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I. INTRODUCTION 

In this note we consider a very restricted class of transducers, i.e., of 
automata which transform finite input words into finite output words 
(cf. Moore, 1956). The simplest case is the transformation consisting in 
the replacement of every input letter x by an output word V(x) which 
is eventually the empty word ey. Algebraically, since the set F x ( F r )  
of all finite input (output) words is the free monoid (Chevalley, 1956) 
generated bythe input alphabet X = {x} (the output alphabet Y = {y} ), 
this transformation is simply an homomorphism n: Fx ---> F r .  

If ,7 is such that n(f) = ~(f') only if f = f ' ,  it is called an encoding 
(with unique decipherability) and then n is an isomorphism. 

Next in simplicity are the transformations realized by a conventional 
[one way, one tape (Rabin and Scott, 1959)] automaton supplemented 
by a printing device (Huffman, 1959). Upon reading x on the input tape 
and, accordingly, going from the state s to the state s' = sx, a word 
~(s; x) function of s and x only is printed on the output tape which is 
moved the corresponding length. Trivially, any mapping from Fx to Fy  
can be performed by a transformation of this type if no restriction is im- 
posed on the number of states. We shall always assume here that S = 
{s} is a finite set. This forces drastic limitations on n and, in particular, 
it introduces a difference between the right transformations (where read- 
ing and printing are done from left to right) and the left transformations 
(where both operations are done in the opposite direction). For example 
no (finite) right automaton can perform the task of reproducing the 
input word when it ends with a given letter and of printing nothing when 
it does not. 

Consequently the composite operation which consists of transforming 
first the input word by a right automaton, and then of transforming 
again the output word by a left automaton cannot as a rule be carried 
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out in a single pass; we shall call it a t r a n s d u c t i o n  and we shall describe 
some of its elementary properties: 

1. The transductions form a set closed by finite composition and also 
by inversion when this last operation has a meaning (Huffman, 1959). 

2. The transduetions transform regular events (Kleene, 1956) on the 
input words into regular events on the output  words and any regular 
event  can be obtained in this manner. 

These two properties indicate tha t  there is no difference between the 
languages which can be accepted by finite automata and the languages 
which can be produced by any b o u n d e d  number of finite automata;  here, 
the boundedness condition cannot be omitted as is easily shown by 
Chomsky's counter examples (cf. Chomsky, 1959). 

For notational reasons it is more convenient to define a transduction 
with sets of states (S, S p) as the transformation from an input word 

f = x lx2  • • • x~ and a pair of states sl c S, sl p e S ~ to an output  word that  
is obtained by replacing every letter x~ by a fixed output  word 
~(s~ ; x~ ; s~_i+l) where the states are given inductively by  the equations 

! ! 
sj+~ = s¢x~ and s~_j+2 = x i s ~ _ j + ~ .  With this definition, right (left) trans- 
ductions correspond to the special case where v ( s i ;  x; s~i ,) does not 
depend effectively upon its right (left) argument and where, conse- 
quently, S p (S) can be taken as reduced to a single state and, finally, 
omitted. 

The finite closure property 1 shows that  this new construct is equiva- 
lent to the composition of a right and of a left transduction; encodings 
correspond to the case where S and S ~ reduce to a single state and, then, 
the property 1 shows that  the deciphering can always be performed by a 
transduction. 

E x a m p l e .  Let X = {xl, x2} and Y = {x l ,  x2, Y3I. Every  input word 
hasaun iquefac to r iza t ionf  = n~ ~ ~ " " xl xl, . .  (i  ~ i ')  intorunsx~ c0nslstmg 
of the same letter xj repeated n~ times, and we suppose that  we want  to 
perform the transformation n which lets invariant the runs of even'length 
and replaces every run of o d d  length by  y3 • 

Thus, for example, 
3 2 3 4 2 2 4 

~x~ x2 x~x2 x~ : y3z2 Y3 x~ . 

This can be realized if for any factorization f = f ' x f "  we follow the two 
instructions: (1) Print  out x if it belongs to a run of even length. (2) 
Print  out y3 or nothing when x belongs to a run of odd length according 
to whether x is or is not the last letter of this run. 
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I n  order to  car ry  them out  it is sufficient to know tha t  f '  and f "  re- 
spectively end and begin by  runs of length n '  > 0 and n"  > 0 in the 
let ters x '  and  x" because:  (1) x belongs to a run of even length  if x '  = 
x = x" and n '  and  n 't have  different par i ty  or if x '  = x ~ x tl and n t is 
odd or if x t ~ x = x "  and n t' is odd;  (2) x is the last let ter  of a run 
of odd length if x ~ x t' and  n t is even, or if x t ~ x ~ x tt. 

Consequen t ly  , all t h a t  is needed is the par i ty  of n t and  ntt and the last 
and first' let ter  respectively of .f' and ft,. As we shall see below this infor- 
ma t ion  can be supplied by  two finite state au tomata ,  one hav ing  read 
ff f rom le f t  to  r ight  and the other  one having  read ftt in the opposite 
direction. 

Le t  us now consider how this t ransformat ion  could be achieved in t w o  

passes: 
The  first one is per formed b y  a r ight  t ransduet ion  with states {sd 

(0 <; i ._-< 4),  initial state So and transi t ions:  

80X 1 ~ 82Xl ~ S3X 1 .~- 84X 1 ~ S 1 

81Xl ~ 8 2 ,  

N0X2 ~ 81X2 ~ 82X2 ~ 84X2 z 83 

83X2 ~ 8 4 -  

T h u s  for any  input  word  ft  the last state reached, s i ,  has index of the 
same par i ty  as the  last run of f t  and j -< 2 if and only if the last let ter  
of ft  is x l .  The  machine has an ou tpu t  a lphabet  Z = { z l }  (1 _< i -< 4) 
wi th  the pr int ing rule vt(si ; x j )  = z~,, when s ~ x i  = s~,,. For  example, 

/ ( X 1 3  2 3 4\  
X2 XlX2 X l  ) ~ ZlZ2ZlZ3Z4ZlZ3Z4Z3ZlZ2ZlZ2 ~ ~ t f .  

The  second pass is per formed b y  a left t ransducer  with states {sl} 
(0 -< i -< 4),  initial state so t and  transi t ions:  

z~s~'  = Sl' if i ~ 2  and z~s2 '  

= s 2 t ; z 2 s i  t = s2 t if i ~ 1 and z~s~ t = s ~ ;  

z 3 s i '  = s3 '  if i ¢ 4  and  z ~ s J  

f = s 4 ' ; z 4 s ~  t = s4 ~ if i ¢ 3 and z4s3 '  = s ~ .  

The pr int ing rule is given b y  ~"(z~ ; s / )  = x l x ~  when i = 2 a n d j  ~ 1; 
= x 2 x 2 w h e n i  = 4 a n d j  ~ 3; = y3when i = 1 a n d j  = 0, 2, 4 o r /  = 3 
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and j = 0, 1, 2; = er  (nothing) in all other cases. For  example, 

7 # (~ff)  = e re ry3e rx2x2yae re ryae rxlxle r x l x l ,  

tha t  is, v(s0 ; f ;  So'). 

II. FORMAL DEFINITION AND NERODE'S THEOREM 

A transduction v is given by  the following structures: 
1. A finite input  alphabet  X = {x} and an output  alphabet  Y = {y}. 
2. Two finite sets of states S = {s} and S'  = {s'}. 
3. Two mappings (S, X)  --+ S a n d  (X, S ' )  --+ S '  writ ten respectively 

sx and xs'.  
4. A mapping ~: (S, X, S ' )  -+ F r  writ ten ,/(s; x; s ' ) .  These mappings 

are extended in a natural  fashion to any f e Fx by  the following inductive 
rules: 

sex = s and exs' = s', ~(s; ex ; s ')  = er  for any (s, s ')  e (S, S ' ) .  

For  any f e F x ,  x e X ,  (s, s ' ) e  ( S ,  S ' ) :  s ( f x )  = ( s f ) x ,  ( f x ) s '  = 
f ( x s ' ) ,  ~ ( s ; f x ;  s') = v ( s ; f ;  x s ' ) ~ ( s f ;  z; s ' ) .  

I t  is easily checked tha t  these rules are equivalent to the ones given 
in the introduction. By induction the last rules gives the following iden- 
t i ty  which could be taken as a definition and which displays n as a 
two-sided coset mapping F x  --~ F r  : for any :/'1, f 2 ,  f3 e F x  

' 
, = ,fefas )~l(sfl ; A  A s ' ) , ( s f ,  f2 ;fa ; s ' ) .  

In  a more concrete manner  S can be realized by  finite matrices whose 
entries belong to the union of F r  and of a zero, 0. Indeed for any x s X 
let gx be a square matr ix  whose rows and columns are indexed by  the 
pairs (s l ,  s'~,) e (S, S ' )  and whose entries are 

! l ! ! 
t*x((s~,  s l , ) ,  ( s j ,  s j , ) )  = ~(sl  ;x;s~.,) if six = sj and si, = x s r ,  

= 0, otherwise. 

Then i f f  = xlx2 - - • x~ the corresponding output  word , / (s ; f ;  s ')  is equal 
to the entry  gf(  (s, f s ' ) ,  (sf, s ' )  ) of ttf = gxlgx2 . . .  gx~ .  

Pl~ooF. For  any f e F x  and x e X we have 

s ' , . ) ,  ~tfx( (s¢ , ( s j  , s j , )  ) 

s ' . ) ,  ' - ( s j  ' ) ) 1  - , s i ,  

where the summation is over all the pairs (sk, s~,) e (S, S ' ) .  The only 
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nonzero  t e r m  in the  sum is the  one cor responding  to  the  pa i r  def ined b y  
I 

the  equa t ions  sk = s, f  and  s~, = xs}, ; we have  then  s5 = skcc and  si '  = 

fd, ' ' . , t h a t  is, .si = s~:fx and  s~, = f z s i '  • T h u s  the  e n t r y  unde r  cons idera t ion  
t 

is equa l  to v ( s ; ;  f ;  xs},)n(s~f; z; s},), t h a t  is, to  ~(si;  f z ;  s;.,) and  the  
resul t  fol lows b y  induc t ion .  

Example .  Le t  X = {a, b}; Y = {c, d}; S = is1, s2}; S '  = it1,  re}; 
sla = s2a = s2b = sl ; s l b =  s2 ;bh = bt2 = at2 = tl ;ah  = t2. ,~(s, ;x;  
t~= c c i f x  = a a n d i  = j ;  = d i f x  = a a n d i i j o r i f x  = b a n d l  = 
i #- j ;  = c if x --- b and  i = j = 2; = e r i n  all o the r  cases. 

Then ,  for ins tance ,  V(Sl ; bbab; h) = ccc accord ing  to  the  fol lowing 
se l f - exp lana to ry  scheme 

81 82 81 81 85 

b(e~) b(c) a(cc) b(e~) 
h tl t2 tl t ,  

Also we have  (i ° I) (i ° I) (i ° cc c 
cc 0 0 0 , ~b 0 0 0 , ~bbab 0 0 0 # a  = • = • = 

cc 0 c O 0 dd d d d ,  
0 0 O 0  O 0  

a n d  ~(s,  ; bbab; h) is equa l  to  ~bbab( (sl , h) ,  (s~ , h) ). 
As an  i m m e d i a t e  consequence  of the  def ini t ions  we der ive  the  follow- 

ing weak  fo rm of N e r o d e ' s  ultimate periodicity theorem (Nerode ,  1958). 
There exist finite integers m and n which are such that for any f ,  i f ,  i f '  e Fx  , 
(s, s') e ( S, S ' ) ,  p, r >= O, and r <= n one has ~(s; f'f2~+P~+~f" ; s ')  = 
g' g~ g" where g, g', g" e Fy  do not depend on p. 

PROOF. Since S and  S '  are  finite we can f ind in tegers  m and  n such 
t h a t  for  all (s, s') e (S ,  S ' ) , f  e Fx  , p >= O, 0 <- r <- n, we have :  sf m+~n+~ 
- -  ~ m + r  ~ m 4 - p n - b r  t 
- s j  , .~ s = f~+~s'. T h u s  

v(s ;  f , fe~+..+,f, ,  ; s') 
~ t  [,m + r  . 

= j ;y  j s ) v ~ s j j  ; f f f " ;  s ' ) .  

Because  of our  choice of m and  n the  second fac to r  is equal  to  p t imes  the  
word  g = n(sf'f'~+~; i f ;  fmf%,)  and  the  resul t  is p roved .  

I I I .  F I N I T E  CLOSURE P R O P E R T I E S  

A. To  a n y  two t r a n s d u c t i o n s  v: ( S ;  Fx  ; S ' )  -+ F r  a n d  ~: ( T ;  F r  ; T ' )  
--+ F z  t he re  co r responds  a t r a n s d u c t i o n  7r: (R;  Fx ; R ' )  --+ Fz  which  is 
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such tha t  for n n y f  E F x ,  (8, s') s (S, S ' ) ,  (t, t ') ~ (T, T ' )  one has identi- 
cally ~(t; v(s; f ;  s') ; t') = ~-(r; f ;  r r) where the states r e R and r '  ~ R '  
are functions of s and t and of 8 p and t p respectively. 

PnooF. We define an equivalence relation z on F x  by the following 
rules: zf  = zf'  (to be read: the a-class of f is the same as that  of f ' )  if 
and only if (1) for all s ~ S, sf  = sf'; (2) for all (8, 8') ~ (S, S')  and 
t s T ,  t ~ ( s ; f ;  s') = t v ( s ; f ' ;  sP). 

The relation z has at  most I S ]  I~t X IT1 jrlxl~LxIS'l ( ] S ] t h e n u m -  
ber of states in S) distinct classes. Furthermore it is right regular (i.e., 
z f  = z f '  implies aft" = z f f f"  for all f " )  since when zf = zf '  we have 
(1) sfff ~ = sff f" for any s e S (because g = sff); (2) for any (8, 8') 
(S, S ')  and t e T, 

t • (s; f f f ' ;  s') = t V ( s ; f ; f " s ' ) V ( g ; f " ;  s') 

f ; f  s ) , ( s f ,  s p) -- tn(s;  8') =- t~l(s; ' ~' ' " i f ;  f ' f " ;  • 

We now define R as the set of all triplets r -- (s, t, zf) and the mapping 
(R,  X)  --> R by  (s, t, z f ) x  = (8, t, ~ fx) .  In a perfectly symmetric manner 
we construct a left regular equivalence z', a set of states R' = {rq = 
{(8', t', z'f)}, and a mapping ( X ,  R ' )  -~  R ' .  Finally, we put  

w((s, t, ~f); x; (s'; t '; # f ' ) )  

= ~(tv(s; f ;  xf ' s ' )  ; , ( s f ;  x; f f s ' )  ; v (s fx ;  i f;  s ' ) t ' ) .  

This definition is free from ambiguity because the three expressions 
n( ; ; ) entering in it depend only upon the classes zf  and # f ' ;  this 
is a direct consequence of the definition of o- and z'  and it  concludes the 
proof since it is sufficient now to check by  developing the expressions 
that  if f = f f x f "  we have ~(t; v(s; f ;  s ' ) ;  t') = ~(r;  f ;  r ')  where r = 
(s, t, aex) and r r = (s r, t', z ' ex ) .  Before verifying the second closure 
properties we recall the following facts: 

1. Let  R z  denote the family of the subsets F ~ ~ Fz tha t  are regular 
events in the sense of Kleene (1956). The specification of an F ~ c R z  is 
equivalent (ef. Shepherdson, 1959) to that  of an homomorphism "y: 
Fz --~ P where P is a finite monoid together with the subset P '  of P asso- 
ciated to F '  by  the relations ~F'  = P ' ;  F '  = ~/-~pt ( = {f: ~f e p q  ). The 
equivalence on Fz  defined by ~,f = 7ff is at the same time left and right 
regular and it has only finitely many classes. 

2. According to D. Huffman's theory (1959) the transformation ~ can 
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be said to be i n fo rma t ion  gossless on the subset F '  of F x  if the equations 
v ( s ; f ;  s') = v ( s ; f ' ;  s ');  s f  = s f ' ; f s '  = f ' s ' ; f , f ' e F '  imply f = f ' .  

B. If n is information lossless on the subset Y ' c  R x  there exists a 
transduction ~( = n -1) which is such that  for a n y f e  F',  (s, s') e (S, S') 
we have ~(t; n(s; f ;  s') ; t') = f where the states t e T and t' e T' are 
functions of s and fs '  and of s' and s f  respectively. 

PROOF. Let  H be the set of all the words n(s; x; s') with x e X and 
K ( K ' )  the set of all proper  right (left) factors of the words of H (i.e., 
k e K if and only if kf e H for somef  ~ er) .  If z is a right regular equiva- 
lence oil F x  with I z ] classes, we say that  g e Fy admits a factorization 

f ! 

of type (zf, s ; ,  s~, , s~, si' , k) (where zf is any z-class; sl ,  sj e S; st' , 
s~., e S' ;  1: e K)  if there exist f '  e F x  and g' e Fy such that  the following 
relations are satisfied: 

! ! • ! 

~f  = z f ' ;  g = g'lc; g' = V(s~ ; f  ;%,);  s~f' = sj , f 's ' i '  = s j , .  

Clearly, if [ h i is the maximal length of an element of H, there exist at  
most t z l X (i S I X I S' I) 2 X I h [ different types of factorization. Thus 
if we write },g~ -- Xg~ when the elements g~, g2 c F r  admit  exactly the 
same set of types of factorization, the relation k has only a finite number 
of classes when the same is true of z and, by  construction, X is right regu- 
lar. In perfectly symmetric manner we associate a left regular equiva- 
lence X' on Fy to any left regular z' on F x .  

We now come to the construction of ~. As indicated above we con- 
struct the relations X and X' on F r  associated with the (left and right 
regular) relation ~/on Fx used for the definition of F',  and we define T as 
the set of all triples (s, s', Xg) with (s, s ' )  c (S ,  S ' )  and Xg a h-class; 
the mapping (T, Y) --~ T is given by  (s, s', Xg)y  = (s, s', Xgy) .  The set 
of states T' and the mapping (Y, T')  --~ T' are defined in symmetric 
manner with the help of the relation >J. 

For  each triple (s, s', x c X)  such that  v(s; x; s ' )  ~ ey we select arbi- 
trarily one factorization ]cy]c' of  ~(s; x; s') and we define $ by the follow- 
ing rules: ~((sl ,  s4', Xg); y; (s4, sl', X'g')) = x if there exists ~, ~' v F r  ; 
k~ ~ K ;  k '  ~ I f ' ;  f ,  f '  v F:~ ; s2, s~ ~ S;  s2', s3' c S '  satisfyir~g the following 
relations: 

, " ! , = ~(s~ ; f ;  sJ )"  s~f = s2 , fs~ = sJ;  s~x = s~,  
• I ! ~ .  
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kyl~' is the selected factorization of n(s2 ; x; Sa'); 

f x f '  belongs to F'. 

In all other cases the value of ~( ) above is er. 
The possibility of solving all except the last of the above equations for 

given y ~ Y, Xg, X'g', s l ,  s~, sl', s~' is a direct consequence of the definition 
of X and )t'. Taken together these equations imply that  there exists at 
least one triple f ,  x, f '  e [ix for which n(s, ; fx f ' ;  Sl') = (&yk'O' = g" 
with a selected factorization; sl fzf '  = s4 and f z f % '  = s4' ; f x f '  e F'. 

Thus, if the word g" = ~kyk'~' has been obtained from a word f "  in 
F '  by  a transduetion with the indicated initial and final states, it follows 
from Section III ,  A that  ~(t; g"; t') will be identical to f "  and, because 
of the hypothesis tha t  n is information lossless on F',  this proves a pos- 
teriori that  the above equations have a unique solution. 

REMARK. 

Because of the assumption that  S'  is finite it is always possible to 
realize in a single pass any arbitrary transduction if one is allowed to use 
a bounded number of output  tapes and if one has the possibility of 
erasing on them. 

Since the general case is rather  cumbersome it may  be sufficient to 
restrict ourselves to the detailed examination of the procedure needed 
for the deciphering of an encoding. Thus, let us assume now that  S and 
S' are reduced to a single element and that  consequently n is an iso- 
morphism Fx -+ F t .  The sets H and K have the same meaning as in 
Section III ,  B and P = nFx is the submonoid of F r  generated by H. 

To any g c Fy  we associate the set kg of those k e K which are such 
that  g = pk for some p ~ P;  kg contains at most ] h I elements and, 
consequently, the equivalence relation on F F defined by  ),g -- kg' has 
only finitely many classes; since, furthermore, it is right regular we can 
construct a conventional automaton whose states are identified with the 
various possible kg's and whose transitions are given by  (kg)y = k(gy).  
We still observe that  for any g e F r  either kg is empty (and in this case 
g cannot be a left factor of a word in P )  or, if k e ~g there exists a uniquely 
determined element f = ~p s Fx such that  g = (nf)£ = pk. 

Let  us now consider a word g" ~ P and any factorization g" = gyg' of 
it; let us assume also that  we have been able to record on I ~g I tapes the 
words ~p~ corresponding to the ] kg ] e lements/~ s kg. The automaton is 
in state },g and upon reading the letter y it will go to the state k (gy ) .  
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For each lee e Xg four cases are possible and we list below the printing 
instructions to be followed in each of them: 

1. k iy  does not  belong to H nor to K (i.e., key cannot be a left factor 
of a word of P )  ; then the machine erases the corresponding word Spe. 

2. k~y belongs to H and not to K;  the machine writes on the corre- 
sponding tape the letter x e X such that  ~x = key ; thus, on this tape 
we now have (@e)x .  

3. k~y belongs to K and not to H;  the machine does nothing on the 
corresponding tape. 

4. key belongs to H and to K;  the machine does as in 2 above but  also 
it takes a new tape and it reproduces on it the word (pc • This new tape 
corresponds to the element kiy e X(gy) and the old tape corresponds to 
the element e r e  X(gy). 

At the end of the reading of g,f, Xg,~ contains er because, by hypothesis, 
g" e P and the corresponding tape carries the word ~g" such that  n((g~') 
= g". I t  is clear that,  at any given stage of the procedure ] h t tapes, at 
most, are needed since we can use the tapes made free by the operation 1 
above. 

The proof of the validity of the algorithm is left to the reader and in 
Tables I and II  we give a complete account of the construction of the 
state diagram and of the deciphering of the word a4ba4b2a 2 for the follow- 
ing example: 

X = {x~}(1 < i -< 5);  Y = {a, b}; 

~zl = aa; ~x2 = baa; nx3 = bb; nx4 = ha; ~x5 = bb; 

K = { e r ,  a, b, ha, bb}. 

(This is an encoding because it  is a left prefix code in the three words: 
u = a; v = ba; w = bb) (Schfitzenberger, 1956). We find }(a4ba4b2a 4) = 

2 
X l  X 2 X l X , 3 X l  • 

IV. RELATIONSHIP WITH REGULAR EVENTS 

As we shall deal here with fixed initial states, we write for any subset 
F ' ( G ' )  of F x ( F y ) :  

vF '  = { g e F r  : g = n(s~ ; f ;  s ~ ' ) , f e F ' } ;  

~-IG' = {f  e F x  : V(sl ; f ;  sl') ~ G'}. 

A. The subset G' of v F x  belongs to R r  if and only if ~-~G ~ belongs 
to  R x  • 
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TABLE I 

K ey a b be bb Corresponding states and 
transitions 

er -P tl 
a -b t2 = tia 
b -~ t3 = tlb 
aa -t- tl = t2a 
ab to = t~b = toa = tab 
ba Jr t4 = Aa 
bb Jr + t5 = t~b 
baa -P + t6 = Aa 
bab -~ t3 = t4b 
bba -p -~ t~ = t~a 
bbb ~ t3 = t.~b 
baaa -t- -~ t~ = t~a 
baab ~ t3 = tab 

PROOF. By definition there corresponds to every F '  e R x  a right regular 
equivalence ~ with finitely many classes such that  F '  is a union of v- 
classes; in the proof of Section l I I ,  B we have seen how to construct X 
associated to 7 and such that  ~F' is a union of h-classes; since X is right 
regular and has only finitely many classes, this proves the forward im- 
plication. In particular, since F x  belongs to R x ,  this shows that  the total 
output  , F x  is a regular event. 

Now let G' be a subset of n F x  tha t  belongs to R r  ; G' is defined by a 
certain right regular relation X with finitely many classes and we con- 
struct the relation ~ on F x  by the following conditions: 

cf = ¢f' if and only if (1) s l f  = aid'; (2) for any s' e S', X~(si ; f ;  s') = 
Xv(sl ; f ' ;  s ').  ~ is right regular because, if ~f = Cf', we have s l f f "  = 

s i f ' f "  and X~(si ; f f" ;  s ' )  - (Xv(si ; f ;  f " s ' ) ) v ( s l f ;  f " ;  s ' )  - -  

(Xv(si ; f ' ;  f " s ' ) ) ~ ( s i f ' ;  f " ;  s ' )  = Xv(si ; f ' f f ;  s ' )  where the second and 
third equality result from the right regularity of X and where the second 
equality is a consequence of Cf = e f t .  Also, ~ has at most I S I X I X I I,s'l 
classes and v -~G '  is a union of ~-elasses. This concludes the proof. 

B. Provided that  X contains two letters or more, there corresponds to 
each G" s R r  a right transduction ,7 such that G" = vFx .  

PRoof.  Because of our hypothesis on X it is sufficient to prove the 
same statement for an arbitrarily large (finite) input alphabet and then 
to perform a preliminary encoding. 
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The result is trivial if G" is finite and, by Kleene's theory, it is suffi- 
cient to show that  if G and G' are the total outputs respectively of the 
right transductions v and v' (with the disjoint input alphabets X and X ' )  
we can construct right transductions v~, v2, ~a (with input alphabet 
X u X ' )  such that  their total output  is respectively G u G', GG', and G* 
in Kleene's notation. The construction given below is the simplest to 
describe. 

Let S and S' be the set of states of the right transducers v and ~'; we 
can assume that  S and S'  are disjoint and we define S" as the union of 
S, S '  and of two new states sl* and s0* for which we have: 

TABLE lI 

Tapes 
Input word States Instructions 

T1 "T2 T3 

a 

12 I 

t~ T 

t2 
a 

tl  
b 

t4 
(t 

t~ 
a 

t6 

t~ 
b 

t5 
a 

t6 
a 

t~ 

+ 
I 
I 

xl  - + T I  

I 
I 

x, --) T1 
I 
] 
I T1 --+ T2;  x4 -'+ T1 
I 

Jr x2 --* T 2  

I 
I x l  --* T1 

xl -+ T2 

6--+ T1 

T2 -+ T3; x.~ -+ T2 

xa --+ T3 

x~ ---~ T2 
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1. s~*x" = six" or = sl 'x" and  7~(s1"; x" )  = 7(sl  ; x" )  or = 7'(81"; x" )  
accord ing  to  x" v X or z X ' .  

2. so*x" = so* for  all  x" and  7~(stt; x " )  = ey for  all s", x"  such t h a t  
8Y X tt ~ 805. 

3. s"x"  and  7~(s"; x " )  are  the  same as in the  or iginal  t r ansduce r s  
w h e n s "  s S a n d x " v X o r w h e n s ' s S  t a n d x  ' ~ c X  t. 

4. 71: s"x"  = So* when s" s S a n d  x" s X t or when s" ~ S and  x" c X.  

F o r  72: s"x"  = six" and  72(s"; x " )  = v2(s~*; S )  when s" s S '  and  
x" e X ~ and  s"x"  = so* when s" c S t and  x" c X .  F o r  73, we t ake  G = G' 
( a n d  S iden t i ca l  to  S ' )  and  we define s"x"  = s~* and  73(s"; x " )  = 
7~(s1"; x " )  when s '~ e S and  x ~ X '  or  when  s t' c S t and  x" c X .  

T h e  ver i f ica t ion  is ~eft to  the  reader .  

REC~IVnD Apr i l  3, 1960 
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