
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
International Journal of Solids and Structures 44 (2007) 7021–7048

www.elsevier.com/locate/ijsolstr
Confinement-sensitive plasticity constitutive model
for concrete in triaxial compression

Vassilis K. Papanikolaou *, Andreas J. Kappos

Laboratory of Reinforced Concrete and Masonry Structures, Civil Engineering Department, Aristotle University of Thessaloniki,

P.O. Box 482, Thessaloniki 54124, Greece

Received 12 October 2006; received in revised form 7 March 2007; accepted 24 March 2007
Available online 30 March 2007
Abstract

In this paper, a confinement-sensitive plasticity constitutive model for concrete in triaxial compression is presented,
aiming to describe the strength and deformational behaviour of both normal and high-strength concrete under multiaxial
compression. It incorporates a three-parameter loading surface, uncoupled hardening and softening functions following
the accumulation of plastic volumetric strain and a nonlinear Lode-angle dependent plastic potential function. The various
model parameters are calibrated mainly on the basis of a large experimental database and are expressed in terms of only
the uniaxial compressive concrete strength, leading to a single-parameter model, suitable for practical applications. The
model’s performance is evaluated against experimental results and it is found that both the increased strength and defor-
mation capacity of confined concrete are properly captured.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Concrete; Confinement; Plasticity; Constitutive modelling; Triaxial compression; Deformation capacity; 3D finite elements
1. Introduction

Three-dimensional finite element analysis of confined concrete members such as columns and bridge piers
of arbitrary section (Papanikolaou and Kappos, 2005) requires sophisticated constitutive models, capable of
describing the increased strength and deformation capacity of concrete under multiaxial compressive stress
states. Different theories and formulations for constitutive modelling of concrete have been suggested in the
literature in the past, characterised by a variable degree of complexity, ranging from phenomenological elastic
nonlinear (e.g. Darwin and Pecknold, 1977) to complex endochronic plasticity and microplane models (e.g.
Bažant and Prat, 1988). The degree of success for each analytical approach depends on the balance between
accuracy and practicality, with the latter often hindered by numerous model parameters, often with blurred
physical meaning and hence difficult to calibrate against experimental evidence. In the present study, the target
is twofold: the formulation of a concrete constitutive model that successfully simulates the basic aspects of
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compressive behaviour in the presence of confinement, and an accompanying calibration scheme based on the
minimum possible number of material parameters.

The proposed concrete constitutive model follows the classical theory of incremental plasticity (e.g. Chen
and Han, 1988). The main components of the model are: a loading surface appropriate for cementitious mate-
rials, hardening and softening functions describing the evolution of the loading surface during plastic flow and
an appropriate combination between a hardening/softening parameter and a plastic potential function for cor-
rectly estimating the deformation capacity of concrete under triaxial compression. The mathematical descrip-
tion of the above components is presented in the subsequent sections, each one followed by a calibration
procedure mainly based on experimental results from the literature. The ensuing values for the various model
parameters eventually depend only on the mean uniaxial compressive concrete strength (fc), which renders the
constitutive model to a single-parameter one and hence more convenient for practical applications than multi-
parameter models.

It should be noted that since the suggested model is applicable in the concrete compression regime only, it
should be properly combined with a tensile fracture model for it to be usable in general finite element appli-
cations, where tensile stresses can not be excluded. This combination can be realised by treating plastic and
fracture strain separately and apply an iterative scheme to preserve stress equivalence (e.g. De Borst, 1986;
Červenka et al., 1998). The development of a complete model and its application to finite element analysis
of confined reinforced concrete members is currently under investigation by the writers. Furthermore, the
localization of deformations under triaxial compression (Van Mier, 1986) is not currently handled by the cur-
rent constitutive model; this may introduce mesh dependency in certain applications. However, the softening
function can be extended in future studies to either account for the fracture energy of concrete in compression
or be associated with deformations instead of strains.
2. Fundamental constitutive equations and definition of the principal stress space

According to the classical theory of plasticity, the incremental total strain vector (de) is decomposed into an
elastic (dee) and a plastic (dep) component:
de ¼ dee þ dep ð1Þ
The reversible elastic strain increments are related to the stress increments through a Hook-type elasticity
matrix (D), whose elements involve the concrete elastic modulus (Ec) and the Poisson’s ratio (m); values for
these elastic parameters will be suggested later (see Appendix A for notation used).
dee ¼ D�1 � dr ð2Þ
The plastic irreversible strains follow a non-associated flow rule (Eq. (3)), which implies that the direction
of the incremental plastic strain vector (dep) is normal to a plastic potential surface (g = 0) that differs from the
loading surface (f = 0). It is generally accepted (e.g. Smith et al., 1989; Sfer et al., 2002) that a non-associated
flow rule can describe the experimentally observed deformation capacity of concrete more closely than its
associated counterpart.
dep
ij ¼ dk

og
orij

ð3Þ
Both failure and plastic potential surfaces are formulated in the Haigh–Westergaard stress space (Fig. 1),
which is defined by the cylindrical coordinates of hydrostatic length (n), deviatoric length (q) and Lode angle
(h). These coordinates are functions of the invariants (I1,J2,J3) of the principal stress tensor components
(r1 > r2 > r3, compression negative) according to the following equations:
n ¼ I1ffiffiffi
3
p I1 ¼ r1 þ r2 þ r3 ð4Þ

q ¼
ffiffiffiffiffiffiffi
2J 2

p
J 2 ¼

1

6
ðr1 � r2Þ2 þ ðr2 � r3Þ2 þ ðr3 � r1Þ2
h i

ð5Þ
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Fig. 1. Coordinates in the Haigh–Westergaard stress space: (a) in the three-dimensional stress space; (b) on the Rendulic plane; (c) on the
deviatoric plane.
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J 3 ¼ ðr1 � I1=3Þ � ðr2 � I1=3Þ � ðr3 � I1=3Þ ð6Þ
3. Loading surface

In order to describe the concrete triaxial stress state during plastic flow, a three-parameter hydrostatic-pres-
sure-sensitive loading surface was selected from the literature (Menétrey and Willam, 1995). This surface has
parabolic meridians and a variable shape on the deviatoric plane, from triangular to almost circular with
increasing confinement. It is described by the following equation, in terms of Haigh–Westergaard coordinates:
f ðn; q; hÞ ¼
ffiffiffiffiffiffiffi
1:5
p q

kðjÞ � fc

� �2

þ m
qffiffiffi

6
p
� kðjÞ � fc

rðh; eÞ þ nffiffiffi
3
p
� kðjÞ � fc

 !
� cðjÞ ¼ 0 ð7Þ
where the friction parameter (m) and the elliptic function (r) are defined as follows:
m ¼ 3
ðkðjÞ � fcÞ2 � f 2

t

kðjÞ � fc � ft

� e
eþ 1

ð8Þ

rðh; eÞ ¼ 4ð1� e2Þ cos2 hþ ð2e� 1Þ2

2ð1� e2Þ cos hþ ð2e� 1Þ½4ð1� e2Þ cos2 hþ 5e2 � 4e�1=2
ð9Þ
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The three parameters that define the shape and size of the loading surface in stress space are the mean uni-
axial compressive concrete strength (fc), the mean uniaxial tensile concrete strength (ft) and the eccentricity
parameter of out-of-roundness (e), discussed later on. Hardening and softening are controlled by functions
k(j) and c(j), respectively, and will be described in the subsequent section in detail. In order to calibrate
the above three parameters, the loading surface is fixed to its failure (ultimate) state (Fig. 2) by assigning val-
ues of unity to functions k(j) and c(j).

Apart from the concrete compressive strength (fc), which is a free parameter, the other two parameters (ft

and e) can be calibrated against fc. For calibrating the concrete tensile strength (ft), two different approaches
were followed, namely a code-based equation, applicable to both normal and high-strength concrete (CEB
Working Group on HSC/HPC, 1995) and a constant fc/ft ratio approach (e.g. Ottosen, 1977; Menétrey
and Willam, 1995). In order to evaluate the applicability of each method, an experimental database based
on the existing literature was compiled, consisting of triaxial compressive tests of both normal and high-
strength cylindrical concrete specimens. Fig. 3 shows a comparison between experimental and analytical
values of concrete triaxial strength (fcc). It is observed that while the code equation provides a fairly good cor-
relation between experimental and analytical results (50� trendline), the constant ratio approach with an opti-
mum value of fc/ft = 10 shows excellent correlation (45� trendline) and hence is suggested for the tensile
strength calibration. Fig. 4 shows a comparison between the compressive meridian of the calibrated failure
surface (h = 60�) and experimental results.
Fig. 2. The three-parameter loading surface in its failure state (k = c = 1).
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It should be noted here that the constant fc/ft ratio approach may not describe well the true experimental
tensile strength of concrete (especially high-strength) as reflected in code equations (e.g. CEB, 1993; CEB
Working Group on HSC/HPC, 1995). Nevertheless, it is proposed herein because it provides good agreement
with experimental evidence for the adopted failure surface formulation. However, in the context of a compres-
sion model for concrete, the accuracy of the tensile strength is not a critical issue, since compression models
are usually combined with fracture tensile models that include the true value of tensile strength, in order to
handle the tensile concrete behaviour (Červenka et al., 1998).

The eccentricity parameter of out-of-roundness (e) affects the shape of the failure surface in the deviatoric
section and can take values from 0.5 (triangular shape) to unity (circular shape). Since this parameter mostly
affects the curvature of the tensile meridian (h = 0�), it is usually calibrated against the equibiaxial compressive
concrete strength (fbc). Menétrey and Willam (1995) have suggested a usable range of 0.5 < e 6 0.6 for con-
crete, with an optimal value of 0.52, leading to a constant equibiaxial strength fbc = 1.14 Æ fc (for fc/ft = 10).
This value has long been assumed adequate for normal concrete, based on the experiments of Kupfer et al.
(1969). Nevertheless, recent studies on high-strength concrete (Traina and Mansour, 1991; Hussein and Mar-
zouk, 2000) showed that the ratio between equibiaxial and uniaxial concrete strength decreases with increasing
concrete strength, hence a more refined calibration for the eccentricity parameter is necessary. Fig. 5 shows the
relationship between the ratio fbc/fc and uniaxial concrete strength (fc), based on various experimental studies.
A power regression yields the following equation:
fbc=fc ¼ 1:5 � f �0:075
c ð10Þ
Although the scatter of the results is substantial (due to different specimen sizes, end conditions and loading
setups used by different researchers), this equation describes well the observed trend of reducing fbc/fc ratio for
increasing concrete strength, as opposed to adopting a constant value of 1.14. Table 1 shows the iteratively
calculated values for the eccentricity parameter (e) that leads to the equibiaxial strength (fbc) suggested by
the above equation. It is clear that the sensitivity to the eccentricity parameter (e) is large, since a variation
of about 0.02 amplifies the equibiaxial concrete strength by 15% of fc.

In Fig. 6 data from the experimental database compiled on the basis of 306 tests (this is a substantially
expanded version of the database used in the previous study by Menétrey and Willam (1995)) for the valida-
tion of the loading surface, including non-cylindrical specimens and triaxial load paths with h = 0�, is plotted
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Table 1
Suggested values for the eccentricity parameter (e) for various concrete strengths

fc (MPa) fbc/fc e

20 1.20 0.5281
30 1.16 0.5232
40 1.14 0.5198
50 1.12 0.5172
60 1.10 0.5151
70 1.09 0.5133
80 1.08 0.5117
90 1.07 0.5104

100 1.06 0.5092
110 1.05 0.5081
120 1.05 0.5071
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against the three-parameter failure surface. Reasonable correlation is generally observed, especially for low
and moderate levels of confinement (n/fc > �2), which are the ones more pertinent to practical situations.
Therefore, the selected failure surface is considered adequate for describing the confined concrete strength
under various load paths.
4. Hardening and softening parameter and functions

Hardening and softening of concrete can be simulated by varying the shape and location of the loading
surface during plastic flow. This variation is controlled by a hardening/softening parameter (j) which is usu-
ally defined as the length of the plastic strain vector or by the equivalence of plastic work (e.g. Han and Chen,
1985). However, this approach fails to describe the increased deformation capacity of concrete under multi-
axial compression (e.g. Ohtani and Chen, 1989) and therefore, various scaling techniques (referred as ductility
or confinement functions), depending on the current stress level (e.g. Barros, 2001) or the plastic volumetric
strain (Imran and Pantazopoulou, 2001) have been suggested, with varying degrees of success. The disadvan-
tage of these techniques is that they increase the required number of material parameters (some of them with
weak or no physical meaning) and hence complicate the calibration procedure. In order to overcome the above
difficulties, the hardening/softening parameter in the present model is set equal to the plastic volumetric strain
ðep

vÞ, as originally suggested by Grassl et al. (2002). When combined with a properly calibrated nonlinear
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plastic potential function (g), it can successfully describe the confined deformation capacity of concrete with-
out any scaling modifications.
dj ¼ dep
v ð11Þ
The instantaneous shape and location of the loading surface during hardening is defined by a hardening
function (k), which depends on the hardening/softening parameter (j) i.e. the plastic volumetric strain
ðj ¼ ep

vÞ. This function is directly incorporated in the loading surface equations (7) and (8), operating as a scal-
ing factor for the compressive concrete. It has the following elliptic form (Červenka et al., 1998):
kðjÞ ¼ kðep
vÞ ¼ ko þ ð1� koÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ep
v;t � ep

v

ep
v;t

� �2
s

ð12Þ
where ep
v;t is the plastic volumetric strain at uniaxial concrete strength and will be discussed in detail later.

During the hardening process, the softening function (c) in Eq. (7) holds a constant value of unity. Before
any plastic deformation occurs ðep

v ¼ 0Þ, the hardening function holds a constant value of ko, defining the ini-
tial yield surface that bounds the initial elastic regime.
ko ¼ rco=fc ð13Þ
where rco is the uniaxial concrete stress defining the onset of plastic flow (rco > ft for the loading surface equa-
tions to be valid). It is experimentally observed that normal concrete behaves almost elastically up to about
30–40% of its uniaxial strength and hence a value of ko = 0.3–0.4 would be adequate. However, in order to
account for high-strength concrete, which features a higher initial elastic regime, a more refined calibration
was performed, based on the code provisions of MC90 (CEB, 1993) and the recommendations of the CEB
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Working Group on HSC/HPC (1995). Fig. 7(left) shows the uniaxial stress–strain curves of concrete suggested
by the aforementioned documents.

It is herein assumed that the initial elastic regime holds until the secant concrete modulus drops to 90% of
the initial tangent modulus. The value of rco is then equal to the respective concrete uniaxial stress value
(Fig. 7, right). Following a power regression, the suggested relationship between rco and fc is:
rco ¼ f 1:855
c =60 ð14Þ
Based on the previous assumption, the concrete elastic modulus incorporated in the elasticity matrix (Eq.
(2)) is set equal to 90% of the initial tangent modulus suggested by the CEB Working Group on HSC/HPC
(1995) and is applicable to all concrete grades:
Ec ¼ 0:90 � 22000 � fc

10

� �0:3

ð15Þ
Moreover, the Poisson’s ratio of concrete is assumed to take a constant value of 0.2 (CEB, 1993; Rashid
et al., 2002); such a constant value is deemed appropriate in the context of a plasticity formulation.

After the initiation of plastic flow, the accumulation of the plastic volumetric strain continues until a
threshold value ðep

v;tÞ is reached. This value defines the termination of the hardening process, resulting to value
of unity for the hardening function (Eq. (12)). At this stage, the loading surface reaches its failure state and the
softening process is initiated. In order to calibrate the threshold value of plastic volumetric strain, it is assumed
that the total volumetric strain (ev) at peak stress (fc) under uniaxial compression is equal to zero (Van Mier,
1986; Imran and Pantazopoulou, 1996; Grassl et al., 2002), resulting to a plastic volumetric strain equal to its
elastic counterpart (Eq. 16). This threshold value for the plastic volumetric strain is assumed invariable for all
other stress states.
ep
v;t ¼

fc

Ec

ð1� 2mÞ ð16Þ
Fig. 8 shows the evolution of the loading surface during hardening in various geometric representations.
Upon further plastic flow, the hardening function retains a constant value of unity and the material enters

the softening regime, which is controlled by the softening function (c). This function simulates the material
decohesion by shifting the loading surface along the negative hydrostatic axis. It is assumed that it follows
the softening function originally proposed by Van Gysel and Taerwe (1996) for uniaxial compression (Eq.
17), also adopted by the CEB Working Group on HSC/HPC (1995), although it is described herein in terms
of the plastic volumetric strain ðep

vÞ. This form of the softening function is deemed to better reflect the exper-
imentally observed softening behaviour of concrete, compared to linear or stepwise linear approaches (e.g.
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Červenka et al., 1998; Grassl et al., 2002), which also introduce discontinuities in the softening function that
may cause numerical instabilities.
cðjÞ ¼ cðep
vÞ ¼

1

1þ n1�1
n2�1

� �2

0
B@

1
CA

2

ð17Þ

n1 ¼ ep
v=e

p
v;t ð18Þ

n2 ¼ ðep
v;t þ tÞ=ep

v;t ð19Þ
The outmost square in Eq. (17) is necessary due to the quadratic nature of the loading surface. The
softening function values start from unity and complete material decohesion is attained at c = 0. The
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evolution of both hardening and softening functions with respect to the hardening/softening parameter is
schematically shown in Fig. 9. The evolution of the loading surface during softening is shown in Fig. 10.

Parameter t in Eq. (19) controls the slope of the softening function and was calibrated against fc using the
following procedure: It was assumed that the present model should produce such a uniaxial stress–strain curve
for concrete, that the softening (descending) branch would pass from a predefined control point at
ð0:5f c; e0:5f c

Þ. In order to define the uniaxial compressive strain ðe0:5f c
Þ that corresponds to 0.5fc for various

concrete grades, an experimental database of uniaxial compression tests was compiled (Fig. 11, left). For each
test point, the value of the slope parameter (t) that, when introduced in the model, would lead to the respective
experimental uniaxial strain e0:5f c

was calculated by a trial-and-error procedure (Fig. 11, right) and a linear
regression yielded the following simple equation for t:
tð‰Þ ¼ fc=15 ð20Þ
Fig. 12 shows a set of uniaxial stress–strain curves of various concrete grades, as derived by the present
model. It is observed that high-strength concrete features, such as the broader initial elastic region and the
steeper softening branch (CEB Working Group on HSC/HPC, 1995) are successfully captured. It is noted
again that the experimentally observed non-local behaviour of concrete under compression (Van Mier,
1986) is not handled by the above formulation. A future enhancement of the softening function could be to
either incorporate the crushing fracture energy of concrete or to express the function in terms of deformations
instead of strains. However, this would further complicate the calibration procedure since the non-local behav-
iour is related to structural rather than material properties.
5. Plastic potential function

In the context of a non-associated flow rule, the definition of an appropriate plastic potential function (g)
plays a critical role in the correct estimation of the deformation capacity of concrete under triaxial compres-
sion. The plastic potential function controls the direction of the plastic strain vector (normal to the plastic
potential surface g = 0) and hence the relative ratios between the plastic strain tensor components. As a result,
it governs the accumulation of the plastic volumetric strain, herein adopted as a hardening/softening param-
eter (j), and eventually the evolution of hardening and softening under various load paths. Since the volumet-
ric growth (dilatancy) of concrete depends on the confinement level (e.g. Smith et al., 1989) i.e. it decreases
under increasing lateral stresses, the gradient of the plastic potential function should vary along the hydro-
static axis. This can be achieved by either incorporating a linear plastic potential function of Drucker–Prager
type with a variable slope (Han and Chen, 1985; Imran and Pantazopoulou, 2001) or a nonlinear function
(Grassl et al., 2002). In this study, a polynomial function with the characteristics of Lode-angle (h) dependency
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and adjustable order (n) is suggested (Eq. (21)); it is noted that these characteristics are not included in other
similar constitutive models proposed in the literature (e.g. Imran and Pantazopoulou, 1996; Grassl et al., 2002;
Grassl and Jirasek, 2006). The partial derivatives of the plastic potential function with respect to the principal
stresses are given in Appendix B.
g ¼ A � q
k � ffiffiffi

c
p � fc

� �n

þ Cþ 1
2
ðB� CÞð1� cos 3hÞ

� �
� q
k � ffiffiffi

c
p � fc

þ n
k � ffiffiffi

c
p � fc

� a ð21Þ
In order to easily calibrate the three plastic potential coefficients A, B and C in Eq. (21), it is assumed that
the inclination (w) of the incremental plastic strain vector is identical to that of the total plastic strain vector at
three distinct stress states, which will be defined later. This inclination is expressed by the angle formed
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between the plastic strain vector and the hydrostatic axis or, equivalently, between the tangent of the plastic
potential surface and the deviatoric axis, since the plastic strain vector is always normal to the plastic potential
surface (Fig. 13):
w ¼ q0

n0
¼ � dn

dq
ð22Þ
where n 0 and q 0 are the hydrostatic and deviatoric lengths of the total plastic strain vector, respectively (similar
to Eqs. (4) and (5), but expressed here in terms of plastic strain).

The necessary stress states (control points) for the definition of coefficients A, B and C in Eq. (21) corre-
spond to the compressive concrete strength under uniaxial, triaxial and equibiaxial compression. Specifically,
coefficients A and B are calibrated by the uniaxial and triaxial strength on the compressive meridian (h = 60�)
and C by the equibiaxial strength on the tensile meridian (h = 0�). The plastic potential function (Eq. 21) is
hence set to its failure state, by assigning values of unity to hardening (k) and softening (c) functions:



Fig. 13. Direction (w) of the incremental (a) and total (b) plastic strain vectors.
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g ¼ A � q
fc

� �n

þ Cþ 1
2
ðB� CÞð1� cos 3hÞ

� �
� q
fc

þ n
fc

� a ð23Þ
For the calibration of coefficients A and B on the compressive meridian (h = 60�), the plastic potential func-
tion (Eq. (23)) further reduces to:
g ¼ A � q
fc

� �n

þ B � q
fc

þ n
fc

� a ð24Þ
The inclination w is the gradient of the plastic potential surface (g = 0) with respect to the deviatoric axis:
w ¼ � dn
dq
¼ n � A � q

fc

� �n�1

þ B ð25Þ
If w1, w2 are the inclinations of the plastic strain vector and q1, q2 are the deviatoric lengths of the stress vector
under uniaxial and triaxial compression, respectively, it follows that:
w1 ¼ n � A � q1

fc

� �n�1

þ B ð26Þ

w2 ¼ n � A � q2

fc

� �n�1

þ B ð27Þ
By solving the system of Eqs. (26) and (27), the following values for coefficients A and B are derived:
A ¼ w1 � w2

n � q1

fc

� �n�1

� q2

fc

� �n�1
� � ð28Þ

B ¼ w1 � n � A � q1

fc

� �n�1

ð29Þ
The coefficient C is calibrated on the tensile meridian h = 0� and hence the plastic potential function (Eq. (23))
reduces to:
g ¼ A � q
fc

� �n

þ C � q
fc

þ n
fc

� a ð30Þ
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If w3 and q3 are the inclination of the plastic strain vector and the deviatoric length of the stress vector at equ-
ibiaxial compression, respectively, it follows that:
Table
Derive

fc (MP

20
30
40
50
60
70
80
90

100
110
120
w3 ¼ �
dn
dq
¼ n � A � q3

fc

� �n�1

þ C ð31aÞ
which leads to
C ¼ w3 � n � A � q3

fc

� �n�1

ð31bÞ
At this stage, values for q1, q2, q3 and w1, w2, w3 are required in Eqs. (28), (29) and (31b) in order to cal-
culate the plastic potential coefficients A, B and C. The deviatoric lengths q1, q2, q3 depend on the correspond-
ing stress tensors and can be derived as follows:

Uniaxial compression: The calculation of q1 is trivial, depending only on the uniaxial compressive strength (fc).
q1 ¼
ffiffiffiffiffiffiffi
2J 2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 1

6
� ð0� 0Þ2 þ ð0� fcÞ2 þ ðfc � 0Þ2
h ir

¼
ffiffi
2
3

q
� jfcj ð32Þ
Triaxial compression: The calculation of q2 needs an arbitrarily defined lateral stress (rpc) and the correspond-
ing triaxial strength (fcc) derived from the current failure surface, using an iterative procedure. Herein, this
lateral stress was chosen equal to the uniaxial compressive strength (rpc = fc) and indicative values of fcc, ema-
nating from this iterative procedure, for various concrete grades are shown in Table 2.
q2 ¼
ffiffiffiffiffiffiffi
2J 2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 1

6
� ½ðrpc � rpcÞ2 þ ðrpc � fccÞ2 þ ðfcc � rpcÞ2�

q
¼

ffiffi
2
3

q
� jfcc � rpcj ð33Þ
Equibiaxial compression: The calculation of q3 depends on the equibiaxial concrete strength (fbc), already cal-
ibrated against fc, using Eq. (10), hence
q3 ¼
ffiffiffiffiffiffiffi
2J 2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 1

6
� ½ð0� fbcÞ2 þ ðfbc � fbcÞ2 þ ðfbc � 0Þ2�

q
¼

ffiffi
2
3

q
� jfbcj ð34Þ
The inclinations w1, w2, w3 for uniaxial, triaxial and equibiaxial compression, respectively, depend on the
corresponding plastic strain tensors and can be derived using the hydrostatic (n 0) and deviatoric length (q 0) of
the plastic strain vector (compressive stresses assume negative values in Eqs. (36), (39) and (42)).
w ¼ q0

n0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 1

6
� ½ðep

1 � ep
2Þ

2 þ ðep
2 � ep

3Þ
2 þ ðep

3 � ep
1Þ

2�
q

ep
1 þ ep

2 þ ep
3ffiffiffi

3
p

ð35Þ
The components of the principal plastic strain tensor under uniaxial compression are:
2
d values for the triaxial concrete stress (fcc) from the current failure surface

a) rpc fcc

20 87.1
30 130.4
40 173.6
50 216.8
60 259.9
70 302.9
80 346.0
90 389.0

100 432.0
110 474.9
120 517.9
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ep
3 ¼ e3 � ee

3 ¼ ec � 1
Ec
½fc � m � ð0þ 0Þ� ¼ ec �

fc

Ec

ð36Þ

ep
1 ¼ ep

2 ¼
ep

v;p � ep
3

2
ð37Þ
where ep
v;p ¼

fc

Ec
ð1� 2mÞ (Eq. (16))

The total strain at uniaxial concrete strength (ec, Eq. (36)) follows the recommendations of MC90
(CEB, 1993) and CEB Working Group on HSC/HPC (1995) for normal and high-strength concrete,
respectively:
ec ¼ min
�0:0022

� 0:7 � f 0:31
c

1000

8<
: ð38Þ
It should be noted here that experimental evidence regarding the dependence of ec on concrete strength
shows considerable scatter, which may be attributed to different concrete mixtures, specimen sizes, end con-
ditions and measurement setups among different researchers (Carreira and Chu, 1985), as well as the relative
flatness of the r–e curve in the region close to the peak stress. Nevertheless, the above code equation (Eq. (38))
approximates well the experimental results from various researchers (Fig. 14).

The components of the principal plastic strain tensor under triaxial compression are:
ep
3 ¼ e3 � ee

3 ¼ ecc � 1
Ec
½fcc � m � ðrpc þ rpcÞ� ¼ ecc � 1

Ec
½fcc � 2 � m � rpc� ð39Þ

ep
1 ¼ ep

2 ¼
ep

v;p � ep
3

2
ð40Þ
where ep
v;p ¼

fc

Ec
ð1� 2mÞ, same as in the uniaxial case (Eq. (16))

For the derivation of the total strain at triaxial stress (ecc, Eq. (39)), a linear relationship between the con-
finement level (rpc/fc) and strain amplification (ecc/ec) under triaxial compression is suggested, based on an
experimental database (Fig. 15). It is observed that the scatter of the results is wider for higher confinement
levels.
ecc ¼ ec � 1þ 17 � rpc

fc

� �
ð41Þ
which reduces to ecc = 18 Æ ec for rpc = fc

The components of the principal plastic strain tensor under equibiaxial compression are:
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ep
3 ¼ ep

2 ¼ e3 � ee
3 ¼ ebc � 1

Ec
½fbc � m � ðfbc þ 0Þ� ¼ ebc �

fbc

Ec

ð1� mÞ ð42Þ

ep
1 ¼ ep

v;p � 2 � ep
3 ð43Þ
where ep
v;p ¼

fc

Ec
ð1� 2mÞ, same as in the uniaxial case (Eq. (16)).

For the calculation of the total strain ebc under equibiaxial compression, the well known expression ebc =
ec Æ (3 Æ fbc/fc � 2) suggested by Darwin and Pecknold (1977), also adopted by MC90 (CEB, 1993) could be
used. Nevertheless, this expression seems to overestimate the equibiaxial strains compared to the majority
of experimental evidence, which show marginal to zero strain amplifications under equibiaxial loading (Liu
et al., 1972; Yin et al., 1989; Traina and Mansour, 1991; Hussein and Marzouk, 2000; Lee et al., 2004). Unless
a more comprehensive database becomes available, a reasonable alternative is to assume that strains and stres-
ses are equally amplified under equibiaxial compression (Eq. (10)):
ebc=ec ¼ fbc=fc ¼ 1:5 � f �0:075
c ð44Þ
Since the plastic potential function coefficients are calibrated on the basis of a single triaxial stress state
of arbitrary confinement level (here: rpc = fc), it should be investigated whether the strain amplifications
(ecc/ec), calculated by the constitutive model, are linearly related to the confinement level (rpc/fc), as already
suggested by Eq. (41). A parametric study has shown that selecting a cubic plastic potential function
(n = 3) fulfils the above expectation (Fig. 16) and hence an arbitrary selection of the confinement level for
the calibration of plastic potential coefficients does not affect the analysis results.

Fig. 17 shows the plastic strain vector directions for uniaxial, triaxial and equibiaxial compression, resulting
from the above calibration procedure. It is observed that with increasing confinement, the direction of the
plastic strain vector approaches that of the deviatoric axis and hence the rate of volumetric growth (dilatancy)
is decreasing. This in turn results in a slower accumulation of plastic volumetric strain (i.e. the hardening/soft-
ening parameter j) and hence increased deformation capacity in both the axial and lateral directions, under
triaxial compression. Fig. 18 shows the evolution of the plastic potential surface during hardening and soft-
ening (for zero attraction a = 0) and Fig. 19 depicts the non-associative characteristics of the plastic flow
under uniaxial compression (hardening regime), where it is clear that using an associated flow rule (f = g)
would result in an overestimation of the plastic dilatancy of concrete (e.g. Kang and Willam, 1999). It has
to be noted here that the slight concativity of the plastic potential surface near zero deviatoric length (q),
which depends on the plastic-potential order and the value of the hardening/softening parameter, is not found
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to introduce any numerical instabilities under compressive load paths (Figs. 17 and 19), on which the present
model is currently focused.

6. Numerical integration

For the integration of the constitutive equations, an implicit backward-Euler return-mapping algorithm
was applied (e.g. Macari et al., 1997), incorporating a regula-falsi/secant iterative scheme (Červenka et al.,
1998). In order to maintain consistency with constitutive equations, the above scheme iteratively updates
the following variables: (1) the plastic multiplier (dk) which yields both the stress corrector ð�dkDmk

ijÞ and
the additional plastic strains ðþdkmk

ijÞ, (2) the return direction ðmk
ijÞ of the stress vector towards the failure

surface and (3) the hardening/softening functions (k(j), c(j)), which control the position and the size of the
failure surface (f) and the plastic potential surface (g) in the stress space. The input data (step: n) are the cur-
rent stress tensor (nrij), the plastic strain tensor ðnep

ijÞ, describing the deformation history (load path depen-
dency) of the material, and the trial total strain increment (deij). The output data (step: n + 1) are the
updated nonlinear stress tensor (n+1rij) and the updated plastic strain tensor ðnþ1ep

ijÞ. The suggested algorithm



0.0

0.2

0.4

0.6

0.8

1.0

-1.0-0.8-0.6-0.4-0.20.0

3 k = 1.0 0.8

0.6

0.4

ko

(c = 1)

/fc

 = 60°
/fc

f
g

d
p

fc

θ
ξ

ε

σ

ρ

Fig. 19. Non-associated plastic flow under uniaxial compression (hardening regime) on the Rendulic plane.

6.0

5.0

4.0

3.0

2.0

1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

-1000-900-800-700-600-500-400-300-200-1000100

/fc
k = 1.0

0.8

0.6

0.4

0.2

 = 60°

 = 0°

(c = 1) /f c

c = 1.0

0.8
2

0.6
2

0.4
2

0.2
2

(k = 1)

a = 0

ρ

θ

θ

ξ

Fig. 18. Evolution of the plastic potential surface during hardening and softening on the Rendulic plane.

7038 V.K. Papanikolaou, A.J. Kappos / International Journal of Solids and Structures 44 (2007) 7021–7048
is numerically stable with a fast rate of convergence, it is independent of the load step size and does not require
the differentiation of the failure surface. A detailed flow chart of the procedure is shown in Fig. 20.

In the context of the finite element method, either the initial (elastic) or the tangent stiffness (full Newton–
Raphson) approach can be applied in the global solution. For the second case, the tangent stiffness matrix
(Dep) of the constitutive model can be derived as follows:
Dep ¼ D�
D � og

or
� of

or

T �D
of
or

T �D � og
or
� of

oj � d
T � of

or

ð45Þ
The calculation of the tangent stiffness matrix definitely increases the computational cost for each Gauss
point because it requires the differentiation of the failure surface with respect to the stresses and the harden-
ing/softening parameter. Nevertheless, this would be compensated by the reduced computational cost per iter-
ation in the global solution.



Fig. 20. Flow chart of the backward-Euler return-mapping algorithm.

V.K. Papanikolaou, A.J. Kappos / International Journal of Solids and Structures 44 (2007) 7021–7048 7039
7. Verification

The present concrete constitutive model was implemented in a stand-alone software application, including a
constitutive driver operating at the material stress–strain level. Its performance is evaluated for both normal
and high-strength concrete, by comparisons with uniaxial, biaxial and triaxial compressive experimental tests
from the literature. It has to be noted here that all model parameters were calibrated only on the basis of the
compressive concrete strength (fc) reported in the respective experimental studies, following the procedures
described in the previous sections (generic calibration). Consequently, any discrepancies between analytical
and experimental results are mainly attributed to the intrinsic scatter of the experimental results used for cal-
ibrating the model parameters (e.g. Figs. 3, 5, 11, 14 and 15). Notwithstanding this scatter, the model structure
allows easy recalibration against specific experimental datasets, which can enhance the model performance
(targeted calibration). Nonetheless, the suggested generic calibration procedure is deemed adequate for prac-
tical purposes, since usually no detailed experimental data is available.

Prior to comparing with experimental results, the numerical performance of the constitutive driver was
evaluated against stress–strain pairs of maximum compressive strength and corresponding axial total strain
that were directly calculated from the various calibration equations (e.g. (38), (41) and (44)). Fig. 21 shows
a set of normalized axial stress–strain curves for concrete under uniaxial, equibiaxial and triaxial compression
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for various confinement levels. It is observed that these curves pass from the anticipated stress–strain pairs and
therefore, the reliability of the constitutive driver is validated.

Fig. 22 shows a comparison between analytical results (using generic calibration) and experimental results
(Dahl, 1992) for normal and high-strength concrete under uniaxial compression. For normal concrete,
correlation is reasonable, while for high-strength concrete it is observed that experimental results show lower
deformation capacity. However, if the model calibration is targeted, i.e. the values of Ec, ec and t are calibrated
to correspond to each experimental curve (instead for Eqs. (15), (38) and (20), respectively), the above
discrepancies are significantly reduced (Fig. 23).

Fig. 24 shows a comparison between analytical (generic calibration) and experimental results (Kupfer et al.,
1969) for concrete under uniaxial compression, in both the axial and lateral directions. The correlation is rea-
sonable, and the relatively small difference regarding the lateral direction is due to the model assumption of
zero volumetric strain at maximum stress (Eq. 16), which is not reflected in this experimental study. Moreover,
the initial plastic compaction (negative plastic volumetric strain) that is apparent in the volumetric curve
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(r3–ev) cannot be accounted for by the present model structure (plastic volumetric strains are always positive;
Fig. 9).

Figs. 25 and 26 show comparisons between analytical and experimental results for normal and high-
strength concrete, respectively, under equibiaxial compression (generic calibration). The axial stress–strain
behaviour is captured well, while the lateral strain is moderately overestimated. It has to be noted here that
in the case of high-strength concrete, the respective experimental test (Hussein and Marzouk, 2000) showed
minimal strain amplification under equibiaxial compression, which points to the necessity of the Lode-angle
dependent plastic potential function, incorporated in the model. Moreover, any softening behaviour was not
captured in this test, hence any comparison beyond maximum strength was meaningless.

Figs. 27 and 28 show comparisons between analytical and experimental results for normal and
high-strength concrete, respectively, under triaxial compression and various confinement levels. The observed
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correlation is acceptable for both the axial and lateral directions, since the respective experimental data are
relatively close to the suggested generic calibration equations.

The opposite trend is shown in Fig. 29, where the generic calibration cannot approximate well the strength
and deformational characteristics of the high-strength concrete used in the respective experimental study (Xie
et al., 1995). Nevertheless, a targeted calibration using some modified model parameters (Table 3) that match
the experimentally measured values and hence are not affected by the intrinsic scatter in the generic calibration
equations, seems to subdue the above discrepancies (Fig. 30); the remaining model parameters that are not
referred in Table 3 follow the generic calibration scheme, as described in the previous sections. Note that
Ec and ec are material characteristics from standard compression tests, while ecc is taken from one triaxial test
(here for r1 = r2 = 29.3 MPa), and ft is not the experimentally derived value, but rather the optimal value cal-
ibrated against the experimentally measured triaxial strengths (here fc/ft = 12.5, see also Section 3). Even bet-
ter match would have resulted if additional model parameters (such as rco and t) were also modified (using a
trial-and-error approach).
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8. Conclusions

A confinement-sensitive plasticity constitutive model for concrete in triaxial compression was presented in
this study, composed by a three-parameter loading surface, uncoupled hardening and softening functions fol-
lowing the accumulation of plastic volumetric strain, and a nonlinear plastic potential function. The main
advantages of the proposed model compared to previous studies are the Lode-angle dependency of the plastic
potential function, which allows the calibration of the strain amplifications under equibiaxial compression
(tensile meridian), the variable order of the plastic potential function, which controls the experimentally ver-
ified linearity between lateral stress and strength amplifications under triaxial compression and the refined
softening function, which better reflects the experimentally observed softening behaviour of concrete.
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Table 3
Modification of some model parameters, targeted on the experimental results of Xie et al. (1995)

Parameter Generic Targeted

fc 60.2 60.2
Ec 33927 17500
ft 6.02 4.82
ec �0.0025 �0.0035
ecc �0.0370 �0.0235
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Key model parameters were calibrated against an ad hoc compiled database of test results, which is sub-
stantially expanded with respect to similar databases used by previous investigators. Furthermore, this generic
calibration scheme was also based on code recommendations, eventually rendering the various model param-
eters dependent only on the uniaxial compressive concrete strength. The model performance was evaluated
against experimental results and it was verified that the ultimate strength, deformation capacity and residual
strength of confined concrete were properly captured.

An important further aspect of the suggested model is that it follows an open structure, allowing easy recal-
ibration using selected experimental datasets, in order to enhance its performance in specific cases. Further-
more, it may be combined with a fracture tensile model in order to globally simulate the concrete
behavioural characteristics under multiaxial stress states. This aspect is currently being pursued by the writers.

Figs. 3–6, 11, 14 and 15 contain experimental results from the following sources: Ansari and Li (1998),
Attard and Setunge (1996), Balmer (1949), Chinn and Zimmerman (1965), Endebrock and Traiana (1972),
Harries and Kharel (2003), Hognestad et al. (1955), Kotsovos and Newman (1980), Lan and Guo (1999), Mills
and Zimmerman (1970), Nawy et al. (2003), Nelissen (1972), Ramaley and McHenry (1947), Richart et al.
(1928), Schickert and Winkler (1977), Smith and Young (1956), Su and Hsu (1998), Tasuji et al. (1978), Traina
(1983), Wang et al. (1978), Wee et al. (1996).
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Appendix A. Notation

a attraction parameter of the plastic potential function
A first coefficient of the plastic potential function
B second coefficient of the plastic potential function
C third coefficient of the plastic potential function
c(j) softening function
D, Dijkl elasticity matrix
Dep elastoplastic tangent stiffness matrix
d incremental representation of vectors and tensors
dk plastic multiplier
e eccentricity parameter of out-of-roundness
ep plastic deviatoric strain
Ec concrete elastic modulus
f loading function
fbc equibiaxial compressive concrete strength
fc mean uniaxial compressive concrete strength
fcc triaxial compressive concrete strength
ft mean uniaxial tensile concrete strength
g plastic potential function
I1 first invariant of the stress tensor
J2 second invariant of the deviatoric stress tensor
J3 third invariant of the deviatoric stress tensor
k(j) hardening function
ko hardening parameter defining the onset of plastic flow
m friction parameter of the loading function
n order of the plastic potential function
n1 first parameter of softening function (Eq. (18))
n2 second parameter of softening function (Eq. (19))
r(h,e) elliptic function of the loading function
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t slope parameter of the softening function
d Kronecker delta
e, eij total strain vector and tensor
ec total strain at uniaxial concrete strength
ebc total strain at equibiaxial concrete strength
ecc total strain at triaxial concrete strength
ee, ee

ij elastic strain vector and tensor
ep, ep

ij plastic strain vector and tensor
ev total volumetric strain
ep

v plastic volumetric strain
ep

v;t plastic volumetric strain at uniaxial concrete strength (threshold value)
h Lode angle of the stress vector in Haigh–Westergaard stress space
j hardening/softening parameter
m concrete Poisson’s ratio
n hydrostatic length of the stress vector in Haigh–Westergaard stress space
n 0 hydrostatic length of the plastic strain vector
q deviatoric length of the stress vector in Haigh–Westergaard stress space
q 0 deviatoric length of the plastic strain vector
r, rij stress vector and tensor
rco concrete stress defining the onset of plastic flow
rpc lateral (confinement) concrete stress
w inclination of the plastic strain vector

Appendix B. Partial derivatives of the plastic potential function (g)

For the definition of the plastic flow rule (Eq. (3)), the partial derivatives of the plastic potential function
with respect to the principal stresses are:
og
or1

¼ n � A
ðk � ffiffiffi

c
p � fcÞn

� ð2J 2Þ
n
2�1 � 2 � r1 � r2 � r3

3
þ

Cþ 1
2
ðB� CÞð1� cos 3hÞ

� �
k �

ffiffiffi
c
p
� fc

� 1ffiffiffiffiffiffiffi
2J 2

p � 2 � r1 � r2 � r3

3

þ 1ffiffiffi
3
p
� k �

ffiffiffi
c
p
� fc
og
or2

, og
or3

same as above using cyclic references for r2 and r3.
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