts (n = 4) and

deletion of RIM11 on the YRO (n = 17); p < 0.001 by unpaired t test in both cases.

(G) Homozygous deletion of GSK3b shortens circadian period in mouse embryonic fibroblasts. Representative detrended traces are shown.

Asterisks represent different p value thresholds (throughout): *p < 0.05; **p < 0.01; ***p < 0.001.
markers for circadian rhythms, as they exhibit a�24-hr rhythm in

cysteine over-oxidation that persists (albeit perturbed) in circa-

dian clock mutants and also in the absence of nascent gene

expression, e.g., in mammalian erythrocytes [8, 26]. Although

PRX over-oxidation cycles are thought to reflect an underlying

oscillation in cytosolic redox balance, it is unclear whether PRX

activity is required for clock function. The YRO coordinates

with many cellular processes (Table S1), including mitochondrial

and cytosolic redox metabolism. We therefore postulated that if

PRX over-oxidation reflects a rhythm in the production of reac-

tive oxygen species (ROS) and/or reducing equivalents, PRX

oxidation should also be driven by the YRO. S. cerevisiae ex-
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presses three PRXs that contain the conserved 9-mer motif

recognized by commercial antisera: Tsa1, Tsa2, and mitochon-

drial Prx1 (Figure 3A). By using single gene deletions and

peroxide treatment, we observed oxidation-specific bands at

the expected molecular weight (�22 kD) only in strains with

wild-type TSA1, indicating that the anti-PRX-SO2/3 antiserum

specifically recognizes over-oxidized Tsa1 (Figure 3B). Samples

were then collected over the course of the YRO, run at two

different dilution rates in three independent experiments, to

test whether PRX over-oxidation correlated with YROs of

different period, and analyzed by western blotting. The PRX-

SO2/3 signal showed a fixed-phase relationship with the YRO,
rs
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Figure 3. PRX Tsa1 Undergoes Cycles of

Oxidation across the YRO

(A) Three PRXs in the yeast S. cerevisiae have the

nine amino acid sequence recognized by the PRX-

SO2/3 antisera when over-oxidized.

(B) Western blot showing that over-oxidized Tsa1

is recognized by the PRX-SO2/3 antisera in a

redox-dependent manner. Samples were har-

vested immediately before (�) or 15 min after (+)

the addition of hydrogen peroxide (1 mM final

concentration). The asterisk marks a cross-react-

ing band.

(C) YROswere obtained using 0.1 or 0.12 dilutions/

hr (sampled every 20 or 12 min, respectively) and

monitored using the dissolved oxygen trace (top).

Bottom: whole-cell extracts obtained from sam-

ples taken across the oscillation were analyzed for

PRX over-oxidation by western blotting.

(D) Grouped data showing the normalized PRX-

SO2/3 intensity over the YRO, peaking around late

OX phase (mean ± SEM, n = 3, p = 0.024 for time

effect by two-way ANOVA).
consistently peaking just after the end of oxidative phase (OX,

Figure 1D), when ROS generated as respiratory by-products

are likely to be maximal (Figures 3C and 3D).

PRXActivity Affects, but IsNot Required for, Ultradian or
Circadian Rhythms
To test whether PRX activity is necessary for the YRO, we

knocked out the major cytosolic PRXs, TSA1 and TSA2, and

also PRX1. Since TSA1 and TSA2 act cooperatively and/or

semi-redundantly, we also tested a tsa1 tsa2 strain and an srx1

strain in order to establish whether catalytic cycling of PRX

over-oxidation might be important. All of the strains tested un-

derwent respiratory oscillations, showing that PRX activity is

not required for cycling (Figures 4 and S3B–S3F). However,

Tsa1 and Tsa2 together make some contribution to the integrity

of this temporal metabolic program because the double deletion

strain has a distinct dissolved oxygen profile, with a pronounced

‘‘dip’’ in the trace during the reductive phase and cycles with a

slightly shorter period (Figure 4A). This dip may reflect a transient

respiratory burst during the ‘‘reductive/charging’’ (R/C) portion

of the cycle, suggesting that one function of Tsa1/2 may be to

stably maintain reductive metabolism. Catalytic recycling of

Tsa1/2 by Srx1 makes no YRO contribution, as the srx1 strain

is phenotypically similar to wild-type (Figures S3E and S3F).

Consistent with this result, circadian PRX over-oxidation cycles

persist in red blood cells lacking Srx [27] but require proteasomal

activity [27], and we speculate PRX-SO2/3 may similarly be
Current Biology 25, 1056–106
degraded by the 20S proteasome. We

also note that a strain lacking Prx1 ex-

hibits a lengthened period (Figure S3F),

suggesting that antioxidant mitochon-

drial balance also contributes to this

respiratory oscillation, as might be ex-

pected for an oscillation with a redox

cycle at its core [13].

The equivalent PRX loss-of-function

experiment inmammalian cells is imprac-
tical as there are six PRX isoforms, so we used conoidin A (CA),

a naturally occurring, membrane-permeable irreversible (2-cys)

PRX inhibitor that reacts with the catalytic (peroxidatic) cysteine

residue [28]. We confirmed CA activity by observing that it dose

dependently blocks over-oxidation of cellular PRX in mouse fi-

broblasts following 30-min treatmentwith 2mMH2O2 (FigureS3).

Circadian bioluminescence assays revealed that at sub-toxic

concentrations (%5 mM), PRX inactivation subtly, but signifi-

cantly, shortened the period of oscillation, accompanied by

much larger dose-dependent effects on the amplitude and

phase of PERIOD2::LUCIFERASE rhythms (Figures 4B–4E).

This result echoes previous observations of circadian activity in

2-cys PRX null mutants in Synechococcus elongatus (a cyano-

bacterium) and Arabidopsis thaliana (a plant) [8]. At higher CA

concentrations (>5 mM), cells were dead within 24 hr. These re-

sults suggest that PRX activity modulates, but is not required

for, cellular circadian rhythmicity. These results are similar to

those observed for YROs.

Comparative Chronobiology Offers New Insights toward
Mechanism
Collectively, our data show that conserved post-translational

features of circadian rhythms in eukaryotes are also a feature

of YROs in an organism not known for 24-hr periodicity and

that YROs are not merely a function of the CDC. In our view,

these results are consistent with two different models. (1) There

are a number of conserved cellular mechanisms involved in
2, April 20, 2015 ª2015 The Authors 1059
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Figure 4. PRXs Contribute to YROs but Are Not Required for Cycling
(A) Dissolved oxygen trace for a wild-type strain (period 2.77 hr, SD 0.26, n = 17) and a tsa1 tsa2 double mutant strain (period 2.37 hr, SD 0.18, n = 6,

p < 0.001).

(B) Grouped detrended bioluminescence traces (mean ± SEM, n = 3) showing the effect of a 2-cys PRX inhibitior on PER2::LUCIFERASE rhythms in immortalized

mouse fibroblasts added at the peak or trough (data not shown). The blue arrow indicates the point at which conoidin A or vehicle was added.

(C–E) Conoidin A subtly shortens circadian period (p < 0.0001; C) and has robust effects upon amplitude (p = 0.0024; D) and circadian phase (p < 0.0001; E).

Mean ± SEM is shown for (C)–(E) (n = 3, p values are two-way ANOVA, concentration effect). Asterisks report Bonferroni post-test p values for each drug

concentration versus vehicle control.

(F) Immortalized Bmal1�/� fibroblasts exhibit an ultradian rhythm of PER2::LUCIFERASE activity under certain culture conditions, abolished following a complete

media change. Inset shows mean period ± SEM before the media change (unpaired t test versus wild-type controls, p < 0.0001, n = 16).
numerous cellular functions that are also permissive for biolog-

ical oscillations in the frequency range of hours. These enzymes

do not have a specific role in the circadian clock but have a more

general cellular function. (2) Yeast respiratory oscillations rely

upon the same central timekeeping mechanisms employed by

circadian clocks in higher organisms, and this reflects a common

origin.

In the first model, recruitment of the same post-translational

mechanisms to sustain biological rhythms of quite different pe-

riods means that they are the chronobiological equivalent of

housekeeping enzymes. This could explain why, for example,

CK1 activity also determines the period of circatidal rhythms in

Eurydice pulchra, which is driven by a non-circadian clock [29].

The second model would be supported if S. cerevisiae evolved

under conditions where selection favored rapid growth over

circadian timing. Budding yeast is known to have undergone

genome duplications followed by massive gene loss that would

have facilitated this process [30]. The benefits conferred by

clock-controlled temporal segregation of metabolism and gene
1060 Current Biology 25, 1056–1062, April 20, 2015 ª2015 The Autho
expression would continue to bestow a fitness advantage, with

the consequence that the period of the oscillation shortened to

allow a faster cell cycle. In support of the possibility that a circa-

dian clock became the YRO through gene deletion, we were

interested to observe that under certain conditions, fibroblasts

homozygous null for the ‘‘core clock gene’’ Bmal1 exhibit a pro-

nounced ultradian rhythm in ‘‘clock gene’’ expression (Figure 4F),

echoing previous observations made using pacemaker neurons

from Bmal1 null mice [31].

In either case, by comparing similar biological rhythms with

different periods in very distantly related eukaryotes (yeast

versus mouse), our approach offers the potential to identify

the processes that determine the speed at which biological

clocks run. The Last Eukaryotic Common Ancestor (LECA)

possessed mitochondria, a nucleus, metabolic pathways that

included glycolysis, and the pentose phosphate pathway, as

well as a cell cycle regulated by cyclins and cyclin-dependent

kinases [32, 33]. We speculate that it also had a circadian

clock.
rs



EXPERIMENTAL PROCEDURES

Strain Construction and Growth Curves in Yeast

Yeast deletion strains were made by insertion of the KanMX and/or NatMX

cassette in the CEN.PK113-7D background [34] using standard genetic

methods (Table S3).

The optical density (OD) of wild-type and swe1 strains was measured over

time, and a corrected value was obtained by subtracting background density

(OD of media at each time point). Relative growth rates were determined by

linear regression during log phase growth in batch cultures. Cell number

was counted using a haemocytometer, and turbidity measurements were ob-

tained using a Bioscreen C machine (Lab Systems). These experiments were

carried out at 30�C using the same media as that used to feed the bioreactor.

Protein Preparation and Detection

Yeast whole-cell extracts were prepared by trichloroacetic acid (TCA)

precipitation as described [35], with the addition of the following protease

inhibitors (Sigma): aminobenzamide dihydrochloride (200 mg/ml), antipain

(1 mg/ml), aprotinin (1 mg/ml), leupeptin (1 mg/ml), chymostatin (1 mg/ml),

PMSF (200 mg/ml), TPCK (50 mg/ml), and pepstatin (1 mg/ml). Gel electropho-

resis and western blotting were carried out as described [8], except that mini

NuPAGE gels (Life Technologies) were used and proteins were wet transferred

to PVDF. PRX-SO2/3 antibody (ab16830) was purchased from Abcam.

YROs

Respiratory oscillations were generated as described [10, 36], using a 7.5 L

New Brunswick Celligen 115/Bioreactor containing 2 L media at pH 3.4 at

30�C with 4 L/min aeration, 550 rpm agitation. The pH was maintained with

10% NaOH. Unless otherwise stated, all experiments used a continuous

flow rate of 0.1 dilutions/hr. The oxygen probe was calibrated prior to each

experiment. All experiments on mutant strains were conducted at least twice,

while those involving dose response curves represent the combined results

from two (LH846) or three (PF670462) experiments. PF670462 and LH846

were purchased from Tocris Bioscience.

Flow Cytometry

DNA was stained using propidium iodide (PI) using standard methods. Flow

cytometry was carried out using a FACSCalibur flow cytometer (Becton

Dickinson). 20,000 cells were scored for each sample.

Data Analysis

Period length was calculated using a custom-built script in MATLAB. To auto-

matically identify minima, we used a sliding window smoothing algorithm on

the dissolved oxygen data to reduce measurement noise. All local minima

points were then identified in the smoothed data. A period was defined be-

tween each pair of adjacent minima points. t tests were carried out in Excel,

using the T.TEST function for two-tailed samples of unequal variance. NIH

ImageJ software was used to quantify the intensity of bands on western blots

and protein gels. Other statistical analyses were performed using Graphpad

Prism. Intensities from western blotting were corrected for variations in total

protein concentration in each lane and standardized based on total signal in-

tensity across the oscillation.

Culture and Manipulation of Mammalian Cells

Primary fibroblasts homozygous for PERIOD2::LUCIFERASE [37] were iso-

lated from the lung tissue of adult males and cultured as described previously

[38] and then immortalized by serial passage [39]. GSK3b�/� and wild-type

control mouse embryonic fibroblasts from [40] were stably transfected with

a plasmid encoding Per2:luc. Passage number did not exceed 20. All animal

work was licensed under the UK Animals (Scientific Procedures) Act of 1986

with local ethical approval. Cell lysis and immunoblotting is described in the

legend for Figure S3.

Monitoring of Circadian Rhythms

Cells were seeded at a density of 105 per 35-mm dish and grown to complete

confluence with regular media changes as described previously [38]. Biolumi-

nescence assays were performed in HEPES-buffered ‘‘Air Medium’’ [38] sup-

plemented with 10% HyClone FetalClone III serum, 1 mM luciferin, 2% B-27
Curre
supplement, and 13 Glutamax in all cases, with the exception that 1% serum

was used in the recording from Bmal1�/� fibroblasts and wild-type controls,

and these cells were cultured under 12 hr:12 hr 32�C:37�C temperature cycles

for 2 weeks prior to changing to Air Medium for the recording at constant 37�C.
Drugs were purchased from Cayman Chemical, dissolved in DMSO, and then

diluted into Air Medium such that the final concentration of DMSO did not

exceed 0.1%. Within each experiment, DMSO concentration was internally

controlled (i.e., equal DMSO at 0 mM and 1 mM drug). Mammalian biolumines-

cence experiments were performed using a Lumicycle (Actimetrics) at con-

stant 37�C. Lumicycle data were detrended to remove baseline changes

and then fit with a damped sine wave in order to determine circadian period,

amplitude and phase as in [22]. This and all other statistical analyses were per-

formed using Graphpad Prism.
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