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SUMMARY

Different cancer cell compartments often communi-
cate through soluble factors to facilitate tumor
growth. Glioma stem cells (GSCs) are a subset of
tumor cells that resist standard therapy to contribute
to disease progression. How GSCs employ a distinct
secretory program to communicate with and nurture
each other over the nonstem tumor cell (NSTC)
population is not well defined. Here, we show that
GSCs preferentially secrete Sema3C and coordi-
nately express PlexinA2/D1 receptors to activate
Rac1/nuclear factor (NF)-kB signaling in an auto-
crine/paracrine loop to promote their own survival.
Importantly, Sema3C is not expressed in neural
progenitor cells (NPCs) or NSTCs. Disruption of
Sema3C induced apoptosis of GSCs, but not NPCs
or NSTCs, and suppressed tumor growth in ortho-
topic models of glioblastoma. Introduction of acti-
vated Rac1 rescued the Sema3C knockdown pheno-
type in vivo. Our study supports the targeting of
Sema3C to break this GSC-specific autocrine/para-
crine loop in order to improve glioblastoma treat-
ment, potentially with a high therapeutic index.

INTRODUCTION

Glioblastoma (GBM) is a highly infiltrative and incurable primary

brain tumor. Despite aggressive therapy, patients with GBM

have a dismal prognosis with median survival of about 1 year

(Stupp et al., 2009). Tumor control is short lived, with the vast

majority of patients progressing within 6 months of diagnosis

(Stupp et al., 2009). Glioma stem cells (GSCs) contribute to this

resistance because they can efficiently repair DNA damage

and activate prosurvival pathways after cytotoxic therapy (Bao

et al., 2006; Bleau et al., 2009; Chen et al., 2012; Eramo et al.,

2006). GSCs and neural progenitor cells (NPCs) share many

common properties including the ability to self-renew and estab-

lish a cellular hierarchy; however, themolecular mechanisms un-
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derlying these processes may differ. Strategies that exploit the

differences between GSC and NPC biology would improve the

therapeutic index and minimize potential side effects.

GSCs reside in stem cell niches where they integrate extra-

cellular signals including niche-related factors such as VEGF,

cell adhesion molecules, and extracellular matrix components

to support their growth and promote angiogenesis (Rosen and

Jordan, 2009; Soeda et al., 2009; Vescovi et al., 2006; Zhou

et al., 2009). Whereas crosstalk between GSCs and endothelial

cells has been demonstrated (Calabrese et al., 2007; Lu et al.,

2012; Zhu et al., 2011), the signaling mechanisms GSCs employ

to communicate with each other and promote their own survival

within the greater nonstem tumor cell (NSTC) population is

not well understood. Recent studies reveal that cancer stem-

like cells (CSCs) may produce and utilize autocrine or paracrine

factors to protect themselves from differentiation and apoptosis

(Scheel et al., 2011). In GBM, autocrine transforming growth

factor b (TGFb), VEGF, and HGF/cMET signaling play important

roles in the maintenance of GSC identity and tumorigenicity

(Hamerlik et al., 2012; Ikushima et al., 2009; Joo et al., 2012).

However, these pathways also play critical roles in normal

physiology. Identification of molecular mechanisms that dis-

criminate between normal and pathologic stem cell survival

are essential.

To determine potential therapeutic targets that are differen-

tially expressed by GSCs, we assessed the expression of

secreted proteins that have been implicated in cancer. Class 3

semaphorins were initially identified as evolutionarily conserved

axon guidance cues that instruct the assembly of the neural cir-

cuitry (Tran et al., 2009). Since their discovery, various class 3

semaphorins have been found to influence cancer growth, either

positively or negatively depending on tumor type (Neufeld and

Kessler, 2008; Tamagnone, 2012; Zhou et al., 2008). Sema3C

stands out because it has consistently been shown to promote

tumor progression and correlate with poor prognosis across

multiple tumor types (Blanc et al., 2011; Esselens et al., 2010;

Galani et al., 2002; Herman and Meadows, 2007; Miyato et al.,

2012). Sema3C is overexpressed in malignant glioma cell lines

(Rieger et al., 2003) and is amplified in GBM (Brennan et al.,

2013). However, the expression and function of Sema3C and

its receptors in CSCs and GBM remain unknown.
hors
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Figure 1. Sema3C and Its Receptors Are Coexpressed in Stem Cell Marker+ GBM Cells

(A and B) Immunohistochemical (IHC) staining of Sema3C, PlexinA2, and PlexinD1 in serial sections of human GBM tissue array. Sections were counterstained

with hematoxylin. Asterisk denotes vessel lumen.

(C) Immunofluorescent (IF) staining of Sema3C (red) in relation to blood vessels marked by CD31 staining for endothelial cells (green) in human primary GBM

tissues. * denotes vessel lumen.

(legend continued on next page)
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Neuropilinsandplexins forma receptor complex for semaphor-

ins. Neuropilins serve as the primary receptor for ligand binding,

whereas plexins coreceptors transduce semaphorin signaling

via their intracellular domain (Capparuccia and Tamagnone,

2009;Hota andBuck, 2012). The plexin intracellular domain inter-

acts with the Rac1 guanosine triphosphatase (GTPase) to pro-

mote cell migration (Hota and Buck, 2012). The role of Rac1 in

cancer has been underscored by its high frequency of activating

mutations in melanoma (Hodis et al., 2012; Krauthammer et al.,

2012) and dysregulation in colon (Esufali et al., 2007) and lung

cancers (Zhou et al., 2013). Whereas Rac1 is best known for its

role in cytoskeletal organization, cell motility, and growth, Rac1

alsoplaysa role incancer cell survival (Fenget al., 2011;Heasman

and Ridley, 2008; Senger et al., 2002). In addition, Rac1 has been

implicated in regulating cancer stem cell proliferation (Akunuru

et al., 2011; Myant et al., 2013). However, the functional role of

semaphorin signaling in regulating Rac1 activity in GBM and, in

particular, in GSCs is unclear. In this study, we sought to investi-

gate the role of Sema3C and its potential regulation of Rac1 in

mediating GSC self-renewal and GBM growth.

RESULTS

Sema3C and Its Receptors PlexinA2/PlexinD1 Are
Differentially Expressed in GSCs
Sema3C is overexpressed in malignant glioma cell lines and

amplified in GBM (Brennan et al., 2013; Rieger et al., 2003). How-

ever, its role in the pathogenesis of GBM is unclear. We first

examined Sema3C expression in a panel of human GBM.

Sema3C staining was strong in a subpopulation of GBM cells

from seven different patient specimens compared to normal

human brain tissue (Figure S1A). Using a GBM tissuemicroarray,

Sema3C was overexpressed in a subpopulation of tumor cells in

30 of 35 (85.7%) GBM but was barely detectable in normal brain

(Figure 1A). Sema3C binds to the receptors PlexinA2 and Plex-

inD1 (Gitler et al., 2004; Kodo et al., 2009; Law and Lee, 2012).

In serial sections, Sema3C and PlexinA2/PlexinD1 expression

was highly concordant (Figure 1B), with PlexinA2 expressed in

90% (32/35) GBM and PlexinD1 in all 35 GBM. Within normal

brain, Sema3C staining was weak, but its receptors stained

strongly (Figures 1B and S1A). Notably, histoscore analysis

showed that Sema3C levels were higher in GBM compared to

normal brain and correlated with expression of PlexinA2 (p <

0.0001) and PlexinD1 (p < 0.0001; Figures 1D, 1E, and S1B).

To investigate further the expression of Sema3C and its recep-

tors, we performed coimmunofluorescence staining on human

GBM specimens. Cells that expressed both Sema3C and Plex-

inA2/PlexinD1 clustered together, suggesting that they may

participate in autocrine or paracrine signaling (Figures 1F and

1I). Sema3C and PlexinA2/PlexinD1 were coexpressed with

GSC markers including CD133, Olig2, and Sox2 (Singh et al.,
(D and E) Histoscores (D) and correlation analysis (E) of human GBM tissue array

significant.

(F) IF staining of Sema3C and PlexinA2/PlexinD1 on frozen sections of human pr

(G–I) IF staining of Sema3C, PlexinA2/PlexinD1, and GSCmarkers CD133 and Oli

DAPI (blue).

See also Figure S1.
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2004; Suvà et al., 2014; Figures 1G–1I, S1C, and S1D). A subset

of Sema3C-positive cells localized to perivascular niches (Fig-

ures 1A, 1C, and S1E), where GSCs are commonly found (Cal-

abrese et al., 2007). These findings suggest that Sema3C is

coexpressed with its receptors in GSCs.

We next assessed the expression of Sema3C and PlexinA2/

PlexinD1 in matched GSCs and NSTCs isolated from fresh

GBM patient specimens that were propagated as xenografts

and functionally validated (Cheng et al., 2013). Sema3C and

PlexinA2/PlexinD1 were elevated in all seven GSC populations

enriched for the stem cell markers CD133, Olig2, and Sox2 rela-

tive to matched NSTCs (Figures 2A and S2A). The semaphorin

ligand-binding receptor (Neufeld and Kessler, 2008; Tamag-

none, 2012; Zhou et al., 2008) Neuropilin1 (NRP1), but not

NRP2, was ubiquitously expressed in both GSCs and NSTCs

(Figure S2B). Of note, expression of other class 3 semaphorins,

including Sema3A and Sema3B, was similar between GSCs and

NSTCs (Figure S2C). To rule out the possibility that these pat-

terns of expression were driven by cell culture conditions, we

confirmed our analysis using freshly sorted GBM xenografts

(Figure 2B). We further validated these results in situ by coimmu-

nofluorescence staining of GSC tumorspheres (Figure S2D),

GSC-derived GBM xenografts (Figures 2C and S2E–S2I), and

fresh GBM patient specimens (Figures 1F–1I). Furthermore, in-

duction of differentiation in GSCs by serum stimulation led to

rapid loss of expression of Sema3C and its receptors (Figure 2D),

suggesting a role for Sema3C signaling in GSCs.

Because GSCs and NPCs share several properties, we exam-

ined the expression of Sema3C and its receptors in normal brain.

Oncomine database analysis revealed reduced mRNA levels of

Sema3C in human NPCs compared to GBM (Figure S2J). NPCs

reside in the subventricular zone (SVZ) (Fuentealba et al., 2012;

Shen et al., 2008). PlexinA2 and PlexinD1 were both expressed

in a subpopulation of cells within the SVZ of mouse brain, an

area enriched with Sox2-positive cells. Sema3C, in contrast,

was undetectable within the SVZ (Figures 2E and S2K). Next,

we compared expression of Sema3C and its receptors in four

human NPCs and four pairs of matched GSCs and NSTCs.

Consistent with our in situ studies (Figure 1), high levels of

Sema3C and its receptors were found in all four GSCs, but not

in NSTCs. Sema3C was undetectable in NPCs, but its receptors

were expressed at high levels (Figures 2F andS2L). These results

collectively reveal that GSCs preferentially coexpress Sema3C

and its receptors PlexinA2/PlexinD1 compared to normal brain

progenitor cells and nonstem GBM cells.

Secreted Sema3C Promotes GSC Survival and Self-
Renewal through PlexinA2/PlexinD1
To explore the functional roles of Sema3C signaling in GSCs,

we first investigated the effect of Sema3C knockdown on GSC

proliferation and tumorsphere formation using two different,
stained for Sema3C, PlexinA2, and PlexinD1. *p < 0.05; ***p < 0.001. NS, not

imary GBM. Nuclei were counterstained with DAPI (blue).

g2 on frozen sections of human primary GBM. Nuclei were counterstained with

hors
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Figure 2. GSCs Preferentially Coexpress Sema3C and Its Receptors

(A) Immunoblot (IB) analysis of Sema3C, PlexinA2, and PlexinD1 in GSCs and matched NSTCs derived from human GBM.

(B) IB analysis of Sema3C, PlexinA2, and PlexinD1 proteins in GSCs compared to NSTCs isolated via CD133-based sorting from T4302, T3565, and GBM10

xenograft tumors without intervening in vitro culture.

(C) IF staining of Sema3C, PlexinA2, PlexinD1, and GSC markers CD133 and Sox2 on frozen sections of T4302 GSC-derived GBM xenografts. Nuclei were

counterstained with DAPI (blue).

(D) GSC differentiation was induced by serum (5% fetal bovine serum). IB analysis of Sema3C, PlexinA2, PlexinD1, Sox2, and GFAP (astrocyte marker) proteins

during GSC differentiation (left). IF staining of Sema3C (red) and GFAP (green) from day 0 to day 5 during GSC differentiation (right). Nuclei were counterstained

with DAPI (blue).

(E) IF staining of Sema3C, PlexinA2, PlexinD1, or Sox2 in the subventricular zone (SVZ) in adult mouse brain. Sections were counterstained with DAPI. * denotes

ventricle.

(F) IB analysis of Sema3C, PlexinA2, and PlexinD1 proteins in four GSCs, matched NSTCs, and four human NPC lines.

See also Figure S2.
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Figure 3. GSC Viability and Self-Renewal Depend on Sema3C Secretion

(A–D) Effects of Sema3C knockdownwith two different shRNA sequences on cell viability in GSCs andNPCs and tumorsphere formation of GSCs. Knockdown of

Sema3C resulted in a decrease in cell viability in GSCs (A), but not in NPCs (B). shSema3C-GSCs showed reduced tumorsphere numbers (C). For the limiting

dilution assay, GSCs expressing shNT or shSema3C were plated into 96-well plates with various seeding densities (1–200 cells per well, 12 wells per each

condition). Seven days later, each well was evaluated for the presence or absence of tumorspheres (D).

(E–H) Effects of PlexinA2 or PlexinD1 knockdown with two different shRNA sequences on cell viability of GSCs (E and G) and NPCs (F and H).

(legend continued on next page)
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nonoverlapping Sema3C small hairpin RNA (shRNA) sequences

or control nontargeting (NT) shRNA. Reduction of Sema3C

significantly decreased cell viability in all three GSC populations

examined (Figures 3A, S3A, and S3B) but had little effect on

matched NSTCs (Figures S3C, S3D, and S3L). In addition,

Sema3C knockdown impaired GSC self-renewal as assessed

by tumorsphere formation and in vitro limiting dilution assay (Fig-

ures 3C, 3D, and S3E–S3H), the standard in vitro assay to assess

self-renewal capacity (Pastrana et al., 2011). Moreover, knock-

down of Sema3C did not impact expression of stem cell tran-

scription factors Sox2 or Olig2 in GSCs (Figure 6A), suggesting

that it does not alter stem cell identity but rather GSC survival

(Figure 5).

Reduction of PlexinA2 or PlexinD1 similarly decreased GSC

viability and self-renewal (Figures 3E, 3G, S3I, and S3J) but

had little effect on NSTCs (Figure S3L). shRNA-resistant mutants

of Sema3C or PlexinA2/PlexinD1 rescued cell survival that was

reduced by knockdown of these genes (Figure S3M), supporting

the specificity of these target shRNAs. To rule out the effects of

different culture conditions on the specificity of Sema3C for

GSCs over NSTCs, we performed a mixing experiment with

matched GSCs and NSTCs that were differentially labeled with

red fluorescent protein (RFP) or GFP proteins, respectively.

The GSCs and NSTCs were plated at a 1:1 ratio together

and transduced with Sema3C shRNA or NT shRNA. Sema3C

knockdown strongly inhibited growth of RFP-GSCs, but not

GFP-NSTCs (Figure 3I), revealing that Sema3C preferentially

supports GSCs.

An important attribute for a potential therapeutic target is its

differential effects on tumor growth and normal physiology.

Importantly, functional studies revealed that Sema3C knock-

down had no significant impact on NPC growth (Figure 3B). In

contrast, knockdown of either PlexinA2 or PlexinD1 resulted in

rapid NPC death (Figures 3F and 3H). These data indicate that,

for patients with GBM, anti-Sema3C therapy may spare NPCs

and therefore have limited brain toxicity.

These functional studies complement our expression studies

and suggest a role for autocrine or paracrine Sema3C sig-

naling in promoting the survival of GSCs specifically. To test

this possibility, we performed a mixing experiment in which

GSCs transduced with shSema3C were cultured alone or cocul-

tured with healthy GSCs at a 1:1 ratio. These populations were

differentially labeled with GFP (GFP-GSC-shSema3C) or RFP

(RFP-GSC). When cultured in the absence of Sema3C-express-

ing cells (RFP-GSC), cells with reduced Sema3C (GFP-GSC-

shSema3C) readily died. In contrast, when these cells were

cocultured with Sema3C-expressing cells (RFP-GSC), they sur-

vived and formed tumorspheres (Figure S3N), suggesting that
(I) GSCs and matched NSTCs stably expressing RFP or GFP were mixed and pl

containing shNT or shSema3C. RFP-GSC or GFP-NSTCwere counted at indicate

day 3 are shown (left).

(J) GFP-GSCs transduced with shNT, shSema3C, shPlexinA2, or shPlexinD1 wer

with RFP-GSCs (13 105 cells) that were seeded in the upper chambers of transw

Representative diagram of the coculture assay is shown (left).

(K and L) GSCs transduced with shNT, shSema3C, shPlexinA2, or shPlexinD1

(Sema3C-Fc). GSC tumorsphere quantification is shown (K), and GSC viability w

Data are means ± SD (n = 3). *p < 0.05; **p < 0.01; ***p < 0.001. See also Figure

Cell Re
secretion of Sema3C from the RFP-GSC population could sup-

port the survival of GSCs in which Sema3C was abrogated.

To determine the dependency of this effect on soluble factors,

we performed another coculture experiment in which RFP-GSCs

were cultured in an upper chamber and GFP-GSCs transduced

with Sema3C, PlexinA2, or PlexinD1 shRNA were plated in the

lower chamber (Figure 3J). The upper and lower chambers

were separated by a permeable membrane that permitted the

diffusion of small proteins, but not migration of cells. Coculture

of RFP-GSCs rescued the sphere-forming ability of GSCs in

which Sema3C was knocked down, but not GSCs, in which

PlexinA2 or PlexinD1 were knocked down (Figure 3J). These

results suggest that secretion of a soluble protein by RFP-

GSCs acts through PlexinA2/PlexinD1 to support tumorsphere

formation.

We next tested the ability of exogenous recombinant human

Sema3C to rescue the viability and self-renewal capacity of

GSCs in which Sema3C, PlexinA2, PlexinD1, or NRP1 were

reduced. Exogenous Sema3C treatment rescued cell viability

and tumorsphere formation in a dose-dependent manner in

GSCs with reduced Sema3C but had no appreciable effect on

GSCs with reduced PlexinA2, PlexinD1, or NRP1 expression

(Figures 3K, 3L, S3O, and S3P). Additional exogenous Sema3C

slightly increased GSC viability and was not utilized by NSTCs

(Figures S3Q and S3R). These results revealed that Sema3C

secretion by GSCs acts through both PlexinA2/PlexinD1 and

NRP1 receptors to mediate GSC self-renewal and sphere-form-

ing capacity.

Our studies suggest that NPCs are sensitive to PlexinA2/

PlexinD1 knockdown, but not Sema3C knockdown. We hypo-

thesized that other semaphorin ligands might engage these

receptors to mediate NPC survival. We interrogated a murine

brain in situ hybridization database (Allen Institute Brain Atlas

database; http://mouse.brain-map.org) and found that Sema4A

and Sema6A, the other known ligands of PlexinD1 and PlexinA2,

respectively (Neufeld and Kessler, 2008; Zhou et al., 2008), are

highly expressed in normal brain during mouse development

(Figure S3S). We further validated their expression by western

blot in NPCs, GSCs, and NSTCs (Figure S3T). Functional studies

revealed that knockdown of Sema4A or Sema6A significantly

inhibited NPC viability but had only limited effect on GSCs (Fig-

ure S3U). These results suggest that GSCs and NPCs might

utilize different semaphorin ligands to mediate cell survival.

Sema3C Knockdown Reduces Tumor Growth and
Improves Animal Survival
To determine the functional consequences of Sema3C knock-

down in vivo, we established orthotopic xenografts utilizing
ated on stem cell Matrigel-coated plates at 1:1 ratio and infected by lentivirus

d times after infection (right). Representative images of mixed cells on day 0 and

e plated at low cell density (500 cells) at the base of transwells and cocultured

ells. GFP-GSC tumorsphere number was counted on day 6 of coculture (right).

were cultured with different doses of recombinant human Sema3C protein

as assessed by cell titer assay (L).

S3.
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Figure 4. Targeting Sema3C Suppresses GSC-Mediated Tumor Growth and Improves Animal Survival
GSCs transduced with shNT or shSema3C through lentiviral infection were intracranially transplanted into the brains of immunocompromised athymic nudemice

(23 104 cells per mouse). Mouse brains implanted with GSCswere harvested simultaneously to examine the impact of Sema3C disruption onGBM tumor growth

(A–F). In the animal survival experiments (G and H), mice implanted with GSCs expressing shNT or shSema3C were maintained until the development of

neurological signs or for 180 days, whichever came first.

(A) Representative images of cross-sections (hematoxylin and eosin stained) of mouse brains 25 days after transplantation. Arrow indicates a tumor formed from

GSCs expressing shNT.

(legend continued on next page)
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shNT or shSema3C-expressing GSCs (shNT mice or shSema3C

mice, respectively). Using two different GSC populations,

shNT mice readily established intracranial tumors, whereas

shSema3C mice demonstrated significantly impaired tumor for-

mation, diminished tumor invasion, and increased survival (Fig-

ure 4). When the first few shNT mice developed neurologic signs

or clinically declined, a subset of mice in each group was sacri-

ficed. shNT mice developed highly invasive tumors that

extended to both hemispheres and exerted significant mass ef-

fect. In contrast, shSema3C mice had no clinical signs of tumor

growth and only small nests of tumor cells were identified (Fig-

ures 4A, 4B, and S4A). Sema3Cwas strongly expressed in a sub-

population of tumor cells in shNT mice but was undetectable in

shSema3C mice (Figures 4C and S4A, bottom). Of note, within

shNT mice, a subset of cells expressing high levels of Sema3C

localized to the invasive fingers of the tumor (Figure 4D), consis-

tent with a role for Sema3C in facilitating cell invasion (Herman

and Meadows, 2007; Miyato et al., 2012). These results are

consistent with in vitro Boyden chamber migration assays (Fig-

ures S4B and S4C). Using two different orthotopic tumor

models, Sema3C knockdown consistently impaired tumor

growth, as shown by quantitative bioluminescent imaging, and

significantly extended animal survival (Figures 4E–4H). In three

of the four Sema3C knockdown tumor models, median survival

was not reached by the conclusion of the observation period

of 6 months posttransplantation (Figures 4G and 4H).

To further evaluate whether the expression of Sema3C and its

receptors in GBMcorrelated with patient survival, we queried the

Oncomine database and found that high expression levels of

Sema3C or its receptors PlexinA2 or PlexinD1 in human glioma

inversely correlated with patient survival (Figures S4D–S4F).

Together, these data suggest that Sema3C instructs the tumor-

igenic capacity and invasive phenotype of GSCs.

Sema3C Depletion Induces Apoptosis of GSCs, but
Not NPCs
A significant increase in cell death was observed after silencing

of Sema3C and PlexinA2/PlexinD1 expression in GSCs in cell

culture (Figure S5A). These findings raised the possibility that

abrogation of Sema3C signaling may induce apoptosis of

GSCs. Sema3C knockdown in GSCs increased apoptosis as as-

sessed by annexin V/phosphatidylinositol (PI) flow cytometry

(Figure S5B) and TUNEL assay (Figures S5C–S5E). Similarly,

knockdown of Sema3C and PlexinA2/PlexinD1 increased levels

of cleaved caspase3/caspase7, cleaved poly-ADP ribose poly-

merase (PARP), and the fraction of TUNEL-positive cells in

GSCs, but not in matched NSTCs (Figures 5A–5C, S5F, and

S5G). In NPCs, Sema3C knockdown showed no significant

effect on these measures of apoptosis (Figures 5B, 5D, and

S5H). In contrast, PlexinA2/PlexinD1 knockdown in NPCs effi-
(B) Histological analysis of brain tumors derived from GSCs expressing shNT or

(C and D) IHC staining of Sema3C in GBMxenografts derived fromGSCs expressi

tumors is shown. Sections were counterstained with hematoxylin. Arrows indica

(E and F) GBM xenografts derived from luciferase-labeled GSCs expressing shNT

animals on day 25 (E) and 33 (F) are shown (left). Error bars represent the mean

(G and H) Kaplan-Meier survival curves of mice implanted with 08-387 GSCs (G)

**p < 0.01; ***p < 0.001. See also Figure S4.

Cell Re
ciently increased apoptosis (Figures 5B, 5D, S5G, and S5H).

Consistent with our in vitro findings, GBM tissue from shSema3C

mice showed significantly elevated levels of apoptotic TUNEL-

positive and cleaved-caspase-3-positive tumor cells (Figures

5E–5G). These data support that Sema3C suppresses apoptosis

of GSCs, but not NSTCs or NPCs.

Sema3C Activates Rac1 to Mediate Survival of GSCs
To further understand a mechanism by which Sema3C protects

GSCs from apoptosis, we investigated the interaction between

Sema3C and its receptors PlexinA2/PlexinD1 and NRP1.

Sema3C coimmunoprecipitated with PlexinA2, PlexinD1, or

NRP1 (Figures S6A and S6B, up). The receptors themselves

interacted with each other (Figures S6A and S6B, up), and

knockdown of NRP1 abrogated the interaction with Sema3C

and PlexinA2/PlexinD1 (Figure S6B, down). These results sug-

gest that Sema3C, PlexinA2/PlexinD1, and NRP1 might form a

complex in GSCs, with NRP1 functioning as the ligand-binding

receptor. Plexins can engage many signaling pathways includ-

ing Ras, Akt, and Rac pathways (Neufeld and Kessler, 2008).

Using a candidate approach, Sema3C knockdown significantly

decreased GTP-bound, active Rac1 in GSCs but had little

effect on ERK or Akt activation. In NPCs, however, activated

Rac1 levels were unchanged after Sema3C knockdown (Fig-

ure 6A). In addition, phospho-kinase array analysis showed

that Sema3C had no significant effects on p38 mitogen-acti-

vated protein kinase (MAPK), JNK, p53, or STAT signaling

(data not shown).

Rac1 is known to interact with the intracellular domain of plex-

ins (Hota and Buck, 2012). To determine the role of plexins in

transducing Sema3C signals, we knocked down PlexinA2 or

PlexinD1 in GSCs and assessed activation of Rac1. Knockdown

of either PlexinA2 or PlexinD1 inhibited Rac1 activity (Figure 6B).

Furthermore, treatment of control GSCs with recombinant hu-

man Sema3C increased activated Rac1 levels in a dose-depen-

dent manner but had minimal effect on GSCs with reduced

PlexinA2/PlexinD1 (Figure 6B). PlexinA2/PlexinD1 mutants lack-

ing the intracellular domain failed to rescue tumorsphere forma-

tion in GSCs in which PlexinA2/PlexinD1 were knocked down

(data not shown). Together, these findings demonstrate that

Sema3C engages the PlexinA2/PlexinD1 receptor complex to

regulate Rac1 activation in GSCs, but not NPCs.

GSCs Exhibit Increased Sensitivity to Rac1 Inhibition
Rac1 has been implicated in cancer cell survival (Senger et al.,

2002; Velaithan et al., 2011), but its role in cancer stem cells is

not well established. Inhibition of Rac1 by the pharmacologic in-

hibitor NSC23766 or knockdown approaches strongly inhibited

GSC viability, reduced tumorsphere formation, and induced

apoptosis of GSCs (Figures 6C–6F and S6C–S6F), revealing that
shSema3C. H&E, hematoxylin and eosin.

ng shNT or shSema3C. Staining at the center (C) or periphery (D) of shNTmouse

te Sema3C-positive cells.

or shSema3C were tracked by bioluminescence (right). Real-time images from

± SEM.

and T3691 GSCs (H) expressing shNT or shSema3C.
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Figure 5. Sema3C Depletion Induces Apoptosis of GSCs, but Not NPCs

(A and B) IB analysis of cleaved-caspase3, -caspase7, and -PARP proteins in GSCs and matched NSTCs (A) or GSCs and NPCs (B) in which Sema3C, PlexinA2,

or PlexinD1 were knocked down by two separate shRNAs.

(C and D) Apoptotic cells in GSCs (C) or NPCs (D) expressing shNT, shSema3C, shPlexinA2, or shPlexinD1 were detected by TUNEL assay. The apoptotic index

was assessed by the ratio of TUNEL-positive cells/total number of cells from eight randomly selected fields.

(E–G) Apoptotic cells in GBM xenografts derived from GSCs expressing shNT or shSema3C were detected in situ using the TUNEL assay (E and F) or cleaved-

caspase3 staining (G). The apoptotic index was assessed by the ratio of TUNEL-positive cells or cleaved-caspase3-positive cells/total number of cells from eight

randomly selected fields.

Data are means ± SD (n = 3). **p < 0.01; ***p < 0.001. See also Figure S5.
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Figure 6. Sema3C Activates Rac1 to Promote Survival of GSCs
(A) Detection of theGTP-bound form of active Rac1 in a pull-down assay from the lysates of GSCs andNPCs expressing shNT or shSema3C. Cell lysates from the

indicated cells were analyzed for protein levels of total Rac1, Sema3C, p-ERK1/p-ERK2, p-Akt1, Sox2, and Olig2.

(B) GSCs transduced with shNT, shPlexinA2, or shPlexinD1 were cultured with different doses of recombinant human Sema3C protein (r-Sema3C). IB analysis of

active GTP-Rac1 by pull-down assay from the lysates of indicated GSCs.

(C) RFP-GSCs andmatchedGFP-NSTCsweremixed at a 1:1 ratio, plated on stem cell Matrigel-coated plates, and treatedwith Rac1 inhibitor NSC23766 (50 mM).

Representative images of mixed cells on day 0 and day 3 (left). Quantification of RFP-GSC and GFP-NSTC cell number 3 days after treatment (right). Data are

means ± SD (n = 3).

(D) Knockdown of Rac1 with two separate shRNAs resulted in significantly decreased cell viability in GSCs, but not in NSTCs. Data are means ± SD (n = 3).

(E) Knockdown of Rac1 via two separate shRNAs resulted in decreased tumorsphere formation. Data are means ± SD (n = 3).

(F) IB analysis of cleaved-PARP and -caspase3 in GSCs and matched NSTCs transduced with shNT or two separate shRac1. Active GTP-Rac1 by pull-down

assay is shown.

(G and H) IB analysis of p-p65, p65, CyclinD1, Survivin, XIAP, and BCL2 in two GSCs treated with Rac inhibitor (G) or transduced with shNT or two separate

shRac1 (H).

*p < 0.05; **p < 0.01; ***p < 0.001. See also Figure S6.
Rac1 signaling is necessary for GSC survival. However, Rac1

inhibition had minimal effects on NSTCs, even though Rac1 acti-

vation was comparable between NSTCs and GSCs (Figures 6C–

6F and S6C–S6F). Rac1 knockdown significantly increased

apoptosis of GSCs but had minimal effect on NSTCs (Figures 6F
Cell Re
and S6F). GSCs are therefore dependent on Rac1 signaling for

their survival and are particularly sensitive to Rac1 inhibition.

To determine how Rac1 might regulate GSC survival, we as-

sessed nuclear factor (NF)-kB signaling, a downstream pathway

(Myant et al., 2013) that has been implicated in GBMcell survival.
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NF-kB activation promotes radiation resistance of GSCs and

correlates with poor survival (Bhat et al., 2013; Bredel et al.,

2011; Park et al., 2009). In two GSC populations, blocking

Rac1 activation with a pharmacologic inhibitor or Rac1 shRNA

reduced activation of p65/RelA and expression of NF-kB-depen-

dent target genes, cyclinD1, XIAP, and survivin (Figures 6G and

6H). Collectively, these data demonstrate that Rac1 regulation of

NF-kB is vital for GSCs.

Rac1 Activation Rescues the Phenotype Caused by
Sema3C Disruption in GSCs
To further define the role of Rac1 in Sema3C-mediated

GSC survival, we introduced constitutively activated Rac1

(Flag-Rac1Q61L), which abolishes GTP hydrolysis and mimics

the GTP-bound state (Wu et al., 2009), into GSCs in which

Sema3C was knocked down. Ectopic expression of Flag-

Rac1Q61L in shSema3C GSCs restored NF-kB activation,

reduced apoptosis (Figure 7A), and rescued GSC proliferation

and sphere-forming ability (Figures 7B, 7C, and S7A). Similarly,

in vivo, ectopic expression of activated Rac1 significantly accel-

erated tumor growth and reduced survival of shSema3C mice

(Figures 7D, 7E, and S7B). However, expression of activated

Rac1 by itself did not significantly alter survival compared to

shNT mice (Figure 7E). Ectopic expression of Rac1Q61L

increased p65/RelA nuclear staining to rescue Sema3C knock-

down in GBM xenografts (Figures 7F and 7G), suggesting that

Sema3C regulates NF-kB activation through Rac1. Both

in vitro and in vivo, activated Rac1 restored GSC migration and

promoted tumor cell invasion despite Sema3C knockdown (Fig-

ures S7C and S7D). Collectively, these data suggest that

Sema3C activates Rac1 in GSCs to drive tumor growth and

invasion.

DISCUSSION

In this study, we identified an autocrine/paracrine Sema3C-

PlexinA2/PlexinD1 loop employed by GSCs to promote their

survival and invasion (Figure 7Ha). In GBM, activation of

Sema3C-PlexinA2/PlexinD1 signaling appears to be confined

to the stem cell compartment. GSCs, but not NSTCs, preferen-

tially express Sema3C and PlexinA2/PlexinD1. GSCs were

dependent on Sema3C-PlexinA2/PlexinD1-Rac1 signaling for

their survival and were able to utilize exogenous Sema3C. How-

ever, NSTCs were unresponsive to recombinant Sema3C,

probably because they lacked PlexinA2/PlexinD1 expression.

Interestingly, knockdown of Sema3C did not alter the expression

of stem cell markers or cause differentiation of GSCs. This sug-

gests that Sema3C regulates the survival of GSCs and contrib-

utes to the maintenance of their subpopulation rather than

instructing cell-fate decisions. In preclinical models, abrogation

of Sema3C significantly impaired tumor growth and invasion

and extended animal survival in a Rac1-dependent manner.

GSCs have been implicated in GBM treatment failure

because of their self-renewal properties and resistance to stan-

dard cytotoxic therapy. GSCs have evolved to co-opt core

developmental programs to ensure their survival. Targeting

GSCs remains a daunting task due to the many vital signaling

pathways shared between cancerous and normal progenitor
1822 Cell Reports 9, 1812–1826, December 11, 2014 ª2014 The Aut
cell populations (Gilbertson and Rich, 2007). We therefore

sought to identify differences in the regulation of these path-

ways in GSCs and NPCs.

In contrast to PlexinA2/PlexinD1 receptors, Sema3C was

undetectable in cultured NPCs and native NPCs in the subven-

tricular zone. Perturbations of Sema3C in NPCs had minimal

functional impact. Intriguingly, knockdown of either PlexinA2

or PlexinD1 receptors was sufficient to induce apoptosis of

both GSCs and NPCs (Figure 7Hb). These results suggest

that, under different selective pressures, GSCs and NPCs

have independently evolved distinct molecular pathways that

converge on PlexinA2/PlexinD1 and Rac1 to promote cell sur-

vival. We speculate that GSCs have evolved to overexpress

and utilize Sema3C, whereas NPCs may engage other sema-

phorins, such as Sema4A and Sema6A (Figures S3S–S3U),

known ligands for PlexinA2/PlexinD1 (Neufeld and Kessler,

2008; Zhou et al., 2008). Thus, these studies suggest that

anti-Sema3C strategies may target GSCs and have a favorable

therapeutic index.

Secreted proteins are logical therapeutic targets because they

are exposed to the microenvironment and obviate the need for a

drug to move intracellularly. Ligand sequestration drugs or

monoclonal antibodies that block receptors, such as aflibercept

(VEGF-Trap) and bevacizumab (Avastin), have been successful

in some solid tumors (Lambrechts et al., 2013; Stewart et al.,

2012), but not GBM (Gilbert et al., 2013). Our study provides a

strong biological rationale for the development of similar types

of Sema3C-directed therapies.

Rac1 is best known as a regulator of cell motility (Heasman

and Ridley, 2008; Kaibuchi et al., 1999) and has been implicated

as a driver of invasion andmetastasis in many cancers, including

GBM (Chan et al., 2005; Feng et al., 2011). Previous studies have

suggested that Sema3C could promote migration and invasion

of cancer cells, and its overexpression is associated with poor

survival (Herman andMeadows, 2007;Martı́n-Satué and Blanco,

1999; Miyato et al., 2012). Our data also support a role for

Sema3C in stimulating the invasion of GSCs through Rac1 acti-

vation. Sema3C-positive cells localized to the invasive nests of

GBM, and knockdown of Sema3C reduced migration both

in vitro and in mouse models. Reintroduction of constitutively

active Rac1 in Sema3C-deficient tumors restored the invasive

phenotype. Together, these data demonstrate that Sema3C-

mediated activation of Rac1 contributes to the highly invasive

phenotype of GSCs.

Our studies also extend the function of Rac1 to the survival of

GSCs. Rac1 has been implicated in regulating apoptosis in

several types of cancers. In the intestine, Rac1 regulates reactive

oxygen species production and NF-kB to stimulate the hyper-

proliferation and transformation of LGR5-positive stem cells

in the setting of constitutive Wnt signaling (Myant et al., 2013).

In hematopoietic cells, Rac1 regulates PI 3-kinase (PI3K)-Akt-

and p38-MAPK-signaling pathways to promote survival (Nishida

et al., 1999) and maintains hematopoietic stem/progenitor

cells (Gu et al., 2003). In GSCs, we found that Sema3C can

activate Rac1 through PlexinA2/PlexinD1 receptors. Rac1 inhi-

bition by both pharmacologic or shRNA approaches reduced

NF-kB activation and decreased levels of Survivin and XIAP to

facilitate apoptosis of GSCs. Furthermore, constitutively active
hors
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Figure 7. Ectopic Expression of a Constitutively Active Rac1 in GSCs Rescued the Phenotype Caused by Sema3C Disruption

(A) IB analysis of cleaved-PARP, -caspase3, p-p65, p65, and NF-kB-dependent gene expression in GSCs transduced with control vector or constitutively active

Rac1 (Flag-Rac1Q61L) in combination with shNT or shSema3C.

(B and C) GSCs were treated as described in (A), and cell viability was assessed by cell titer assay (B). Quantification of GSC tumorsphere number is shown (C).

Data are means ± SD (n = 3).

(D and E) GSCs (08-387, labeled with luciferase) were treated as described in (A). Forty-eight hours after infection, GSCs were transplanted into the brains of

immunocompromised nonobese diabetic severe combined immunodeficiency gamma mice. GBM xenograft growth was tracked by bioluminescence (D). Error

bars represent the mean ± SEM. Kaplan-Meier survival curves of different groups of mice are shown (E). Mice were maintained until the development of

neurological signs.

(F and G) IHC staining of Rac1-GTP and p65 in GBM xenografts derived from GSCs treated as indicated (F). Sections were counterstained with hematoxylin.

Histoscore analysis for Rac1-GTP and p65 is shown (G). Data are means ± SD (n = 3).

(H) Proposed model for Sema3C signaling on the regulation of GSC survival. (a) Sema3C and PlexinA2/PlexinD1 are differentially coexpressed in GSCs, but not

NSTCs. GSCs secrete and utilize Sema3C in an autocrine/paracrine loop to promote their survival by facilitating Rac1 signaling. NSTCs do not express or utilize

Sema3C. (b) PlexinA2/PlexinD1 are expressed in NPCs and contribute to their survival. NPCs do not express or require Sema3C.

*p < 0.05; **p < 0.01; ***p < 0.001. See also Figure S7.
Rac1 rescued the Sema3C knockdown phenotype in mice. Ex-

amination of these tumors revealed increased levels of nuclear

p65 staining. We did not detect significant regulation of PI3K-

Akt or MAPK/ERK signaling by Sema3C or Rac1. These data
Cell Re
suggest that Sema3C-mediated activation of Rac1 and NF-kB

promotes GSC survival and tumorigenicity. Moreover, the de-

pendency of GSCs on Rac1 for their survival is also of therapeu-

tic significance. Our results are timely because a new generation
ports 9, 1812–1826, December 11, 2014 ª2014 The Authors 1823



of Rac1 inhibitors is just beginning to enter clinical trials and

could be extended to patients with GBM.

In summary, we have identified Sema3C signaling as a central

regulator of GSC survival and GBM progression. Targeting

Sema3C will disrupt the GSC-specific autocrine/paracrine

signaling loop potentially with limited normal brain toxicity.

Our data support Sema3C as a promising therapeutic target

for GBM.

EXPERIMENTAL PROCEDURES

Isolation and Culture of GSCs and NPCs

GBM surgical specimens were collected for this study in accordance with a

Cleveland-Clinic-Institutional-Review-Board-approved protocol. GSCs and

NSTCs were isolated and characterized from GBM surgical specimens or

xenografts as previously described (Cheng et al., 2013). For the detailed pro-

cedure, please see Supplemental Experimental Procedures.

Immunofluorescence Staining, Immunohistochemistry, and

Immunoblot Analysis

Immunofluorescent staining of cells and tissues sections was performed as

described (Guryanova et al., 2011). Immunohistochemistry staining of tissue

section was performed with an ABC kit using DAB (3,30-diaminobenzine)

detection (Vector Lab) as previously described (Guryanova et al., 2011).

Immunoblot analysis was performed as previously described (Huang et al.,

2011). For the detailed procedure, please see Supplemental Experimental

Procedures.

For methods related to differentiation assay, DNA constructs and lentiviral

transfection, orthotopic mouse xenografts, necropsy, cell viability assays,

TUNEL assay, Rac1 activation assay, and immunoprecipitation, see the Sup-

plemental Experimental Procedures.

Statistical Analysis

All grouped data are presented asmean ±SD. Difference between groups was

assessed by one-way ANOVA or one-way ANOVA on ranks tests. All in vitro

experiments were repeated at least three times. For the in vivo experiments,

log rank survival analysis was performed. Graphpad Prism was used for all

statistical analyses.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and seven figures and can be found with this article online at http://dx.doi.

org/10.1016/j.celrep.2014.10.055.
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