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In the Obernberg valley, the Eastern Alps, landforms recently interpreted as moraines are re-interpreted as rock
avalanche deposits. The catastrophic slope failure involved an initial rock volume of about 45 million m³, with a
runout of 7.2 km over a total vertical distance of 1330 m (fahrböschung 10°). 36Cl surface-exposure dating of
boulders of the avalanche mass indicates an event age of 8.6±0.6 ka. A 14C age of 7785±190 cal yr BP of a
palaeosoil within an alluvial fan downlapping the rock avalanche is consistent with the event age. The distal
2 km of the rock-avalanche deposit is characterized by a highly regular array of transverse ridges that were pre-
viously interpreted as terminal moraines of Late-Glacial. ‘Jigsaw-puzzle structure’ of gravel to boulder-size clasts
in the ridges and a matrix of cataclastic gouge indicate a rock avalanche origin. For a wide altitude range the
avalanche deposit is preserved, and the event age of mass-wasting precludes both runout over glacial ice and
subsequent glacial overprint. The regularly arrayed transverse ridges thus were formed during freezing of the
rock avalanche deposits.

© 2012 Elsevier B.V. Open access under CC BY-NC-ND license. 
1. Introduction

Rockslides and rock avalanches include gravity-driven, rapid slope
failures that are larger than about 105 to 106 m3 in volume (Evans et
al., 2006). Most rock avalanches post-dating the Last Glacial Maxi-
mum (LGM) in the Alps are readily recognized by their shape and
size as well as by an extremely poorly sorted composition ranging
from cataclastic gouge to megablocks (Pollet and Schneider, 2004;
Crosta et al., 2007). At a few locations, however, the interpretation
of landforms composed of very poorly sorted deposits remains con-
troversial. For instance, transverse and lateral ridges of rock ava-
lanches may appear similar to terminal and lateral moraines of
glaciers. Diamicts of fine-grained matrix hosting polished and striated
rock fragments may, either, represent basal till, or may form in rock
avalanches. In addition, rock avalanches can flow out over long dis-
tances, which may promote confusion with glacial sediments
(cf. Hewitt, 1999).

In the Obernberg valley, Austria, the character of a rock avalanche
deposit led to diverse interpretations for more than a hundred years.
In its distal part, which is about 2 km in length, the avalanche mass
shows a regular arrangement of ridges and hillocks that are roughly
rmann).

-NC-ND license. 
transversal to valley axis. Frech (1903), who first investigated these de-
posits, interpreted their entirety as a rock avalanche. Paschinger (1953)
agreed, but interpreted the ridges as a result of decay of underlying gla-
cial ice. Later, based solely on themorphology of ridges and hillocks, the
landforms were thought to be terminal moraines and kames (Magiera,
2000; Ebner et al., 2003; Wastl, 2007). Herein, we present a survey
based on field investigations, volume estimation using airborne laser
scanning image, a digital elevation model and electrical tomography,
and proxy event ages produced by radiocarbon and cosmic ray-
exposure dating. Our results indicate that the purported glacial land-
forms accumulated from a rock avalanche 8.6±0.6 ka ago. We discuss:
(a) a potential relation of rock avalanching with the 8.2-ka climatic
phase in the Alps, and (b) the significance of transversal ridges with re-
spect to rock avalanche kinematics.

2. The study area

The SW–NE trending Obernberg valley is a 9-km-long tributary of
the Wipp valley, about 25 km south of Innsbruck (Fig. 1). Over most
of its extent, the Wipp valley follows the Brenner extensional fault.
The hangingwall of the Brenner fault consists of the Oetztal–Stubai
basement complex with an overlying, parautochthonous Mesozoic
succession and two superposed thrust nappes (Blaser and Steinach
nappes); the footwall is comprised of variegated metamorphic suc-
cessions of a different tectonostratigraphic unit (Fig. 1) (Fügenschuh
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Fig. 1. The Obernberg rock avalanche and rockslides/rock avalanches (red areas) nearby, displayed on the tectonicmap of Schmid et al. (2004), with a digital elevationmodel in the back-
ground. Earthquakes in this region according to the NEIC dataset (http://earthquake.usgs.gov/earthquakes) are indicated withmulticolored andmulti-sized dots. Dot size corresponds to
earthquake magnitude, and dot color corresponds to the depth of the epicenters. GS: Gschnitz Stadial locus typicus.
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et al., 1997). Neogene fission-track cooling ages in the footwall adja-
cent to the Brenner fault, and fault plane solutions of historical earth-
quakes suggest that the Brenner fault may still be active at a low rate
(cf. Fügenschuh et al., 1997, 2000; Fügenschuh and Mancktelow,
2003; Reiter et al., 2003). The Obernberg rock avalanche detached
from an isoclinally folded, Mesozoic series of calcitic to dolomitic
marbles, calcitic phyllites and, subordinately, phyllites and quartzites
(Fig. 2) (Rockenschaub et al., 2003). The dip/dip azimuth of schistos-
ity in the isoclinally-folded series ranges from horizontal to
270–320°/10–20° (Reiser et al., 2010). The detachment scarp of the
rock avalanche is located about 500 m west, and in the footwall of,
an N–S striking normal fault (Portjoch fault) with a vertical throw
of at least a few hundred meters. East of the Portjoch fault, the right
flank of the See valley and that of the upper Obernberg valley consist
mainly of quartz phyllite and mica schist of the Steinach nappe
(Figs. 2 and 3). Whereas the mentioned Mesozoic series is deeply in-
cised by many gullies, and the toes of slopes are covered with talus
aprons, there is nearly no fluvial incision and talus formation within
the Steinach nappe. The quartz phyllites there tend to form numerous
slow moving, shallow to deep, mass movements (Fig. 3).

During the Last Glacial Maximum in the Eastern Alps (LGM,
ca. 24–19 ka), the upper margin of glacial ice sloped from about

http://earthquake.usgs.gov/earthquakes


Fig. 2. Geological map of the Obernberg region (modified after Rockenschaub et al., 2003). The area is subdivided into two tectonic and lithological units by the Portjoch normal
fault (PJ). Yellow circles: sampling sites for surface exposure dating. Green circle: sampling site for radiocarbon dating. Orange bars: geoelectric profiles P1 to P6 (see also Fig. 4).
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2700 m a.s.l. in the heads of tributary valleys (Hinterenns and See
valleys) to 2400 m a.s.l. in the central Obernberg valley; the sum-
mital Tribulaun range was a nunatak (Fig. 3) (Van Husen, 1987). In
the Obernberg valley and its tributaries, themostwidespread glacigenic
sediment includes basal till and reworked basal till of the LGM. Subse-
quent to the LGM, after an early deglacial phase of rapid ice decay
(Van Husen, 2004; Reitner, 2007), climatic amelioration and glacier
shrinking were punctuated by stadials, that is, intermittent re-
advances of valley glaciers (e.g. Kerschner, 1978; Van Husen, 1997;
Ivy-Ochs et al., 2006). Along the northern (left) flank of the Obernberg
valley, late-glacial ice-marginal deposits are preserved above the
present valley floor, in an altitude range of 1820–1500m a.s.l. These
deposits may have accumulated during the Steinach Stadial, a phase
of glacial re-advance older than 15,400±470 14C yr BP (Magiera,
2000; Ivy-Ochs et al., 2006). In the neighboring Gschnitz valley, the
type location of the Gschnitz Stadial, the terminal moraine complex is
situated at the village Trins, at an elevation of 1410–1200 m a.s.l.
(Fig. 1). The stabilization of the moraine complex has been attributed
to no later than 15,400±1400 years ago (Ivy-Ochs et al., 2006). In the
Obernberg valley, probably as a result of a significantly smaller glacial
catchment, no terminal moraine corresponding to the Gschnitz Stadial
is present.
Lake Obernberg is situated on rock avalanche deposits (Fig. 3). The
lake shows substantial seasonal and inter-annual variations in level,
as a result of poor sealing of the lake basin combined with a high per-
meability of the underlying rock avalanche deposits. During low
stage, the lake is separated into two parts (Reiser et al., 2010). The
lake basin probably became deeper with time due to subsurface en-
trainment of fine-grained matrix in groundwater flow.
3. Methods

Field mapping was conducted on a scale of 1:5000 using topo-
graphic maps and laserscan images. High resolution airborne
laserscan-data and a digital elevation model (DEM) with a 1-m reso-
lution were provided by TIRIS (www.tirol.gv.at/). These data have
been implemented into a GIS-system and combinedwith orthophotos
(TIRIS, BEV), topographic maps (Österreichische Karte 1:50.000, BEV,
Blatt 148 Brenner), and geological maps (Geological map of Austria,
1:50,000, Blatt 175 Sterzing; Geologisch-tektonische Karte der
östlichen Stubaier Alpen, 1:25.000). The coordinate system and pro-
jection used are WGS1984 and UTM Zone 32N. Volume calculations
and cross-sections were made with AutoCAD 2010.

http://www.tirol.gv.at/
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Fig. 3. Overview map of the Obernberg rock avalanche displayed on LIDAR-data (provided by TIRIS — Tyrolean spatial planning information system). The accumulation area has a
color gradient displaying the estimated debris thickness distribution (light pink: 0–10 m; purple: 30–40 m). Lake Obernberg bathymetry is indicated in 5 m steps from pale blue to
dark blue. Labeled white circles A to D denote areas motioned in the text. Green line from A (scarp area) to D (most distal part of the accumulation area): Cross-section shown in
lower part of the figure.
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For exposure dating with 36Cl, near Lake Obernberg in the proximal
sector of the rock avalanche, the surfaces of four boulderswere sampled
(locations shown in Fig. 2). Unfortunately, the distal sector of the ava-
lanche deposit with transversal ridges (C–D in Fig. 3) is devoid of suit-
able boulders (those lying well above the enclosing sediment).
Sample preparation is described in Ivy-Ochs et al. (2009). Approximate-
ly 60 g of rock was dissolved, after addition of 2.4 mg of 35Cl carrier,
with concentrated HNO3. Cl was isolated and freed of S with several
pH change steps and addition of Ba(NO3)2, respectively. 36Cl and natural
Cl (isotope dilution; Ivy-Ochs et al., 2004) were determined with accel-
erator mass spectrometry (Synal et al., 1997). Measured sample 36Cl/Cl
ratios were normalized to the ETH internal standard K382/4N with a
value of 36Cl/Cl=1.736×10−11 (normalized to the Nishiizumi stan-
dards in 2009) while the stable 37Cl/35Cl ratio was normalized to the
natural 37Cl/35Cl ratio=31.98% of the K382/4N standard and the ma-
chine blank. Measured sample ratios were also corrected for a proce-
dural blank of 3×10−15, which amounted to a correction of less than
2% for all samples. Major and trace element concentrations are given
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in Table 1. Concentrations of B and Gd were below the detection limit.
Exposure ages (Table 2) were calculated based on a sea level/high lati-
tude production rate of 48.8±1.7 atoms 36Cl g(Ca)−1 a−1 for produc-
tion from spallation of Ca, and 5.3±0.5 36Cl g(Ca)−1 a−1 production
due to muon capture on Ca (Stone et al., 1996, 1998) scaled after
Stone (2000). Production of 36Cl through low energy capture of thermal
and epithermal neutrons is calculated following Liu et al. (1994) and
Phillips et al. (2001) using a production constant of 760±120 neutrons
(g air)−1 a−1 (Alfimov and Ivy-Ochs, 2009). Major element and samar-
ium concentrations as well as major element concentrations (Table 1)
were used to determine the fraction of low-energy neutrons available
for capture by 35Cl to form 36Cl (Alfimov and Ivy-Ochs, 2009 and refer-
ences therein). The contribution due to non-cosmogenic subsurface 36Cl
production calculated after Fabryka-Martin (1988) was negligible.
Shielding corrections were done following Dunne et al. (1999). We
used a rock density of 2.4 g cm−3.

On the southern bank of Lake Obernberg, a paleosoil 1.2 m below
the surface of a small alluvial fan was sampled for radiocarbon dating
(Fig. 2). Radiocarbon ages (Table 3) were calibrated with OXCAL 4.0.1
(Bronk Ramsey, 2009) using the Int Cal 09 data set (Reimer et al.,
2009).

In the proximal part of the rock avalanche deposit, six electrical
tomographic profiles were made with a GEOMON4D resistivity
meter, an in-house development of the Geological Survey of Austria,
with a gradient electrode array configuration (Fig. 2; see Table 4 for
key parameters of profiles). Data inversions were performed with
the AGI EarthImager 2D software according to a robust inversion
method based on an L2-norm criterion. The results of the inverted
profiles are shown in Fig. 4 after suppressing aberrant resistivity
values obtained due to bad coupling between electrodes and the
sometimes rocky material.

4. Rock avalanche deposits

In the most proximal sector of the rock avalanche mass, a ridge up
to 80 m in relief comprised of very poorly sorted bouldery sediment is
present. Clasts of cobble to boulder size show in-situ fragmentation.
Farther down, rock-avalanche deposits build lateral ridges along the
Obernberg lakes. In addition, a continuous layer of bouldery deposit
can be mapped for approximately 200 m in altitude onto the oppo-
site, right-hand flank of the See valley (Fig. 3); the distribution of
this deposit may suggest that it originated from a different mass-
wasting event descended from the west-facing slope. The composi-
tion of clasts of folded marbles, however, indicates that it more likely
derives from the detachment area of the Obernberg rock avalanche,
i.e. from the eastern cliffs of the Tribulaun range. The medial part of
the rock avalanche consists of a steeply sloping tongue of extremely-
poorly sorted debris ranging up to boulders a few tens of meters in
size (Figs. 3 and 5C). Finally, the distal part of the rock avalanche con-
sists of a conspicuous array of hillocks and ridges that are described in
more detail below (Figs. 3, 4 and 5).

Rock avalanche deposits exposed at the surface cover an area of
~1.9 km2. Taking into account those parts of the avalanche that are bur-
ied by alluvial fans, talus slopes and colluvium, an area of ~3 km2 was
calculated (Abele, 1974: 2.7 km2). The distance from the upper brink
of the detachment scarp (2700 m a.s.l.) to the distal most toma hill
Table 1
Major element data for the analyzed samples (determined by XRF at XRAL, Ontario, Canada

Boulder no. Al2O3

wt. %
CaO
wt. %

Cr2O3

wt. %
Fe2O3

wt. %
K2O
wt. %

MgO
wt. %

MnO
wt. %

OB1 0.1 53.3 0.01 0.01 0.02 0.59 0.01
OB2 5.0 39.0 0.02 1.82 1.08 1.28 0.05
OB3 0.2 33.1 0.02 0.15 0.03 19.2 0.01
OB4 0.4 46.8 0.01 0.24 0.12 8.04 0.03
(1370 m a.s.l.) is 7.2 km, yielding a fahrböschung angle of 10°.
According to our calculation based on a digital elevation model, the
total volume of rock avalanche deposits is 5.3×107 m³ (Paschinger,
1953: 5.7×107 m³). To reconstruct the rock volume detached from
the scarp area (Fig. 3), we used a digital elevation model integrated
with LIDAR data, aerial photos and topographic maps. The results give
a maximum of close to 5.0×107 m3 of rock before detachment
(Paschinger, 1953: 5.6×107 m3). This indicates a volume increase of
5.6% from rock to rock avalanche deposit, being higher than 1.2% of
Paschinger (1953), but anomalously low relative to a volume increase
of up to 25–30% reported for mass-wastings of carbonate rocks
(Abele, 1974; Hungr and Evans, 2004). This may suggest that the ini-
tial volume was overestimated by isohypse fitting; a volume of
~4.0–4.5×107 m3 seems more realistic. With this deduced volume
and a reconstructed area of 3 km2, the Obernberg rockslide lies with-
in the range of volume/area ratio of other rockslides and rock
avalanches; the same holds for the ratio of runout length to vertical
drop versus volume (cf. Abele, 1974; Dade and Huppert, 1998).

A minimum-age constraint of the mass-wasting event was
obtained by radiocarbon dating of organic remnants found in alluvial
fan deposits on the top of the rock avalanche deposits (Fig. 2). Two
samples were taken: (a) Vera — 4980 (OB-14C_2) represents a
paleosoil 120 cm below the surface of the alluvial fan, and (b) Vera
— 4979 (OB-14C_1) is a piece of wood from about 20 cm below the
recent fan surface (Table 3). From 36Cl surface exposure dating of
four boulder surfaces, we obtained the following exposure ages:
9.16±0.40 ka (OB1), 12.09±0.55 ka (OB2), 8.24±0.60 ka (OB3),
and 8.32±0.40 ka (OB4). The average age of 8.6±0.6 ka indicates
an early Holocene age for the rock avalanche event (Table 2). We at-
tribute the outlier-age 12.09±0.55 ka to inheritance which is often
observed in rock avalanche boulders (Ivy-Ochs et al., 2009).

5. Transversal ridges and hillocks

The distal part of the rock avalanche between Untereinsalm
(1540 m a.s.l.) and Obernberg Village (~1370 m a.s.l.) is characterized
by an array of 40 hillocks and transversal ridges with up to 17 m in
vertical relief (Figs. 3, 4 and 5). Because of the lack of both natural
outcrops and drill logs, we could not establish whether the hillocks
and ridges are contiguous with each other or rather represent isolated
forms. For reasons discussed below, however, we assume that they
are connected with each other in the subsurface. These ridges and
hillocks were interpreted as terminal moraines and kames because
of their morphology (Magiera, 2000; Ebner et al., 2003; Wastl, 2007).

Cross-sections based on a digital elevationmodel with 1-m resolu-
tion show that the transversal ridges are arranged into two ‘domains’
each about 750 m in length (Fig. 5). Each domain consists of nine
ridges, with the highest in the central part and progressively lower
and elongated ones towards the distal and proximal margins. Two ar-
tificial outcrops (Fig. 7), each a few meters in height and about 10 m
in length, provide insight into the internal fabric of ridges. Both out-
crops show that the ridges consist of angular fragments of sand- to
boulder-size clasts in disordered fabric; no systematic vertical/lateral
sorting, stratification, and preferred orientation of clasts were ob-
served. The fabric ranges, in a patchy pattern, from clast-supported
with sparse interstitial matrix of structureless carbonate gouge to
).

Na2O
wt. %

P2O5

wt. %
SiO2

wt. %
TiO2

wt. %
Sum LOI Sm

ppm
Th
ppm

U
ppm

0.01 0.01 0.21 0.01 97.8 43.5 0.2 0.5 0.32
0.50 0.05 19.60 0.230 100.3 31.7 2.4 3.0 1.46
0.01 0.01 0.41 0.01 99.1 45.9 0.4 0.1 0.50
0.01 0.01 1.12 0.020 100.5 43.7 0.4 0.1 0.50



Table 2
Results of 36Cl surface exposure dating.

Boulder
no.

Alt.
[m]

Easting Northing Thickness
[cm]

Shielding 36Cl
[105 atoms 36Cl/g rock]

Cl
[ppm]

Exposure age
[kyr]

[UTM WGS84 Z 32N]

OB1 1651 682,923 5,206,460 2.5 0.95 7.27±0.20 31.3±0.1 9.16±0.40
OB2 1606 682,781 5,206,752 1 0.97 7.06±0.22 2.3±0.1 12.09±0.55
OB3 1616 682,702 5,207,178 2 0.96 5.57±0.24 95.0±1.5 8.24±0.60
OB4 1610 682,799 5,207,329 1.5 0.97 5.66±0.20 24.2±0.7 8.32±0.40

Table 4
Key parameters of the electrical tomography.
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matrix-supported. Many clasts of coarse gravel- to boulder-size are
fragmented in situ, with opposite fracture walls still fitting. Both the
orientation and density of fractures are highly variable among and
within individual clasts.

6. Interpretation of the ground electrical tomography

Six multielectrode profiles were measured to get more detailed in-
formation on the depth and internal structure of the rock avalanche
deposits. The locations of the profiles (P1–P6) are indicated in Fig. 2.
The results of the geoelectric inversion of multi-electrode data on
the profiles are shown in Fig. 4. To make comparison and interpreta-
tion easier, all profiles are depicted with the same color bar.

P1 shows a relatively homogenous cover of rock avalanche debris,
represented by high resistivity (>3000 Ω m, red color in Fig. 4),
reaching a maximum thickness of about 60 m, with an average thick-
ness of about 50 m. The high resistivity can be explained by its high
porosity, which is implied by the accumulation of large blocks (typical
size of a few m3 scale). Below this surficial layer, resistivity decreases
with depth, indicating finer and wetter material that could be the ex-
pression of increased matrix content and/or fluvio-glacial deposits
(orange and yellow colors in Fig. 4). The bedrock is built up by quartz
phyllite with an electr. resistivity around 500 Ωm (green color). In
the NNE part of this profile, low electr. resistivities (b50 Ωm, blue
color) can be explained by the occurrence of a fault-zone.

The rock debris cover at P2 reaches from about 20 m in the NE to a
maximum extent of 45 m in the middle part of the profile. In the SW
of the profile near Steineralm (1737 m a.s.l., Fig. 2) the bedrock (qua-
rtz phyllite) is at surface or below a very thin talus cover. Here a low
resistivity zone can also be observed. This anomaly may be attributed
to a technical reason: drainage pipe and power supply in the vicinity
of Steineralm.

P3 is characterized by up to 40 m thick rock avalanche debris in
the NE. In the SW, in contrast, it consists of near-surface bedrock as
well as water-saturated fluvial deposits and peaty material.

P4 is situated along the “Maria am See” peninsula that divides the
lake basin of Lake Obernberg into two parts. The situation here is
more complex. The evaluation of the profile leads to the interpreta-
tion of a dry part and a water saturated part of the rock avalanche de-
bris. The ridge consists of about 10–20 m unsaturated on top, and up
to 20 m thick water saturated rock avalanche debris below. The bed-
rock is almost built up by quartz phyllite. Towards the NW, electric
resistivity in the substratum increases (~1000 Ωm), indicating the
transition to the carbonatic units in the W.

P5 is situated on top of the steep valley step, where the northern
most lake basin is dammed by rock debris. In the East, rock avalanche
Table 3
Results of radiocarbon dating.

Sample Alt.
[m]

Easting Northing Material 14C-age
[kyr]

cal-Age
[kyr]

Vera — 4980
OB_14C_2

1608 686,191 5,206,273 Paleosoil 6.98±45
[BP]

7.79
±0.19

Vera — 4979
OB_14C_1

1608 686,191 5,206,273 Wood 0.12±45
[BP]

Modern
material is covered by a small alluvial cone (up to ~6 m in thickness)
fed from a gully. The rock avalanche debris here reaches a thickness of
~25 m. In the central part of the profile, the prominent low resistivity
anomaly can be interpreted as a fault-zone. This zone indicates the
boundary of the carbonate bedrock (yellow and orange colors in
Fig. 4) in the W and the quartz phyllite (green color) in the E. The
high resistivity in the NW could also indicate a glacial or fluvial chan-
nel filled with rock avalanche debris.

P6 crosses the up to 80 m high ridge developed along the SW bank
of Lake Obernberg. The geoelectric survey clearly shows that the
whole ridge is composed of rock avalanche debris. Toward the S of
the profile one can see the water saturated part of the rock avalanche
debris with aggradation deposits on the top, coming in from the S into
the lake basin. The bedrock here has carbonatic lithologies.
7. Discussion

The kinematics of the Obernberg rock avalanche is described in
chronological order from A to D (Figs. 2 and 6).

(A) After detachment of the main volume of rock, the rock mass
ran down a rectilinear slope ~30° in gradinet and 1200 m in length
(Fig. 6A). Immediately after the detachment, the rock mass perhaps
was still more-or-less intact and moved as a rockslide. We assume,
however, that during run-down on the slope, the rock mass
disintegrated by dynamic fragmentation and progressively turned
into a rock avalanche (Davies and McSaveney, 1999; Davies et al.,
1999).

(B) The rock avalanche ran across the valley floor and up onto the
opposite slope ~12° in gradinet (Fig. 6B). Near Steineralm (1767 m
a.s.l.), the rock-avalanche deposit consists of: (a) a surficial veneer
of boulders of Hauptdolomit, resting on (b) calcareous marbles; this
reflects the vertical distribution of these two lithologies in the scarp
area (see Fig. 3).

Transition from (B) to (C). After run-up of the frontal part of the
rock avalanche onto the opposite slope, some of the swashed material
may have flowed back (Fig. 6B); the following part of the moving rock
avalanche bulged up, and was forced to swerve towards the N. As a
result, longitudinal ridges and grooves formed in the marginal part
of the avalanche. In addition, in flowing down the very steep upper
part of the See valley, the rock avalanche probably gained kinetic en-
ergy again.
Electrical
tomography
profile

Length
[m]

Orientation
(first to last
electrode)

Elevation [m
a.s.l.] (min.
elv.–max. elv.)

Unit
electrode
spacing
[m]

Horizontal
scale pixels
per unit
spacing

P1 736 NNE–SSW 1612–1672 8.00 9.97
P2 690 NE–SW 1728–1750 7.50 19.99
P3 570 NE–SW 1751–1789 7.50 12.08
P4 532 WNW–ESE 1607–1625 7.00 12.03
P5 552 W–E 1581–1618 6.00 9.92
P6 460 NNW–SSE 1591–1650 5.00 9.85



Fig. 4. Resistivity cross-sections (P1–P6) obtained by electrical tomography profiles (see Fig. 2). Values represented along the X-axis correspond to distance in meters form the
starting point of the tomography profile. The Y-axis represents the elevation above sea level in meters. Parameters of each profile are given in Table 2.

Fig. 5. Transversal ridges at Obernberg. A) Airborne laser scan image (by TIRIS) of the landscape at Obernberg. Red lines: 1-m contours for transversal ridges. Green lines: 10-m
contours. B) Inset figure shows superposition of 14 cross-sections of transversal ridges. C) Cross-section from I to II (see A) through the transversal ridges, which show a very regular
arrangement.
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Fig. 6. Sketch maps of the propagation of the Obernberg rock avalanche (A to D). The closer hatch in A indicates the assumed former outline of the intact rock slope. Explanations are
given in the text.
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(C) When the rock avalanche ran up the northern slope of the
Obernberg valley, a part of it branched off and ran up, for a limited
distance, into the Hinterenns valley (Fig. 6C; see also Fig. 3, point C).

(D) The main body of the rock avalanche, however, continued to
run down the Obernberg valley (Fig. 6D). There, kinetic energy
dropped below the threshold for rock-avalanche movement, and the
described arrays of transverse ridges formed.

Taking into account the velocities for rock avalanches from
Zambrano (2008) and a runout distance of 7.2 km, we infer that the
event happened within a time span of 0.8 to 2 min.

In the Alps, only a few mass-wasting events are dated into the
range from ~9 to 7.5 ka. The age of 8.6±0.6 ka of the Obernberg
event may suggest a relation with the “8.2 ka cooling event” (cf.
Rohling and Pälike, 2005). In the eastern part of the Eastern Alps, a
cooling of ~3 °C into the 8.2 ka event needed 10–20 years, and cooler
conditions then persisted from ~8.2 to 8.1 ka (Boch et al., 2009). The
resolution of the numerical age of 8.6±0.6 ka of the Obernberg rock
avalanche event hence does not allow for an unequivocal correlation
with the 8.2 ka cooling. In the eastern part of the Eastern Alps, there is
no evidence for marked changes in seasonality or mean annual pre-
cipitation (Boch et al., 2009). Conversely, in the northern and western
Alpine foreland, lake levels rose at about 8.2 kyr, probably due to in-
creased precipitation and decreased summer temperatures (Magny
et al., 2003). In NW-Germany, the onset of 8.2 ka event was charac-
terized by a rapid switch to a phase of approximately 190 years of
cooler and drier summers; similarly, winters were drier and cooler
(Klitgaard-Kristensen et al., 1998; Prasad et al., 2009). If understood
as a phase of cooler summers, the NW-Germany 8.2 ka event started
between ~8.12 and 8.09 ka and ended at 7.93 ka (Prasad et al., 2009),
i.e. nearly twice as long as in the eastern part of the Eastern Alps. This
suggests that the response to the 8.2 ka event had a strong geograph-
ical component, provided that age assignments are sufficiently pre-
cise. Difficulties to capture the 8.2 ka event may also arise from the
different methods of dating and the variegated records used (e.g.,
Alley and Ágústsdóttir, 2005; Kerschner et al., 2006; Prasad et al.,
2009, and references therein). Because the climatic response of the
central part of the western Eastern Alps to the 8.2 ka event is not doc-
umented to date, we thus refrain from suggesting a potential correla-
tion of rock-avalanching with particular climatic conditions. In
addition, only a minority of rockslides and rock avalanches of the
Alps have been dated so far. This further impedes us to assess a poten-
tial correlation of palaeoclimate with catastrophic mass-wasting. In
the Silvretta massif of the Central Alps, glaciers of N-facing cirques
of the Kromer stadial (perhaps equivalent with the 8.2 ka phase) ter-
minated at 2100 m a.s.l. or higher (Kerschner et al., 2006), i.e., in an
altitude above the Obernberg rock-avalanche deposit. This further
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Fig. 7. Field photographs showing features related to the Obernberg rock avalanche. A) Overview of the scarp area of the Obernberg rock avalanche view towards W. The orange line
represents the outline of the scarp. CM = calcareous marls, HD = Hauptdolomit. In the lower right corner rock avalanche debris is indicated in yellow. Notice the dissection of the
upper part of the rock slope through faults and joints. B) Overview photo of Lake Obernberg with the northern lake basin in the foreground, view toward SW. The scarp area (red
line) and the upper travel path (red arrow) in the background. Notice the big blocks in and around the lakes. Lake level is about 1.5 m below maximum. C) Chaotic fabric of angular
clasts of calcareous marls and Hauptdolomit and fine grained matrix below a big block nearby the Lake Obernberg. Field book for scale. D) Hilly landscape at Obernberg view to-
wards W. KT = Kleiner Tribulaun (2492 m a.s.l.). CS = church spire of the church of Obernberg situated on top of one of the transversal ridges. E) Artificial outcrop at one of the
most distal transversal ridges. Angular clasts swimming in a fine grained matrix without any sorting. Stick=1 m. F) Enlarged detail of E) showing a fractured clast of Hauptdolomit
(jigsaw type). Visible stick=44 cm.
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suggests that the rock avalanche did not run out over a glacier. We
also found no evidence that the avalanche deposit was overridden
by a glacier.

Except for the present course of the Seebach stream (Fig. 3), the
transverse ridges in the distal sector of the avalanche deposit were
not dissected by fluvial activity. There is also no evidence for disinte-
gration of the distal part of the avalanche mass by slow downslope
movement after the event. Thus, at least the larger transverse ridges,
as seen in Fig. 3, are well-preserved and in similar arrangement as
they were immediately after the rock avalanching. However, smaller
surface features such as scattered boulders or low ridges may have
been removed upon agricultural amelioration for pasture. Compared
with most other rock-avalanche masses in the Alps, the abundance
and high regularity of the transversal ridges of the distal part of the
Obernberg avalanche deposit are exceptional. The regularity may pro-
vide a record of the style of material movement (Fig. 6). The apparent
excessive mobility of rock avalanches has been explained by sliding
on, and/or lubrication of fine-grained deposits with incorporated
snow, ice, and water (e.g., Abele, 1974; Goguel, 1978; Sartori et al.,
2003; Hungr and Evans, 2004; De Blasio, 2009; Dufresne et al.,
2010; Shugar and Clague, 2011). Another explanation for the high
rock-avalanche mobility is based on the mechanics of the moving
mass itself (e.g. Davies and McSaveney, 1999; Dufresne et al., 2010).
Because a universal feature of large-volume catastrophic rock-slope
failures is fragmentation (cf. Crosta et al., 2007), one key to the mobil-
ity of rock avalanches is comminution during downslope movement
(Davies et al., 1999). Letting aside potential effects of snow or ice, or
‘lubrication’ by foreign materials, a rock mass probably moves as
long as kinetic energy suffices to sustain dynamic fragmentation
and resulting dilatancy by mutual particle impact (Imre et al.,
2010). Propagation of kinetic energy may occur in acoustic waves
that act to fluidize the moving particulate mass (Melosh, 1986;
Collins and Melosh, 2003).

We infer that the distal-most transverse ridge of the Obernberg
rock-avalanche mass was the first to freeze, and the more proximal
ridges formed subsequently by successive upslope propagation of
freezing. Each transverse ridge thus may represent the terminal re-
cord of some kind of wave or surge that traveled downslope. Surging,
i.e., fluctuations of both velocity and thickness of a flow associated
with downflow propagation of roll waves, is observed in fluid flows,
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density flows, and debris flows of diverse compositions (e.g., Coussot
and Meunier, 1996; Major, 1997; Balmforth and Mandre, 2004, and
references therein). Roll waves do not require turbulence to develop,
and can emerge also in granular flows (e.g., Daerr, 2001; Louge and
Keast, 2001). Roll waves may overtake each other by run-up of faster
surges into slower forerunners; overall, however, they strive towards
quasi-periodic wave trains (all other conditions equal) (Forterre and
Pouliquen, 2003). At least under certain experimental conditions,
granular flows can evolve into a series of downslope-propagating
roll waves pushing forward unmoved material resting in between
the surges (Forterre and Pouliquen, 2003). No model of a granular
flow undergoing dynamic disintegration, and explicitly treating the
physical effects of disintegration from local scale up to the entire av-
alanche, exists as yet. Dynamic disintegration, perhaps the single
most distinctive process in the movement of rock avalanches and
rockslides, was analog modeled for a small volume of rock-like mate-
rial in a centrifuge (Imre et al., 2010); however, this cannot reflect the
potential behavior of a rock avalanche when in action as a whole over
some period of time. Acoustic waves within rock fractures dissipate in
areas close to the source (Melosh, 1996). In the distal part of a rock
avalanche, acoustic waves from dynamic disintegration may become
organized into downslope-propagating pulses, resulting in surging-
style movement (cf. Collins and Melosh, 2003). The described trans-
verse ridges thus may hint on the existence of surge-like flow behav-
ior in the distal part of some rock avalanches.

8. Conclusions

(1) Surface exposure dating of boulders indicates that the
Obernberg rock avalanche occurred 8570±630 years ago;
this age is supported by a 14C age of 7785±190 a cal BP of a
palaeosol in alluvial fan deposits on the rock-avalanche
deposits.

(2) The Obernberg rock avalanche is the first dated mass-wasting
event in the Alps that potentially was associated with the
8.2 ka climatic cooling. The precise nature of the 8.2 ka event
in the central part of the Eastern Alps, however, is insufficiently
documented to sustain speculations on a triggering of the rock
avalanche under a particular climatic condition.

(3) The distal 2 km of rock-avalanche deposits show an array of
transverse ridges. These were previously interpreted as termi-
nal moraines and kames. The internal fabric and nature of the
sediment of the ridges are, however, incompatible with glacial
moraines, but consistent with an origin from a rock avalanche.

(4) The transversal ridges are arranged into two highly regular
higher-order waves, each of which consists of waxing and
shrinking ridges. We suggest that the arrayed ridges reflect a
mechanical aspect of the movement, perhaps propagation of
waves towards the snout of the avalanche deposit.
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