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1. Introduction

In the present paper we study the quasineutral limit of compressible Navier-Stokes-Poisson system

3rp +div(pu) =0, (1.1)

ploru+ - Vyu} +VP(p,0) + pV® = pAu+ (u +v)Vdiva, (12)

* Corresponding author.
E-mail addresses: qiangchang_ju@yahoo.com (Q. Ju), fli@nju.edu.cn (F. Li), hailiang.li.math@gmail.com (H. Li).

0022-0396/$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.,jde.2009.02.019


https://core.ac.uk/display/82364283?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jde
mailto:qiangchang_ju@yahoo.com
mailto:fli@nju.edu.cn
mailto:hailiang.li.math@gmail.com
http://dx.doi.org/10.1016/j.jde.2009.02.019

204 Q. Ju et al. / ]. Differential Equations 247 (2009) 203-224

cvp{ab + @-V)8) + P(p,6) divu =k A6 + v(divu)? + 2uD(w) : D(w), (1.3)

“MAP=p—1, (14)

for xe TN ¢ RN (N =2, 3), the N-dimensional torus, where p, u= (ug, ..., uy), 6, and & denote the
electron density, velocity, temperature, and the electrostatic potential, respectively. D(u) = (d,-j),’.\’ =1
dij = %(3,’”] +9ju;). The constants v and w are the viscosity coefficients with ¢ >0 and 21+ Nv > 0.
cy > 0 is the specific heat constant, k > 0 the heat conductivity coefficient, and A > 0 the scaled

Debye length. The pressure function P(p, 6) takes the form
P(p,0) =RpH, R=>D0. (1.5)

Without loss of generality, we assume cy = R =1 for notational simplicity. The Navier-Stokes-
Poisson system (1.1)-(1.4) can be used to describe the dynamics of plasma, where the compressible
fluid of electron interacts with its own electric field against a charged ion background, see Degond [3].

The purpose of the present paper is to investigate the quasineutral limit of the compressible
Navier-Stokes-Poisson system (1.1)-(1.4). We shall prove rigorously that, as the Debye length » — O,
the solution of the compressible Navier-Stokes—Poisson system converges strongly to the strong so-
lution of the incompressible Navier-Stokes equations plus a term of fast singular oscillating gradient
vector fields as long as the strong solution of the latter exists. Moreover, we also consider the con-
vergence of the compressible Navier-Stokes-Poisson system (1.1)-(1.4) to the incompressible Euler
equations by performing the combined quasineutral, vanishing viscosity and vanishing heat conduc-
tivity limit, i.e. A — 0 and u, v,k — 0.

We first give some formal analysis. We use the subscript A to indicate that the unknowns are
dependent on A and set ¢, = A®;. Thus, we can rewrite the system (1.1)-(1.4) as

005, + div(pauy) =0, (16)

o {4+ (- Vyug} + V(02605) + %vam = pAu;, + (v + p)Vdivuy, (17)
01406 + (U - V)60, } + a0y div, =k A6, + v(divu;)? 4+ 2uD(u;) : D(u;), (1.8)
—AAQ), =p; — 1. (1.9)

The system (1.6)-(1.9) is equipped with the initial data
P 0) =00 (x), W0 =ugx),  6i(x,0) =060(). (110)
Letting A — 0 formally in the Poisson equation (1.9), we have p, = 1. Moreover, if we assume that
u, — Vv, 6, —> 0

as A — 0, we may expect that the compressible Navier-Stokes-Poisson system (1.6)-(1.9) converges
to the incompressible Navier-Stokes equations (see [17])

V.v=0,
v+ (V- VIV+ VIT = pAv,

ud (111)
hO+(V-VIO=KAD+ 5 ili_:](aivj +0jvi)%,
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as the Debye length goes to zero, where VIT is expected to be taken as the limit of the singular
electric field and the gradient of pressure together. Furthermore, if we let & — 0 and x — 0 in (1.11),
it yields the incompressible Euler equations

V.v=0,
v+ (v-V)v+VIT =0, (112)
00 + (v- V)6 =0.

Recently, there are many progresses on the quasineutral limit of the compressible isentropic
Navier-Stokes-Poisson system (i.e. the system (1.6), (1.7) and (1.9) with the pressure P, = api/,
y > 1, a > 0), Wang [23] studied the quasineutral limit for the smooth solution with well-prepared
initial data. Wang and Jiang [24] studied the combined quasineutral and inviscid limit of the com-
pressible Navier-Stokes-Poisson system for weak solution and obtained the convergence of Navier-
Stokes-Poisson system to the incompressible Euler equations with general initial data. In [24], the
vanishing of viscosity coefficients was required in order to take the quasineutral limit and no conver-
gence rate was derived therein. Ju, Li and Wang [11] improved the arguments in [24] and obtained
the convergence rate. Donatelli and Marcati [4] investigated the quasineutral limit of the isentropic
Navier-Stokes—Poisson system in the whole space R3 and obtained the convergence of weak solu-
tion of the Navier-Stokes-Poisson system to the weak solution of the incompressible Navier-Stokes
equations by means of dispersive estimates of Strichartz’s type under the assumption that the Mach
number is related to the Debye length. Notice that their arguments cannot be applied to the periodic
case since the dispersive phenomenon disappears in this situation. Ju, Li and Wang [10] studied the
quasineutral limit of the isentropic Navier-Stokes-Poisson system both in the whole space and in the
torus without restriction on the viscosity coefficients.

However, there is no analysis on the quasineutral limit of the compressible non-isentropic Navier—
Stokes-Poisson system yet. In the present paper, we shall consider the general ill-prepared initial data
for the system (1.6)-(1.9), so the fast oscillating singular term will be produced by the non-divergence
free part of initial momentum, and has to be described carefully in order to pass into the quasineutral
limit.

In order to describe the oscillations in time, we introduce the following group £ =e™l, 7 e R,
where L is the operator defined on the space H = (L2(TN)N x {Vy, ¥ € H/(TN)} by

0
Va\_ (Vv
(5= (5. -

Then it is easy to check that e?l is an isometry on space HS(TN) x HS(TM). Let us consider the
evolution of velocity and electric field. From (1.7) and (1.9), it is easy to obtain the following equation

L ("") —0, if divw=0,

1
WV, — 5 Q= —QwV - (V). (114)

where the operator Qv= VA~1V .v is the Leray’s projector on the space of gradient of vector field
v e (L2(TN))N, which is defined as follows

Ov=VA~lV.v, Pv=(1—-Q), V. -Pv=0.

We project the momentum equation (1.7) on the “gradient vector fields” to obtain
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1
o Quy, + va =—-9(u, - V)u,)

1
_ Q(avm) + LQ(AW) + (v + ) Q(V divey)

+MQ((l_])Au)‘)+(V+M)Q((i—l)Vdivu)\>. (1.15)
Pa Pa

_ [ Qu, _ t
Uy = (Vm)’ vx_.c(—X)UA.

Then we can rewrite the system (1.14)-(1.15) as

_ £\ (ko
3 Vs _ﬁ(_X) <k1) (1.16)

Define

with

1
ko =—Q((u - V)uy) — Q(EVPQ + nQ(AW) + (v + W) Q(Vdivuy)

+uQ<(i—1>Am>+(v+u)Q(<l—1>VdiV“x>7 (117)
P P

ki =Q(w,V - (V¢y)). (1.18)

Now we can construct the oscillating terms as follows. Let v € C([0, T]; H5(TN)) be a divergence
free function. Consider the following linear system

Vg + %Q((v -V)Vq+ (Vq- V)V+VAQ) — (it + v/2)V div(Vq) =0,
(1.19)
8Vp+ %Q((V- V)Vp +(Vp - VIV+VAD) — (1L +v/2)V div(Vp) =0

with initial data

(Va(x,0), Vp(x,0)) = (Quo(x), Vo (x)).

It is direct to prove that there exists a unique global smooth solution (Vq, Vp) to the oscillating
system (1.19) satisfying

1(va. VDY [ sy < (D[ (Quo, Vo) s oy » (1.20)

where C(T) > 0 is a constant depending only on T.

Define
Uosc (X, ) t) (Vq(x, t) )
=Ll - . 1.21
(Vqsosc(x, r)) (x Vpx.0) (121
Before stating our results rigorously, we first recall the local well-posedness result on the initial

value problem for the incompressible Navier-Stokes system (1.11) in multi-dimension. One can refer
to [17] for the proof.
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Proposition 1.1. Assume that s > N/2 + 1 and

_ 43 divye —
{v(x, 0) =vo(x) € HS, divvy =0, (122)

8(x,0) =6p(x) € H*3, infypn 6p(x) > 0.

Then there exists some time T* (0 < T* < +00) such that the initial problem (1.11) and (1.22) admits a unique
strong solution (v, 0) satisfying, forany T < T*,

veC'([0,TLHTY), i=0,1, V(O] o5 < CollVoll s+, (1.23)
0eC([0,TLHTT), i=0,1, 00|53 < CollVoll ys+3 (1.24)

with Co > 0 a constant. Moreover, if N = 2, the initial problem (1.11) and (1.22) admits a global unique strong
solution (v, 0) € CI([0, c0), HSF31),i=0, 1.

Our main results of this paper read as follows.
Theorem 1.2. Let 0 < T < T* defined in Proposition 1.1 and suppose that (v, 6) € C([0, T], HS*3~),i=0, 1,

s > N/2 + 2, be the unique strong solution of the initial problem (1.11) and (1.22). Assume that the initial data
(00.(%), W01 (X), 60;.(x)) satisfies

P00 =1=2A¢0 (0, inf pr(x)>0, Vo € H¥T(TV), (1.25)
ug, € H(TV), 60, (x) € H*(TV), inf 60,(x) >0, (1.26)
and
IPuox — Vollws + [ Quos, — Qug|lps < CA, (127)
| 0r®) — 1+ 2AgoX) ;s <CAZ, [|60x — Oollns < Ca (1.28)

for some constant C > 0, where ¢g and ug are defined by (2.1). Then there is a small constant 8t > 0 such that,
for any 1 € (0, 871, the initial value problem for Navier-Stokes—Poisson system (1.6)-(1.9) admits a unique
classical solution (o, uy, 65, ¢,) on [0, T] satisfying

sup ||(02, ., 00O | s + sup |V ()| yorr < C1 (1.29)
o<t<T 0<t<T

uniformly with respect to A. Moreover, it holds that

sup {[ (o = DO s + | x =V —tos) (O)| s + [ 62 = O)O | s}
<t<T

+ sup_ [(Vs = Veposo) () | o1 < C2 (1.30)

o<t

with C; > 0 independent of A.

If we further perform the combined quasineutral, vanishing viscosity and vanishing heat conductiv-
ity limit, i.e. A — 0 and w, v, k — 0, we obtain the convergence of the Navier-Stokes-Poisson system
(1.1)-(1.4) to the incompressible Euler equations (1.12). Namely,
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Theorem 1.3. Let 0 < T < T** and suppose that (v,6) € C/([0, T], HST371),i=0,1,s > N/2 + 2, be the
unique strong solution of the initial problem (1.12) and (1.22), where T** is the maximal existing time of
(v, 0). Assume that the initial data (o) (x), o, (x), 6px (x)) satisfies the conditions (1.25)-(1.28). Then, there
is a small constant 87 > 0 such that, for any x € (0, 871, the initial value problem for Navier-Stokes—Poisson
system (1.6)-(1.9) admits a unique classical solution (p; , w,, 6, ¢,) on [0, T] satisfying

sup [ (on. ., ) O | s + Su<pTHV¢A(f)HHs+1 <G (1.31)

Itx Itx

uniformly with respect to A as |4, v, k — 0. Moreover, it holds that

= DO ys —V — Uosc) (8) || s 0 — )| us
39 {101 = DO s + | =9 = o0 s + |6 =)0

+ sup [[(Vr — Veoso) (O] yyss1 < Car (132)
<t<T

with C4 > 0 independent of 1. Here (v, 0) is the unique strong solution of the initial problem (1.12) and (1.22),
and (Wosc, Posc) is the fast singular oscillating gradient velocity vector field and electric field defined by (1.19)
and (1.21)with u =v =0.

Remark 1.1. The method developed in this paper can be applied to the situation when the doping
function is a perturbation of a constant state

Cx)=1+rg®)
with g(x) € C2(TN), a given function, satisfying [y gdx = 0.

Remark 1.2. We believe that the method developed in this paper can be also applied to investigate
the quasineutral limit problem to more complex model such as the full Navier-Stokes-Poisson system
with more general pressure, which will be studied in a forthcoming paper.

The proofs of Theorems 1.2 and 1.3 mainly consist of three steps. First, we apply the homoge-
nization technique to construct the approximate solution to the classical solution (if exists) of the
system (1.6)-(1.9). Then by using the theories of symmetric quasilinear hyperbolic system and the es-
timates of second order elliptic equations, we show that the remainder term exists in the same time
interval as the approximate term for fixed small A > 0. Moreover, we obtain the uniform estimates
with respect to A (the uniform estimates with respect to u, v and x can also be obtained by further
analysis). These facts are sufficient for us to complete the proofs of Theorems 1.2 and 1.3.

It should be noted that the quasineutral limit is a well-known challenging and modelling problem
in fluid dynamics and kinetic models for semiconductors and plasmas. In both cases there exist only
partial results. In particular, the quasineutral limit has been performed in Vlasov-Poisson system by
Brenier [1], Grenier [5], and Masmoudi [18], in Vlasov-Poisson-Fokker-Planck system by Hsiao, Li
and Wang [7,8], in Schrédinger-Poisson system by Puel [21], Jiingel and Wang [13], and Ju et al. [9],
in drift-diffusion-Poisson system by Gasser et al. [6], Jiingel and Peng [12], Wang et al. [25]. For
the hydrodynamic model, besides the results mentioned above for the Navier-Stokes-Poisson system,
there are also many results on Euler-Poisson system, for example, for the isentropic Euler-Poisson
system [2,19,22,23] and for non-isentropic Euler-Poisson system [16,20]. Li and Lin [14] considered
the quasineutral limit to the isentropic quantum hydrodynamical model with the help of modulated
energy method for general initial data.

Before ending this section, we recall the following Moser-type calculus inequalities which will be
used frequently in the sequel.
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Proposition 1.4 (Moser-type inequalities). (See [15].)

(1) For f,g € HSNL* and || < s, it holds that
ID*(f&)] ;2 < Cs(I flle= | D°g|l 2 + llgllz=| D* | 2)- (1.33)
(2) For f e HS, Df € L™, g e H"1 N L*® and || < s, it holds that

|D*(fg) = FD* (@] 2 < Cs(IDS I | D' g ;2 + gl | D £ 12)- (1.34)

Notations. In this paper, C and C; (i =1,2,...) denote the generic positive constants, which may
change from line to line and are independent of A. C(T) and C;(T) denote the constant depending on
the time T. H® denotes the standard Sobolev space W52(TN). For the multi-index o = (&1, ..., an),
we denote D* =35, --- 35 and || = |aq] + -+ - + | ].

The rest of this paper is arranged as follows. In Section 2, we construct the approximate solutions
to the problem (1.6)-(1.10). In Section 3, we establish the local existence of solution to the remainder
system and obtain the uniform estimates. The proofs of our main results are given in Section 4.

2. Construction of approximate solutions
In this section we shall construct the approximation to the system (1.6)-(1.9). Noticing the fast sin-

gular oscillating vector fields (ugsc, Vosc) obtained by (1.21), we find that the fast singular oscillating
vector fields (Wpsc, Vosc) satisfy

1
OrUosc + 5 Q((V V)Ugse + (Uosc - VIV +VV - “osc)
. 1
— (L +v/2)Vdivues + qubosc =0,
1
0 Vosc + 3 Q((V V)Vosc + (Véosc - VIV + VA¢OSC)

— (U +Vv/2)V Apgsc — %uosc =0,
(Uosc (%, 0), Vposc (x, 0)) = (Quo(x), Vo (x)).

Thus it is natural to define

Posc = —Adosc-

We conclude that the fast oscillating part (0osc, Uosc, Posc) Satisfies the following initial value problem

1
0t Posc + [V + Uosc] - V posc + X(l + APosc)V - Uosc = k2,

1
OrUosc + ([V + Uosc] - v)uosc + (Uosc - VIV + Xv¢osc =k, (2.2)

—Adosc = Posc,
Posc(X,0) = —Agpo(x), Upsc(x,0) = Quo(x),

where
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1
ka=V- (;Oosc[v + uosc]) + EV : ((V V)Vosc + (Vosc - VIV + VA¢osc) —(u+ V/Z)A2¢050 (2.3)
1
ks = 5 Q((V * V)Ugse + (Wosc - VIV —VV - uosc) + (Uosc - V)Uosc
+ P((V' V)Ugse + (Uosc - V)V) + (1 +v/2)Vdivues. (24)
Moreover, by virtue of (1.20) and (1.21), we obtain that
k2 | gs-2xwy + 1K3 | gs—2 oy < C[| (Yo, Quio, Vo) | s v » (2.5)

where the constant C > 0 is independent of A. To approximate the classical solution W =
(px,uk,ek,m)T of the initial value problem (1.6)-(1.10) for small A, we still need to introduce an
additional correction term

W cor = (APcor, Ueor, Bcor ¢cor)T-

By utilizing the fast singular oscillating part and the given functions k, and k3, we can construct
(Peor» Ycors Ocor» Peor) by solving the following linear initial value problem

OrUcor + Veor =ka,

0t Vépcor — Ucor = V(_A)71k2,

Peor = —Acor, (2.6)
0rOcor = kSs

(Ucor, Véeor, Ocor) (%, 0) = (0,0, 0),

where

kg =—k3 — VO + puAugse + (14 + V)V div ugsc,

N
. 12 i i \2
ks = —uosc - VO — OV - uosc + l)(dlvuosc)z + B E (3,‘Vj +0jvi+ 8iu{)sc + 8jui)sc) :
i,j=1

Here we recall that (v, 6) is the solution to the system (1.11).
By virtue of (1.21), (1.23), (1.24) and (2.5), it is easy to prove the following existence results of
solutions to the problems (2.2) and (2.6).

Proposition 2.1. Let T > 0, T < T* be given. Let v, 0 € CI([0, T], H*3~1),i =0,1, s > 1 + N/2, be the
solution to the initial value problem (1.11) and (1.22). Then the problem (2.2) admits a unique classical solution

(Posc» Uosc, Vosc)T for t € [0, T] satisfying
| Posc O] ysv2 + || (Wosc, Voose) ()| 3wy < Cr (2.7)
and the problem (2.6) admits a unique classical solution (pcor, Ucor, Ocor» V¢Cor)T fort € [0, T] satisfying
| Pcor (O | 1 + || Wcor, Beor, Veor) (T | sz < Crs (2.8)

where Ct > 0 depends only on T and the initial data (vo, 6y, Qug, V), but is independent of A.
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According to Propositions 1.1 and 2.1, we can make the following asymptotic expansions of the
solution (py, ., 65, ¢1)

P20 =1+ Aposc(x, ) + 22 (AT (X, ) + Peor (X, £/2)) + 32 Prem (X, 1),

W) (X, 1) =V + Uosc (X, £) + Alcor (X, £/A) + Alrem (X, 1), (2.9)
0,.(x,t) = 0(x, t) + Abcor (X, t/A) + Abrem (X, 1),

G2.(X, 1) = Posc (X, t) + )\(H(X, t) + deor (%, t/)‘)) + Adrem (%, t).

Substituting (2.9) into the Navier-Stokes-Poisson system (1.6)-(1.9), using (1.11), (2.2) and (2.6), and
by tedious but direct computations, we can show that (Orem, Urems Orem, Prem) Solves the following
initial value problem

1 .
Ot Prem + Ux - V Prem + X,OA divurem = ho,

0;.
O¢Urem + (W), - V)Urem + )‘p_vprem + Vbrem
A

. 1
— UAUem — (U 4+ V)V diVUrem = _Xv¢rem +fo, (2.10)

0tOrem + Wy, - VOrem + 05 divVUrem — K Abrem = Av(div “rem)2

N
A - ,
+ 7 Z (aiulj‘em + 3jui'em)2 + 8o,

i,j=1
—Adrem = Prem
with initial data

1

Prem(X, 0) = A—z[,oox(x) —14+1A¢o(x)] — AMT(x,0),
1

Urem (X, 0) = [0 (%) = Vo(x) = Quo(®], (2.11)
1

Orem (%, 0) = 3 [60r(x) — Bo(®)].

In (2.10), we denote

ho = —Urem - V0osc — PremV - (Wosc + Alcor) — V - (OoscUcor)
— (V+ Ugsc + Alcor + Alrem) * V Ocor — Peor V + (Uosc + Allcor)
— Allf — (V(An))(v + Ugsc + Allcor + Allrem)

— AIT div(ugsc + Acor), (212)
fo = fo1 + fo2, (2.13)
8o = &o1 + 8o2 (2.14)

with
fo1 = —((“cor + Urem) - V) (V+uosc) — ((V + Uosc + Allcor + Allrem) - V)ucor

%
- p_iv(posc +A(AIT + Pcor)) — Vbcor,
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fo2 = LAUor + (U + V)V divuce

- % (posc + A(AIT + peor) + )\prem)A(V + Uosc + Alcor + Allrem)

+v .
- MT (posc + A(AIT + peor) + )\prem)v div(V 4 Ugsc + Algor + Alrem),

801 = —(Ucor + Urem) VO — (V + Ugsc + Allcor + Alrem) VOcor — (Bcor + Orem) div Uosc + 65 div Ucor,
K
oy

802 = K Abcor — 0 (posc + A(AIT + pPcor) + kpl'em)A(e + ABcor + AOrem)

+ 2V div ugsc (divucor + divrem) + Av(divucer)? + 2Av divucor div trem

N
+u Z (8,‘\/]‘ +0jvi+ Ul + ajugsc) (aiuéor + 0juge + Bilem + 3ju'rem)
ij=1
i j i \2 N ; . - 4
+ > Z (3,'ué01- + 3ju'mr) + A Z (3iué0r + 3julcor) (Biulj'em + aju'rem)
i,j=1 i,j=1

N
1 . i i\2
- a(posc + AATT + A pcor + )\prem)|:v(dlvuk)2 + % E (3iui + 3jul;\) i|
i,j=1

If we denote

. T
Urem := (Orem> Urem, Orem) »

the problem (2.10)-(2.11) can be rewritten as follows

N

0tUrem + Z Ajx,t, Urem)axj Urem — W AUre — (10 + V)V divilrem — KAérem
j=1
A 1
=Au]+7”G+XB+F(x,t, Urem). (2.15)
—Adrem = Prem,
T
Urem(x,0) = (,Orem(X, 0), urem (%, 0), Orem (X, 0)) = Uremo(X).

Here the matrices A; (j=1,...,N) are defined as

A 0 %pkej 0
Aj(x,t, Urem) = U] I(n+2)x (N+2) + %‘e; 0 e§
0 oej 0
and
~ _ T 0 _ T
Urem = (0, Urem, 0)°, Orem = (0,...,0,0rem) ,

J=(0,....0, divuem)?)',  F=(ho,fo, 20)7,

N T
; L
G= (0, ..., 0, Z (81uﬁem + ajulrem) ) s B = (0, —V¢rem, O)T-

i j=1



Q. Ju et al. /]. Differential Equations 247 (2009) 203-224 213

3. Local existence of solution to the remainder system (2.15)

In this section we study the local existence of smooth solution to the remainder system (2.15), our
result reads

Theorem 3.1.Let T > 0, T < T* begivenandv, 6 € C'([0, T], HSt3~1),i=0,1,s > 2+ N/2, be the solution
to the problem (1.11) and (1.22). Then there exists a constant 87 > 0 such that for any A € (0, 8t), the initial
value problem (2.15) admits a unique classical solution (Urem, ¢rem) in [0, T] satisfying

sup (” (X Prem> Urem; Orem) (£) ”Hs + H Vérem (1) ” Hs+1) < C(T), (31)
0<t<T

where C(T) is a positive constant independent of A.

The proof of Theorem 3.1 proceeds via a priori energy estimates and the classical iteration scheme.
The crucial step is to show the following energy estimates which can be obtained by performing the
refined energy estimates for the quasilinear symmetric hyperbolic-parabolic system and the Poisson
equation.

Lemma3.2.Let T > 0 begivenand s > N/2+2. There exist positive constants 57, M, M such that the classical
solution (Urem, ¢rem) to the initial value problem (2.15) satisfies

sup (” (APrem, Urem, Orem) () ” i,s + ” Vérem(t) Hisﬂ)
0<t<T

T T

+ [ [ trem ()2 e + / Grem ()21 e < M2, (32)
0 0

and

iu<pT(||xafprem O ys-1 + [ 20etrem ) | o2 + [ 0tOrem ©) | -z + |20 Vrem©] i) <M (3.3)
t

xtx

uniformly with respect to A € (0, 87].

Proof. We assume a priori that the classical solution to initial value problem (2.15) satisfies (3.2) and
(3.3). Then our task is to determine these unknown constants by energy estimates.
Noticing the matrices Aj(x,t,Uwem), j=1,..., N, can be symmetrized by
a0 0
128
Ao(X,t,Urem) = 0 orInxkn O |

0 0 o

we rewrite the system (2.15) in the following form

N

AO(Urem)atUrem + Z Aj(xv t, Urem)axj Urem — MO Aﬁrern
j=1

oo~ K ~
— (L + V) Vdivigen — %Aerem

~ AL T
=AU]+7G+XB+F(X7t,Urem)’

—A¢rem = Prem,
Urem (X, 0) = Uremo (%),
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where A; = AoAj, j=1,..., N, are symmetric matrices given by
) 0 Adrej 0
Aj(Urem) = UiAO(Urem) + )\9)»9}. 0 ,O)Le}-
0 prej 0
and

T
Ji=Ao) = (o, .0, %(divurem>2> ,
A

N T
_ O . . 2
G:=AoG = <0, ..., 0, N in_:l(aiu[J'em + ajulrem) ) ’

B:=AoB = (0, — 3 Vprem, )",

2265 ho o 080"
pifo, == ) -

F::AOF:(

Next we perform energy estimates for the classical solution to the system (2.15) with initial data
(2.11). Define the canonical energy by

||Urem||%‘ 1:/(A0(Urem)uremy Urem>dx-

Multiplying (3.4); by Urem and integrating the result by parts, we get the basic energy equality of
Friedrich’s

d .
E”Urem”%+2Mf|vurem|2dx+2(ﬂ+v)/|dlvurem|2dx+2K/z_j|verem|2dx

1 .
:/<FUrem7Urem)dx+2)\V/ a(dlvurem)zeremdx

N
1 ; . 2
+ap Z /—(3,‘Uﬂem +aju'rem) Orem dX — _/pAV(i’remurede
=Y O A

+2/(A0F,Urem)dx+R1, (3.5)
where
Ri=2(u+v) /(px — 1DV divuemUrem dX + 2/L/(,0)\ — 1) AUremUpem dx
— 2% / v(%)veremerem dx (3.6)
and

I =(3,V) (Ag, A1, ..., A3).
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Since p > 0, 2 + Nv > 0, there exists a positive constant &; such that
M/ |V|-lrem|2 dx+ (1 + V)/ | divurem|2 dx > & / |Vurem|2dx (3.7)

in view of f(divurem)zdx < f|Vurem|2dx. Notice the fact that there is a 87 > 0 such that for
A € (0, Ar] it holds that

0 < p— <1+ Aposc + A2 AT + A2 peor + A2 prem < P+, (3.8)
0 <6- <0+ Acor + AOrem < 04, (3.9)
where p1 and 61 are positive constants. Thus, the matrices Ag and A;, j=1,..., N, together with

their derivatives are continuous and bounded uniformly. Moreover, Ag is uniformly positive definite,
i.e. there exists a constant cg > 0 such that

(AO(Urem)Urem’ Urem) ZCo ()»z,ofem + u?em + Qrzem) (3.10)

for all Urem.
Now we estimate the terms on the right-hand side of (3.5). Since I is bounded there exists a
generic constant My, independent of (orem, Urem, frem, Prem) and A > 0, such that

/ (I"Uvem. Urem) dx < Mo(1 4+ (M + D)) [Usem]2. (341)

By Sobolev's embedding inequality and the inequality (3.9) we obtain that

N
1 . 1 ; C\2
ZM)/ —(dlvurem)zerem dx+ A Z f o0 (aiuxj-em + ajulrem) Orem dx
05, i 0;.

< AMoM 2t +v) / (IVttrem[? + [frem ?) dx. (312)

By integrating by parts, Cauchy’s inequality and the equation for P in (2.15), the forth term on
the right-hand side of (3.5) is estimated as follows

2
_X/prfpremurem dx

2 . 2
= y / 0. diV Urem Prem dx + X / V 0. UremPrem dx
=-2 / ¢ PremPrem dX — 2 f(v + Uosc + Allcor + AMrem) V PremPrem dX

+2 // hodrem dx + 2/ V(,Oosc + A(AIT + peor) + )»,Orem)urem¢rem dx
< =3 VéremlZ, + Mo(1 + AM) (| Vremll?s + UremI2) + €1 Vttrem |1 (3.13)

for some sufficiently small constant €; > 0.



216 Q. Ju et al. / ]. Differential Equations 247 (2009) 203-224

Now we deal with the term Rj. By integrating by parts and using Sobolev’s inequality, we get

2(u +v) /(pk — 1)V divUremUrem dX + 2“/(,@» — 1) AUremUrem dX
SAMo(M +1)2u +v) /(|Vurem|2 + |urem|2) dx.

In view of (3.8), (3.9) and Cauchy’s inequality, we obtain that

iy / VA Y 0rembrem dx
05
v
=% / L Brembrem dx + 21 / N6, Vrembrem dx
Oh. (6

<AMo(M + ke / (IV6rem|* + |6rem|?) dx
+M0K/|0rem|2dx+62’(/|V9rem‘2dx

for some sufficiently small constant €; > 0.

(3.14)

(3.15)

The estimate of the fifth term on the right-hand side of (3.5) is tedious but straightforward. In

view of the definitions of hg, fo, and go in (2.12)-(2.14), and Propositions 1.1 and 2.1, we get

(%

2)\2/ ihOprem dx+2/PAf01“rem dx+2/ &gm@rem dx
On 03,
< Mo|[UremlI7 + Mo
and
Px
2 / P02 - Wrem dx + 2/ agozerem dx

<ACu+v+x)Mo(l +M)/(|urem|2 + |Vllrem|2 + |V9rem|2) dx

4+ Qu+v+k+1)Mp.

We choose &7 sufficiently small such that, for A € (0, §7],

AMo(M +1)2u 4+ v + k) < min 5—1& =11.
2° 20,

Choosing €1 and e, sufficiently small and combining (3.7)-(3.18) with (3.5), we obtain that
d & ko_
—(Ureml? + IV oremll?) + 5 / |Vttrem|? dx + 2% / |Vbrem? dx
< Mo(1 +A(M + M) (IUremlIF + [ Veremll72) + 37 / (Iurem|® + |6rem|?) dx

+KM0/ |9rem|2dx+ Qu+v+«+1)Mp.

(3.16)

(3.17)

(3.18)

(3.19)
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Next we shall obtain the energy estimates of higher order derivatives for the classical solutions to
the initial value problem (2.15). For the multi-index o with 1 < || <s, we take the operator D% to
(2.15) and multiply the resulting equations by Ag to obtain

N
Ao(Urem)9: D*Urem + ZAj(X» £, Urem)axJ~ D%Urem — 0. W AD% e
j=1
. - KP =
— (4 ) VdivD¥0pery, — —= ADY6,
(n )P rem o, rem (3.20)
a Ap [ 1 %
=AAg(Urem)D™ J + TAO(Urem)D G+ XAO(Urem)D B
+ AO(Urem)DaF + Ha,
—AD%@rem = D* Prem
with initial data
D%Urem(x, 0) = D¥Uremo (%), (3.21)
where H% consists of the commutating terms as
N
H* == " Ao(Urem)(D* (A} (Urem)dx; Urem) — Aj(Urem)dx; D* Urem).-
j=1

Taking the inner product between (3.20); and D¥Uem, we have the following differential equality

%||D“urem(t)”2+2u/|VD°‘urem|2dx+2(u+v)/|divD“urem|2dx+2/</z—i\oa“eremfdx
=/(FD"’Urem,D“Urem)dx+2kv/(Ao(Urem)D“],D“Urem)dx
+AM/(A0(Urem)D“G,D“Urem)dx+%/(Ao(urem)D“B,D“Umm)dx
+2/<A0(Urem)D“F(t),D“Urem>dx+2/(H°‘(t),D"Urem)dx+R2, (3.22)
where

Ry =2 /(pk — 1) AD®Ugern D® Uyerm dX — 2K / v(%)vn“eremerem dx
2
+2(+v) /(pl — 1)V div D* ey D* Uper, dX.

It is easy to see that we also have the following estimate

/L/]VD"‘urem|2dx+(/L+v)/ \divD“uremydegz/\vuauremyzdx (323)

for some constant & > 0.
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Now we deal with the right-hand side of (3.22). In the following the generic constant My may
depend on T and s. By integrating by part, Sobolev’s inequality and Cauchy’s inequality it holds,
similar to (3.11) and (3.14)-(3.15), that

/(FD“ Urem. D% Urem)dx < Mo(1 + A(M + M)) || D*Urem Hi (3.24)
and
Ry <AMo(M + D)2 + v + k) /(WD“urem]z + D Orem|” + [ DYrem|” + [ D¥Brem|”) dx
+M0K/ \D“@remyzdxHK/ DY e | (3.25)

for some sufficiently small constant § > 0.
By the definition of A, G and ], it follows from the Sobolev’s inequality that

)\V‘/‘(AO(Urem)Da]yDaUrem)dX‘FZ)‘,u'/(AO(Urem)DaG»DaUrem>dx

||9rem H H¥
HDt

N

Z (aiulj;em + aju{"em)2
i,j=1

< AMou + v>(H (divtirem)? | o +

1 7
<AMoQu + V)”urem”;.l]a ||“rem||;_llo,+1 [|Orem || He
1 3
< AMop + V) [rem | fe [1Wrem [ 2o 41 16rem | Fra + AMo 2t + V) [[Urem 15041
3
< AMMo Q2 + V) [Urem |l i1 |6rem I + AMo (24t + ) [[Urem | Fos1 - (3.26)

We deal with the fourth term on the right-hand side of (3.22). From (2.15), we can easily get the
equation for D% prem,

1
3 D% prem + W, - VD prem + X,O)L div D*Uurem = D%hg + h* (3.27)
with
o o o 1 o . 1 . o
h* = —-D%(u;. - Vprem) + - VD prem — XD (o div Urem) + XPA div D% urem.

In view of (3.27) and the Poisson equation (3.20),, we get

2
X/(AO(Urem)DanDaUrem>dx

2

Z_X/kaDa¢remDauremdx
2 PR o 2 o o

ZX 05 divD%* e D ¢remdx+x V 0, D% trem D rem dx

:_2/atDapremDa¢remdx_2[“AVDapremDa¢rede+2/DahODa¢rede

+2/V(posc“F)»(AH"':Ocor)+)Lprem)DauremDa(bremdx+2/haDa¢remdx



Q. Ju et al. /]. Differential Equations 247 (2009) 203-224 219

d
<—EMD“wmmez+Mo<1+AM><||D“V¢rem|\fz+ 3 ||Df‘urem||§>
0<IBIL o]

+e / |V D%tremn | dx (3.28)

for some sufficiently small constant €3 > 0.

The fifth term on the right-hand side of (3.22) is very tedious. The main techniques involved are
Leibniz’s formula, Moser-type calculus inequalities (1.33)-(1.34), and Sobolev’s embedding inequalities.
Actually, after the tedious computations, we finally obtain the following estimate

2/<A0(Urem)DaF(X, t, Urem), DaUrem)dx

<A2u+v+x)Mo(l +M)|: Z (”VDﬁuremHiz + HVDﬁQrem”fz)'f' Z ”Dﬁurem”i]
0Bl e] 0Bl e

+Qu+Vv+k+1)Mo. (3.29)

The commutating term H® can be bounded by

f(H“(t), D*Urem)dx < Y Mo(1+ M) | D#Urem |2+ | D Urem| > + Mo. (330)
1<IBI<a

We now re-choose 87 sufficiently small such that, for A € (0, 571,

3SMo(M + 1) + v+ 1) <minf 2, <P=1._ . (331)
2° 20,
Let
@ (1) = 22| prem 1 &s + I treml|%s + [16rem |- (3.32)

Taking & and €3 small enough and combining the estimates (3.24)-(3.30) with (3.22) and (3.19), we
obtain that

N | e

t t
Kp—
0@ () + | Vérem |l s + f trem e dr + == / 1011211 dr
+
0 0

t
~ 3
< f{Mo(Mo(l +4(M + M)) + 31 + Mok + A2 + V)MMo [[Urem|l /1)
0

x (co® (1) + | Véremllfys (1) } dr

+c0®(0) + || Ve (0) |5 + Mo i + v + )T, (3.33)

where & = min{&;, &} and n = max{n1, n2}. By virtue of Gronwall’s inequality, we obtain that
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0P (6) + | Vrem ||

< (Co®(0) + | Vrem (0) [ 3 + Mo(2pt + v +1)T)
| 3
x exp{ Mo / [Mo(1 + A(M + M) + 31 + Mok + 124 + V)MMo[Ureml| /oy, ]dr . (3.34)
0

From (3.2) and Hélder’s inequality, we have

3

t
2 7 1
AU+ v)MMo/ [trem | 2s1 dr < AMo(2u + v)Ma T3, (3.35)
0

In view of (1.27) and (1.28), we obtain that
W[ orem O[5 <C7 [tem(©) s + [orem (@ [ <€ (336)
and
IVrem|lys < C. (337)
We choose 8t sufficiently small such that, for A € (0, §7], it holds that
AM + M)+ AQ2u + V)M <1. (3.38)
Set
L1 = Mo(2Mo + 31 + Mok + MoT'/%).

Substituting (3.35)-(3.38) into (3.34), we obtain that

0P () + | Vebrem 15 < (Co@(0) + | Vprem (0) | 2s + Mo(2p + v + 1) T ekt
H H

< (MoC +Mo@u +v +K)T)el T =: L3. (3.39)
In view of (3.33), we get that
t t
£ 2 Kp— 2 .
> urem|l fyser dr + 20, 1011551 dr < L1L3T + MoC + Mo + v +#)T. (3.40)
0 o
Therefore (3.2) is proved if we set
2 . 1.2 20,
M? =: (L3 + L1L3T + MoC + Mo(2t + v + k)T) - max 1, o | (3.41)
0 —

It follows from (3.20) that

02U<PT()\ ” 0t Prem (£) H ps—1 T )»“ OrUrem (t) H ps—2 T ”atgrem(t) ”qu + AH 0t Vprem(t) HHs) < M (3.42)
SIS
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with

1/2

M := (Mo(1+2M)) (343)

The proof of Lemma 3.2 is completed. O

Proof of Theorem 3.1. With the a priori estimates (3.2) and (3.3), we now start the proof of Theo-
rem 3.1. We first construct the approximate solutions. Define

n+1 n+1\ _ (n+1 . n+1 gn+1 n+1\T
(Urem s rrem ) - (/Orem ’ l'll'el'l'l ’ erem » yrrem ) (n 2 0)

inductively as the solution of linear equations

N

AO(U?em)an?:rr} + ZAJ' (X’ t, U?em)axj U?;rr} - /,LpgAﬁ?:'n}‘
j=1

kol

o

—(n+v)plvdivakt! — ZZAAgRH (3.44)

o, ML 1. -
=)\v]n+7/‘bcn+XBn+1+Fn’

_Ad’?em = :Opem
with initial data
Utem (X, 0) = Uremo (%), (3.45)

where

PR, 1) =14 Aposc(X, ) + A2 (AT (X, £) + Peor(X, t/1)) + A2 Pl (%, 1),
u} (x,t) = V+ Ugsc (X, £) + Acor (X, /) + AUl (X, 1),
O (X, £) = O(X, ) + ABeor (X, t/1) + A% (X, £),
BL (X, 1) = Posc (X, 1) + A(IT (X, 1) + eor (X, T/1)) + Adpen (x. 1),

~ T ~
il = (0,uh!,0),  B™!'=AoB®,t, Urem) = (0, —pf VoLi!, 0),

rem -

o} !
J7 = AD(x, £, Ulhy) = (0, .0 e_g(divugem)z) ,
A

n N ) ) T
G .= Aoc(X, t, U?em) = (0, ..., 0, % Z ((BiuﬂEm)” + (aju;em)”)Z) )
A j=1
F" = AoF (X, t, Ulkpy).

rem

It is standard to know that the approximate problem (3.44) admits a unique solution such that
(Plem - Urem - Ofem - Vélem ) € C(10. TI: H*).  Volehi € C(10. T]: H**T),
ultler?(0,T; HSTY), gt e 1?(0, T; HST),

Pl €C(10, T HTY),  duufidy € C(10, T]; HS72),
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ol € C(10, T H2), Vel € C([0,T1; HY),
and satisfies the uniform estimates

T
e O A R A
<= 0

T
i s det [ 108 [ e < 02,
0

(3.46)
sup (2ol O+ 220 s+ [0 O + 32 vl 0 ) < 2
\t\

(3.47)
It is standard to verify that the difference
-n+1 =n+1 An+1 Zn+1\ _ ( n+1 n n+1 n n+1 n
(lorem > Urem » erem ’ rem) - (prem — Prem: Yrem u 6 -0

n+1

_ ¢” )
rem’ “rem rem: rrem rem

satisfies

1
n+1 ~n+1 o nn+1
atppe_:—n -l—llgv,()?e; + X:OQ dlvu?:—m

. T 1 nt

A'l'l{}en'lV/)l‘r:‘el-l'l - )\'pl{]em dlvu?em + hO(X, t’ u,;:;n ? p["leE ) - hO (x’ t’ url}em’ pl"‘lem)’

_ _ oy _ - _ o

el (ul - V) + Ap—anpfg{r} + VorEl — pant! — (u 4 v)vdivatt!
2

rem
1 n+1 ol n 9)'3 9;3_1 n (3 48)
= Xv‘brem - }‘(urem ’ V)urem M n—1 rem ’
A :O)L
+ fo (X,, L, u?z:;r} ’ p?etnl) —fo (X, L, u?em’ Iopem)’
QO +ul - vt 4 on divalh]
=a(J" = J"N) +2au(C" = G — (67 — 67 1) divul,,
- )‘ﬁ?emv'grnem + 8o (X’ L, u?eJrn} ’ ppet;) — &0 (X’ L uTrlem’ ppem)'
Observing that, for |o| <s,

’Da(]n _ jn71)‘ + !Da(én _ anfl)}

Mo 30 (D |+ 0P e ) [ DY i (3:49)
loe] =1=|B|+ly|<s—1

Then repeating the previous analysis used in the proof of Lemma 3.2 and using the interpolation
inequalities, we can show that there is a 87 > 0 such that, for any A € (0,67] and s’ <s,

sup (” (Aﬁ”'H l—ln—H én—H

rem ® “rem* ‘rem
0<t<T

T
)OI+ 198 O ) + [ |
0

rem

T
Tiou ||i,s/+] dr+/ == Hiﬂ“ <C,
0
s (2[00 Oy 22 85 Oy + [0 © [z + 32099 0 0) < €
St
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for some constant C > 0. Then the Arzela-Ascoli theorem implies that there exists a limit vector
function

(Orem> Urem; Orem, V¢>rem)T € LOO(O, T; HS/) n Lip([o, TT; HSL])

satisfying (3.2)-(3.3) such that

1 1 1 1
sup ” (/O?Jm — Prem;, u?jm — Urem, 9;;’“ — Orem, Vd’petn - v¢rem)(t) ”HS'*Z —0
0<t<T

as n — +oo for any A € (0, §7]. Furthermore, for N/2 — [N/2] <o < 1, we have the convergence

n+1  n+1 oo+l n+1\T T
(prem s Wrem s Orem » Vérem ) — (Prem, Urem, Orem, V @rem)

in C([0, T); HS~9) by the standard interpolation inequality. Moreover, by Sobolev's embedding theo-
rem, we have

(Prem Urem, Brem, drem)" € C([0, T1; H*) N C1([0, T1; H* ~2)

= c!(10, 71 x TV) nc([o, T1; c2(TV))

for any A € (0, 87], where we have used the fact s’ > N/2 + 2. Then the existence of classical solu-
tions to the initial value problem (2.15), (2.11) is proved. The uniqueness of the classical solutions
can be proved easily by energy estimates for the difference of any two solutions. Thus the proof of
Theorem 3.1 is finished. O

4. Proofs of Theorems 1.2 and 1.3

Proof of Theorem 1.2. By the asymptotic expansion (2.9), Propositions 1.1 and 2.1, the existence and
uniqueness of classical solutions to the initial value problem of Navier-Stokes-Poisson system (1.6)-
(1.9) is proved and the solution satisfies

sup [ (02, Wi, 0)®) || ys + sup | Vor (O ysir + Ialli20. 1. ms+1) + 16211120, 7 1y < C(T),
<t<T 0T

sup ([ 3r(or, wr. 0O s + [0V (©) | o) < C(T, ),
<t<T

0<t<

where C(T) > 0 is a constant independent of A and C(T, A) > 0 is a constant dependent on A. More-
over, it is easy to see that, for A € (0, 57],

sup [[(or — 1, W, —V — o, 0, — 9)(t)HHS + sup [[(Vor — Voso) (0 || gst1 S C(DA.
0<t<T 0<t<T

Thus the proof of Theorem 1.2 is finished. O

As far as the combined quasineutral, vanishing viscosity and vanishing heat conductivity limit is
concerned, we can follow the same lines as the proof of Theorem 1.2. Recalling the uniformly bounded
estimates obtained in Lemma 3.2, we are able to get the uniform bound with respect to A, u, v and «
for the solutions. Thus Theorem 1.3 can be proved similarly with minor modifications of our previous
arguments. We omit the details here for conciseness.
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