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Let H be a separable infinite-dimensional complex Hilbert space and let A�B ∈
B�H�, where B�H� is the algebra of operators on H into itself. Let δA�B� B�H� →
B�H� denote the generalized derivation δAB�X� = AX −XB. This note considers
the relationship between the commutant of an operator and the commutant of co-
prime powers of the operator. Let m�n be some co-prime natural numbers and let
�p denote the Schatten p-class, 1 ≤ p <∞. We prove (i) If δAmBm �X� = 0 for some
X ∈ B�H� and if either of A and B∗ is injective, then a necessary and sufficient
condition for δAB�X� = 0 is that ArXBn−r −An−rXBr = 0 for (any) two consecutive
values of r� 1 ≤ r < n. (ii) If δAmBm �X� and δAnBn �X� ∈ �p for some X ∈ B�H�,
and if m = 2 or 3, then either δnAB�X� or δn+3

AB �X� ∈ �p; for general m and n, if
A and B∗ are normal or subnormal, then there exists a natural number t such that
δAB�X� ∈ �2tnp. (iii) If δAmBm �X� and δAnBn �X� ∈ �p for some X ∈ B�H�, and if
either A is semi-Fredholm with indA ≤ 0 or 1 −A∗A ∈ �p, then δAB�X� ∈ �p.
 2001 Academic Press

1. INTRODUCTION

Let H be a separable infinite-dimensional complex Hilbert space and
let B�H� denote the algebra of operators (= bounded linear transforma-
tions) on H. Let A�B ∈ B�H� and let δAB� B�H� → B�H� denote the
generalized derivation δAB�X� = AX −XB. Then X is in the commutant
of A and B if and only if δAB�X� = 0. Let m�n be (relatively) co-prime
natural numbers, denoted �m�n� = 1, with 1 < m < n, and suppose that
δAmBm�X� = 0 = δAnBn�X� for some X ∈ B�H�. Then δAtm+nBtm+n�X� = 0
for all t = 1� 2� � � � and either m+ n or 2m+ n is an odd natural number.
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Suppose, for definiteness, that m+ n is odd. Then

δm+n
AB �X� = δAB�δm+n−1

AB �X�� =
m+n∑
r=0

�−1�r
(
m+ n
r

)
Am+n−rXBr

= �Am+nX −XBm+n� −
�m+n−1�/2∑

r=1

(
m+ n
r

)

×
Am+n−rXBr −ArXBm+n−r��

and the simplest way for δm+n
AB �X� to be equal to 0 is that

Am+n−rXBr −ArXBm+n−r = 0

for all 1 ≤ r ≤ m+n−1
2 . Assuming now that δm+n

AB �X� = 0, and that A and B
are normal, it follows from [8, Lemma 1] that δAB�X� = 0, i.e., X is in the
commutant of A and B.
Relationships between the commutant of an operator A and the com-

mutant of the powers of the operator have been investigated by a num-
ber of authors, among them Al-Moajil [1], Embry [3], and Kittaneh [6].
Al-Moajil [1] has shown that if A is a normal operator such that δA2�X��=
A2X − XA2� = 0 = δA3�X� for some X ∈ B�H�, then δA�X� = 0. This
result was extended to subnormal operatorsA and B∗ for which δA2B2�X� =
0 = δA3B3�X� for some X ∈ B�H� by Kittaneh [6], who also considered
commutants modulo �p�= �p�H��, the Schatten p-class, of A2 and A3.
This note considers the relationship between the commutant (including
commutant modulo �p) of an operator and the commutant of co-prime
powers of the operator. Thus, let m�n be co-prime natural numbers. It
is proved that (i) If δAmBm�X� = 0 for some X ∈ B�H� and if either
of A and B∗ is injective, then a necessary and sufficient condition for
δAB�X� = 0 is that ArXBn−r − An−rXBr = 0 for (any) two consecutive
values of r� 1 ≤ r < n. (ii) If δAmBm�X� and δAnBn�X� ∈ �p for some
X ∈ B�H� and if m = 2 or 3, then either δnAB�X� or δn+3

AB �X� ∈ �p; for gen-
eral �m�n� = 1, if A and B∗ are normal or subnormal, then there exists a
natural number t such that δAB�X� ∈ �2tnp. We prove also that if δAmBm�X�
and δAnBn�X� ∈ �p for some X ∈ B�H�, and if either A is semi-Fredholm
with indA ≤ 0 or 1−A∗A ∈ �p, then δAB�X� ∈ �p.

In the following we shall denote the set of natural numbers by � . The
spectrum and the point spectrum of an operator A will be denoted by
σ�A� and σp�A�, respectively. Most of the other notation that we employ
in the following is standard and is usually explained at the first instance of
occurrence.
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2. RESULTS

We assume in the following that m�n are co-prime natural numbers with
1 < m < n. Although it will not always be required (as, for example, in
Theorem 1), we assume in the following that our Hilbert space H is sep-
arable. We shall denote the ideal of compact operators by � (= ��H�);
thus when we discuss the ideals �p it will be assumed that 1 ≤ p < ∞.
Recall that a Banach space operator T has dense range if and only if T ∗ is
injective, and that if T ∗ has dense range then T is injective [9, pp. 94–96].
Let A�B ∈ B�H� and suppose that δAmBm�X� = 0 = δAnBn�X� for some

X ∈ B�H�. Then δAtmBtm�X� = 0 for all t ∈ � . Also, since �m�n� = 1, there
exist integers p and q, with pq < 0, such that pm + qn = 1. Suppose for
definiteness that p < 0; then

δAnBn�X� = 0 �⇒ A1−mpX −XB1−mp

= δAB�X�B−mp = 0 = A−mpδAB�X��

and hence if either of A or B∗ is injective, then δAB�X� = 0. It is clear that
if δAB�X� = 0, then

ArXBn−r −An−rXBr = 0 (1)

for all 0 ≤ r ≤ n. The following theorem shows that if δAmBm�X� = 0 for
some X ∈ B�H�, then a sufficient condition for δAB�X� = 0 is that B has
dense range and (1) holds for (any) two consecutive values of r (1 ≤ r < n).

Theorem 1. Let A�B ∈ B�H� and suppose that either A or B∗ is injec-
tive. If δAmBm�X� = 0 for some X ∈ B�H�, then a necessary and sufficient
condition for δAB�X� = 0 is that (1) holds for some r = r0 and r = r0 + 1,
1 ≤ r0 < n.

Proof. Let us, for brevity’s sake, set δAmBm�X� = Tm and ArXBn−r −
An−rXBr = Sr . If T1 = δAB�X� = 0, then (upon letting n = pm+ s) Sr =
Tn = AsTpm +AsXBpm −XBpm+s = 0 for all 0 ≤ r ≤ n. Hence to prove
the theorem it will suffice to show that if hypothesis (1) is satisfied for (any)
two consecutive values of r, then Tn = 0. The hypothesis �m�n� = 1 implies
that m cannot divide both r and n− r for all 1 ≤ r < n. Also, since Tn = 0
if either m�r or m�n − r, we may assume that m � �r and m � �n − r. Then
r ≡ b1 �mod m� and n − r ≡ c1 �mod m� for some b1� c1 ∈ � such that
b1� c1 < m. Suppose now that B has dense range. (The proof for the case
in which A is injective is similar.) Then Tm = 0 implies that Sr = Sb1 = 0,
and so Ab1XBc1 = Ac1XBb1 . We have two possibilities: either b1 = c1 (i.e.,
r ≡ n− r �mod m) or b1 �= c1. We consider these cases separately.
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Case b1 = c1. For a fixed r�= r0�, 1 ≤ r < n, the hypotheses imply that
Sr+1 = 0 also. If either m�r + 1 or m�n − r − 1, then Tn = 0 and we are
done. If, on the other hand, m � �r + 1 and m � �n− r − 1, then either r + 1 ≡
n − r − 1 �mod m� or r + 1 �≡ n − r − 1 �mod m�. Since r + 1 ≡ n −
r − 1 �mod m� implies that 2�r + 1� − 2r = 2 ≡ 0 �mod m�, m = 2 and
2��n − 2r�. But then 2�n and �m�n� = 2. This contradiction implies that
r + 1 �≡ n − r − 1 �mod m�. Arguing as above, it then follows that there
exist b2� c2 ∈ � , b2 �= c2, such that Ab2XBc2 = Ac2XBb2 . This reduces the
proof to the case b1 �= c1, which we consider next.

Case b1 �= c1. We may assume that b1 > c1. Let b1 − c1 = t and let
m = c1 + d for some d ∈ � . Then

Ab1XBc1 =Ac1XBb1 �⇒Ab1+dXBc1 = AtAmXBc1 =AtXBm+c1

= Ac1+dXBb1 =XBb1+m=XBtBm+c1

�⇒AtX=XBt

(since B has dense range). Now if �m� t� = 1, then Tt = 0 = Tm implies
that T1 = δAB�X�, and hence also Tn = 0. If, on the other hand, �m� t� �= 1,
then let �m� t� = k. There exist integers p and q, with pq < 0, such that
mp+ qt = k. Assume, for definiteness, that p < 0; then

AtqX = XBtq �⇒ XBk−mp = Ak−mpX = AkXB−mp �⇒ AkX = XBk�
Thus, upon letting t = kt1 and m = km1, k ∈ � , and �m1� t1� = 1, we have
that

XBkt1 = XBt = AtX = Akt1X = At1XB�k−1�t1 �⇒ At1X = XBt1
and

XBkm1 = XBm = AmX = Akm1X = Am1XB�k−1�m1 �⇒ Am1X = XBm1 �

Consequently, T1 and, hence, Tn equal 0.

Remarks. (1). Theorem 1 fails in the absence of the hypothesis that
�m�n� = 1. To see this, let 
en�∞−∞ be an orthonormal basis for H. Define
A ∈ B�H� by Ae2n = 1

2e2n+1 and Ae2n+1 = 2e2n+2. Then A2 is unitary. Now
choose X ∈ B�H� to be the bilateral shift Xen = en+1; then ArXA4−r =
A4−rXAr for all 0 ≤ r ≤ 4 but δA�X� = AX −XA �= 0.

(2). Let σjp�A� denote the joint point spectrum of A (i.e., σjp�A� =

λ ∈ σp�A� � �A − λ�x = 0 ⇐⇒ �A − λ�∗x = 0�. A number of classes of
operators, for example, those consisting of normal, subnormal, hyponormal,
and dominant operators (see [8] for the definition of a dominant operator),
have the property that σp�A� = σjp�A� for operators A in these classes. If
0 �∈ σp�B∗� (or 0 �∈ σp�A�) for operators B∗ (resp., A) belonging to one
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of these classes, then B has dense range (resp., A is injective). If, on the
other hand, 0 ∈ σp�A� and 0 ∈ σp�B∗�, then A and B∗ have decompositions
A = 0⊕A1 and B∗ = 0⊕B∗

1 (where the operatorsA1 and B
∗
1 are injective).

Letting X have the corresponding matrix representation X = �Xij�2i� j=1, it
follows that if Tm = 0, then X = 0 ⊕X22 and δAm1 Bm1 �X22� = 0. Similarly,
if Sr = 0 for two consecutive values of r (1 ≤ r < n), then Ar1X22B

n−r
1 −

An−r1 X22B
r
1 = 0 for two consecutive values of r. Consequently, δA1B1

�X22�,
and so also T1, equal 0. We note here that the hypothesis that A and
B∗ belong to a class for which σp��� = σjp��� cannot be replaced by the
hypothesis that A and B belong to the class (see [1, 3.2 Remark(a)] for a
counterexample).

(3). The hypothesis that Sr = 0 for two consecutive values of r (or
even all r, 1 ≤ r < n) is not sufficient to guarantee δAB�X� = 0. To see
this, let A be a pure quasi-normal operator, and let B = A and X = A∗.
Then, since AA∗A = A∗A2, ArA∗An−r = An−rA∗Ar for all integers n ≥ 3
and 1 ≤ r < n, but δAm�A∗� = AmA∗ −A∗Am �= 0 for any m ∈ � .

Commutators Modulo �p.

Let π� B�H� → B�H�\� denote the Calkin map. If δAmBm�X� and
δAnBn�X� ∈ � for all X ∈ B�H�, then δAmBm�X� = 0 = δAnBn�X� (see
[5, Example 1]), and it follows from Theorem 1 that δAB�X� = 0 for
all X ∈ B�H� whenever either of A or B∗ is injective. More generally,
if δAmBm�X� and δAnBn�X� ∈ � for some X ∈ B�H�, and if either π�A� or
π�B∗� is injective, then π�δAB�X�� = 0, and so δAB�X� ∈ �. The situation
is not as straightforward in the case in which δAmBm�X� and δAnBn�X� ∈ �p,
even in the case in which m = 2 and n = 3 (see [6]). Here δAmBm�X� and
δAnBn�X� may belong to �p without δAB�X� belonging to �p, as the fol-
lowing example shows. Let 
ej�∞j=1 be an orthonormal basis for H. Define
the operators A, B, and X by

Aej = 2j−2/�3p�ej� Bej = �j + 1�−2/�3p�ej� and Xej = ej+1� (2)

Then δA2B2�X� and δA3B3 ∈ �p, but δAB�X� �∈ �p.
Let δAmBm�X� and δAnBn�X� ∈ �p for some X ∈ B�H�. We prove in the

following that (i) if A and B∗ are normal or subnormal operators, then
there exists a t ∈ � such that δAB�X� ∈ �2tnp, and (ii) if either 1−A∗A or
1− B∗B ∈ �p, then δAB�X� ∈ �p. (This generalizes Theorems 3 and 5 of
[6] to the case �m�n� = 1.) But before that we consider the case in which
m = 2 or 3.

Theorem 2. Let m = 2 or 3. If δAmBm�X� and δAnBn�X� ∈ �p for some
X ∈ B�H�, then either δnAB�X� or δn+3

AB �X� ∈ �p.
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Here δnAB�X� denotes δAB�δn−1
AB �X��. The following lemmas will be

required in the proof of the theorem. (Retaining the notation of the proof
of Theorem 1, we henceforth let Tm = δAmBm�X� and Sr = ArXBn−r −
An−rXBr .)

Lemma 3. If Tm ∈ �p for some X ∈ B�H�, then Tsm ∈ �p for all s ∈ � .

Proof. We have

Tsm = AsmX −XBsm = A�s−1�mTm +A�s−1�mXBm −XBsm

= A�s−1�mTm +A�s−2�mTmB
m

+A�s−2�mXB2m −XBsm

· · ·
= A�s−1�mTm +A�s−2�mTmB

m

+ · · · +AmTmB�s−2�m + TmB�s−1�m

∈ �p�

Lemma 4. Letm = 2 or 3 and suppose that Tm ∈ �p for some X ∈ B�H�.
(i) If Tn ∈ �p, then Sr ∈ �p for all 0 ≤ r ≤ n.
(ii) If Sr ∈ �p for some r = r0 and r = r0 + 1, 1 ≤ r0 < n, then

Tn ∈ �p.

Proof. (i) The hypothesis m = 2 or 3 implies that either n ≡
1 �mod m� or n ≡ 2 �mod m� (in which case m is necessarily equal
to 3). We consider these cases separately.

Case n ≡ 1 �mod m�. In this case either r ≡ 0 �mod m� and n − r ≡
1 �mod m� or r ≡ 1 �mod m� and n − r ≡ 0 �mod m� or r ≡ 2 �mod m�
and n− r ≡ 2 �mod m�. Notice that

Sr = TrBn−r − Tn +An−rTr
= −ArTn−r + Tn − Tn−rBr �

hence if either r ≡ 0 �mod m� or n − r ≡ 0 �mod m�, then Sr ∈ �p (by
Lemma 3). If r ≡ 2 �mod m�, then (m = 3 and) Sr = −ArTn−r−2B

2 +
An−rTr−2B

2 ∈ �p (since n− r ≡ 2 �mod m�).
Case n ≡ 2 �mod m�. Once again either r ≡ 0 �mod m� and n − r ≡

2 �mod m� or r ≡ 1 �mod m� and n − r ≡ 1 �mod m� or r ≡ 2 �mod m�
and n− r ≡ 0 �mod m�. The argument above shows that Sr ∈ �p if either
r ≡ 0 �mod m� or n− r ≡ 0 �mod m�. Let r ≡ 1 �mod m�; then n− r − 1 ≡
0 �mod m� and

Sr = ArTn−r−1B +ATn−2B +ATn−r−1B
r ∈ �p�
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(ii) The proof here is similar to that of part (i), except for the case
in which n ≡ 1 �mod m�, r ≡ 2 �mod m� and n − r ≡ 2 �mod m�, where
we require the hypothesis that Sr0+1 ∈ �p (along with the hypothesis that
Sr0 ∈ �p). Recall that m = 3 in this case, and so r0 ≡ 2 �mod m� implies
that r0 + 1 ≡ 0 �mod m� and n− r0 − 1 ≡ 1 �mod m�. Applying Lemma 3
to

Tn = An−r0−1Tr0+1 − Sr0+1 + Tr0+1B
n−r0−1�

Tn ∈ �p follows.

Proof of Theorem 2. Assume initially that n = 2t + 1 for some t ∈ � .
Then

δnAB�X� =
n∑
r=0

�−1�r
(
n
r

)
An−rXBr

= Tn −
t∑
r=1

(
n
r

)
Sn−r�

where each Sn−r ∈ �p (by Lemma 4). Hence δnAB�X� ∈ �p in this case.
Now if n is even, then (m = 3 and) n + m is odd with �m�n + m� = 1.
Since

δn+mAB �X� = Tn+m −
�n+m−1�/2∑

r=1

(
n+m
r

)

An+m−rXBr −ArXBn+m−r��

and since

An+m−rXBr −ArXBn+m−r = AmSn−r +ArTmBn−r ∈ �p�

δn+mAB �X� ∈ �p. This completes the proof.

Remark 4. For general co-prime m�n ∈ � , Tm and Tn ∈ �p implies
that Tm+n ∈ �p. Let n0 = n if n is odd and n0 = m+ n if n is even. Then
�m�n0� = 1 and

π�δn0AB�X� − Tn0� = π
( t∑
r=1

�−1�
(
n0
r

)

An0−rXBr −ArXBn0−r�

)
= 0�

where t = �n0/2� denotes the largest integer less than n0/2. This implies
the existence of a compact operator K such that

δ
n0
AB�X� +K ∈ �p�

Assume now that A and B∗ are normal (or subnormal) operators.
Applying [8, Lemma 1] (resp., [8, Corollary 1]), it then follows that
π�δAB�X���= π�δA∗B∗�X�� = 0. In particular, δAB�X� is a compact opera-
tor. Does δAB�X� ∈ �p? The answer to this question is negative, as follows
from a consideration of the operators A, B, and X of (2).
We prove next the first of our promised results.
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Theorem 5. If A�B∗ are normal or subnormal operators, and if Tm and
Tn ∈ �p for some X ∈ B�H�, then there exists a t ∈ � such that δAB�X� ∈
�2tnp.

We note here that the choice of t depends upon the number s such that
n ≡ s �mod m�. If s = 1, then t = 1 and δAB�X� ∈ �2np. The proof of the
theorem (is an extension of the argument used by Kittaneh to prove [6,
Theorem 3] and) depends on the following result of Weiss [10, p. 114].

Lemma 6. If N and X ∈ B�H�, N is normal, and � is any two-sided
ideal of B�H�, then NX ∈ � (XN ∈ � ) implies N∗X ∈ � (resp., XN∗ ∈ � ).

Proof of Theorem 5. If A and B∗ are subnormal, then let Ã and B̃∗

denote their minimal normal extensions on � ⊃ H, say. Let X̃ = X ⊕ 0
on H ⊕ �� �H�. Then δÃmB̃m�X̃� and δÃnB̃n�X̃� ∈ �p���. Consequently it
will suffice to consider the case of normal A and B.
Let n ≡ s �mod m�. Then there exists a t ∈ � such that t < m� st ≡

1 �mod m� and �m� tn� = 1. By Lemma 4, Ttn ∈ �p and (since tn ≡
1 �mod m�) Ttn−1 ∈ �p. Hence

Atn−1T1 = Ttn − Ttn−1B ∈ �p

and

T1B
tn−1 = Ttn −ATtn−1 ∈ �p�

The operator A being normal, Lemma 6 applied to AAtn−2T1 ∈ �p implies
that A∗Atn−2T1 ∈ �p. This implies that T ∗

1A
∗tn−2Atn−2T1 ∈ �p, and hence

that Atn−2T1 ∈ �2p. Repeating this argument another tn− 3 times, it now
follows that AT1 ∈ �2tn−2p. A similar argument applied to T1Btn−1 ∈ �p
implies that TB ∈ �2tn−2p. Consider now

T1T
∗
1 T1 = T1�X∗A∗ − B∗X∗�T1 = T1X∗�A∗T1� − �T1B∗�X∗T1�

Since AT1 and T1B ∈ �2tn−2p, A∗T1 and T1B∗ ∈ �2tn−2p. Hence �T ∗
1 T1�2 ∈

�2tn−2p, and so T ∗
1 T1 ∈ �2tn−1p. This implies that T1 ∈ �2tnp, and the proof is

complete.

Remark 5. If m = 2 in Theorem 5, then n ≡ 1 �mod m�, and it follows
that δAB�X� ∈ �2np; if m = 3, then δAB�X� ∈ �2np in the case in which
n ≡ 1 �mod m� and δAB�X� ∈ �22np in the case in which n ≡ 2 �mod m�.
The values 2np (or 22np) are not the best possible; this follows from the
example of operators A, B, and X defined in (2).
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As seen in the proof of Theorem 5, if Tm and Tn ∈ �p for some X ∈
B�H�, then there exists a t ∈ � such that Atn−1T1 and T1Btn−1 ∈ �p. This
implies that if either A is left-invertible or B is right-invertible, then T1 ∈
�p. Recall that the operator A is said to be left-Fredholm (right-Fredholm)
if A is left-invertible (resp., right-invertible) in the Calkin algebra B�H�\�.
Let A be a semi-Fredholm operator (i.e., A is either left- or right-Fredhom)
with Fredholm index, indA�≤ 0. Then there exists a finite rank operator
F such that A + F is injective with ind �A + F� = indA (see [2; p. 366,
Proposition 3.21]). Set A+ F = C; then C is bounded below and hence is
left-invertible. Suppose further that Tm and Tn ∈ �p for some operator X.
Then δCmBm�X� and δCnBn�X� ∈ �p, and hence there exists a t ∈ � such
that Ctn−1δCB�X� ∈ �p. The operator C being left-invertible, δCB�X� ∈ �p.
Since T1 = δCB�X� − FX, we conclude that T1 ∈ �p.

Corollary 7. If Tm and Tn ∈ �p for some X ∈ B�H�, and A (or B) is
semi-Fredholm with indA ≤ 0 (resp., indB ≥ 0), then T1 ∈ �p.

Proof. B∗ is semi-Fredholm with indB∗ ≤ 0. Since δAB�X�Btn−1 ∈ �p,
the proof follows as above.

Remark 6. If indA = 0 in Corollary 7, then the operator C is invertible.
Corollary 7 is proved in [6, Theorem 6] for the case in which A = B, p = 2,
m = 2, and n = 3.

Let A ∈ B�H� be such that 1 −A∗A ∈ �p. Then π�A� is an isometry
V , and there exists an operator K ∈ �p such that A = V + K (see [7, p.
70]; see also [4, Theorem (6.2)]). Here we may take the isometry V to be
a unitary in the case where σ�A� does not contain the open unit disc.

Theorem 8. Let A�B ∈ B�H� be such that either 1−A∗A or 1−B∗B ∈
�p. If Tm and Tn ∈ �p for some X ∈ B�H�, then T1 ∈ �p.

Proof. We consider the case in which 1−A∗A ∈ �p; the other case is
similarly dealt with. Letting A = V +K, where V is an isometry and K ∈
�p, it follows from the hypotheses that both δV mBm and δV nBn ∈ �p. Arguing
as in the proof of Theorem 5, it follows that there exists a t ∈ � such
that V tn−1δVB�X� ∈ �p. Since δVB�X� = V ∗tn−1V tn−1δVB�X�, δVB�X� ∈
�p. Hence, since δAB�X� = �V + K�X − XB = �VX − XB� + KX and
KX ∈ �p, T1 = δAB�X� ∈ �p.

The Elementary Operator X → AXB −X
Given A and B ∈ B�H�, the elementary operator $AB� B�H� → B�H� is

defined by $AB�X� = AXB −X. We close this note with a remark about
the analogues of Theorems 1 and 5 for the operator $AB�X�. It turns out
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that these analogues are trivial, and the results correspondingly uninter-
esting. It is easily seen that if $AmBm�X� = 0 for some X ∈ B�H�, then
$AsmBsm�X� = 0 for all s ∈ � . Also, if $AmBm�X� = 0 = $AnBn�X� for
some X ∈ B�H�, then $AB�X� = 0 and An−rXBn−r −ArXBr = 0 for all
0 ≤ r ≤ n (without any additional hypotheses on A and B). Conversely, if
$AmBm�X� = 0 for some X ∈ B�H� and if An−rXBn−r −ArXBr = 0 holds
for (any) two consecutive values of r, 1 ≤ r < n, then $AB�X� = 0 (once
again, no additional hypotheses on A and B). This is seen as follows.
Choose an r, 1 ≤ r < n, and suppose that An−rXBn−r −ArXBr = 0 =

An−r−1XBn−r−1 − Ar+1XBr+1 = 0. Then Ar+2XBr+2 = ArXBr . Let r ≡
s �mod m�; then there exists a t ∈ � such that tr�≡ ts� ≡ 1 �mod m�,
Atr+2XBtr+2 = AtrXBtr , and so A3XB3 = AXB. Now if m ≡ 0 �mod 3�
or m ≡ 2 �mod 3�, then X = AmXBm = AXB. If, on the other hand,
m ≡ 1 �mod 3�, then X = A�Am−1XBm−1�B = A2XB2. This implies that
if m is odd, then X = A�Am−1XBm−1�B = AXB, and we are left with the
case m is even to consider. Now if m is even, then �m�n� = 1 implies
�2� n� = 1, n ≡ 1 �mod 2�, and either r ≡ 0 �mod 2� and n − r ≡
1 �mod 2� or r ≡ 1 �mod 2� and n − r ≡ 0 �mod 2�. In either case,
A2XB2 = X and An−rXBn−r = ArXBr together imply that AXB−X = 0.

Suppose now that $AmBm�X� and $AnBn�X� ∈ �p for some X ∈ B�H�.
Then there exists a t ∈ � such that tn ≡ 1 �mod m� and both $Atn−1Btn−1�X�
and $AtnBtn ∈ �p (see the proof of Theorem 5). Hence

$AB�X� = $AtnBtn�X� −A�$Atn−1Btn−1�X��B ∈ �p

(with no additional hypotheses on A and B).

ACKNOWLEDGMENT

It is my pleasure to thank Dr. Jesse Deutsch for some very helpful conversations during
the preparation of this note.

REFERENCES

1. A. H. Al-Moajil, The commutants of relatively prime powers in Banach algebras, Proc.
Amer. Math. Soc. 57 (1976), 243–249.

2. J. B. Conway, “A Course in Functional Analysis,” Springer-Verlag, New York, 1985.
3. M. R. Embry, nth roots of operators, Proc. Amer. Math. Soc. 19 (1968), 63–68.
4. P. Fillmore, J. Stampfli, and J. P. Williams, On the essential numerical range, the essential

spectrum and a problem of Halmos, Acta Sci. Math. (Szeged) 33 (1972), 179–192.
5. C. K. Fong and A. R. Sourour, On the operator identity

∑
AkXBk = 0, Canad. J. Math.

31 (1979), 845–857.
6. F. Kittaneh, On the commutants modulo �p of A2 and A3, J. Austral. Math. Soc. Ser. A

41 (1986), 47–50.



120 b. p. duggal

7. R. Lange and S. Wang, “New Approaches in Spectral Decomposition,” Contemporary
Mathematics, Vol. 128, Am. Math. Soc., Providence, 1992.

8. M. Radjabalipour, An extension of Putnam–Fuglede theorem for hyponormal operators,
Math. Z. 194 (1987), 117–120.

9. W. Rudin, “Functional Analysis,” McGraw–Hill, New York, 1973.
10. G. Weiss, The Fuglede commutativity theorem modulo operator ideals, Proc. Amer. Math.

Soc. 83 (1981), 113–118.


	1.INTRODUCTION
	2.RESULTS
	ACKNOWLEDGMENT
	REFERENCES

