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1. INTRODUCTION

The study of singular boundary value problems (singular in the depen-
dent variable) is relatively new. Indeed it was only in the middle 1970’s that
researchers realised that large numbers of applications [7, 8] in the study
of nonlinear phenomena gave rise to singular boundary value problems
(singular in the dependent variable). However, in our opinion, it was the
1979 paper of Taliaferro [15] that generated the interest of many
researchers in singular problems in the 1980’s and 1990’s. In [15] Taliaferro
showed that the singular boundary value problem

yœ+q(t) y−a=0, 0 < t < 1

y(0)=0=y(1),
(1.1)

has a C[0, 1] 5 C1(0, 1) solution; here a > 0, q ¥ C(0, 1) with q > 0 on
(0, 1) and >10 t(1−t) q(t) dt <.. Problems of the form (1.1) arise frequently
in the study of nonlinear phenomena, for example in non-Newtonian
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fluid theory, such as the transport of coal slurries down conveyor belts [8],
and boundary layer theory [7]. It is worth remarking here that we could
consider Sturm Liouville boundary data in (1.1); however since the argu-
ments are essentially the same (in fact easier) we will restrict our discussion
to Dirichlet boundary data.

In the 1980’s and 1990’s many papers were devoted to singular boundary
value problems of the form

yœ+q(t) f(t, y)=0, 0 < t < 1

y(0)=0=y(1).
(1.2)

Almost all singular problems in the literature up to 1994 discussed the
existence of one solution to positone problems i.e. problems where
f: [0, 1]×(0,.)Q (0,.). In Section 2 we present a very general result for
the existence of a solution to the positone singular problem (1.2). Our
result includes those in [2, 3, 5, 6, 10, 11, 16] (we refer the reader to [4, 14]
for some results when the differential equation involves the derivative term
yŒ). In 1999 the question of multiplicity for positone singular problems was
discussed for the first time by Agarwal and O’Regan [1]. The second half
of Section 2 discusses multiplicity and some new results will be presented
here.

To conclude the introduction we present an existence principle for the
nonsingular boundary value problem which will be needed in Section 2. We
use Schauder’s fixed point theorem and a nonlinear alternative of
Leray–Schauder type to obtain a general existence principle for the
Dirichlet boundary value problem

yœ+f(t, y)=0, 0 < t < 1

y(0)=a, y(1)=b.
(1.3)

Theorem 1.1. Suppose the following two conditions are satisfied:

the map yW f(t, y) is continuous for a.e. t ¥ [0, 1].(1.4)

and

the map tW f(t, y) is measurable for all y ¥ R.(1.5)

(I) Assume

for each r > 0 there exists hr ¥ L1loc(0, 1) with(1.6)

F
1

0
t(1−t) hr(t) dt <. such that |y| [ r implies

|f(t, y)| [ hr(t) for a.e. t ¥ (0, 1)
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holds. In addition suppose there is a constant M> |a|+|b|, independent of l,
with

|y|0= sup
t ¥ [0, 1]

|y(t)| ]M(1.7)

for any solution y ¥ AC[0, 1] (with yŒ ¥ ACloc(0, 1)) to

yœ+l f(t, y)=0, 0 < t < 1

y(0)=a, y(1)=b,
(1.8)l

for each l ¥ (0, 1). Then (1.3) has a solution y with |y|0 [M.

(II) Assume

there exists h ¥ L1loc(0, 1) with F
1

0
t(1−t) h(t) dt <.(1.9)

such that |f(t, y)| [ h(t) for a.e. t ¥ (0, 1) and y ¥ R

holds. Then (1.3) has a solution.

Proof. (I) We begin by showing that solving (1.8)l is equivalent to
finding a solution y ¥ C[0, 1] to

y(t)=a (1−t)+bt+l (1−t) F
t

0
sf(s, y(s)) ds(1.10)l

+lt F
1

t
(1−s) f(s, y(s)) ds.

To see this notice if y ¥ C[0, 1] satisfies (1.10)l then it is easy to see
(since (1.7) holds; see [12, 14]) that yŒ ¥ L1[0, 1]. Thus y ¥ AC[0, 1],
yŒ ¥ ACloc(0, 1) and note

yŒ(t)=−a+b−l F
t

0
sf(s, y(s)) ds+l F

1

t
(1−s) f(s, y(s)) ds.

Next integrate yŒ(t) from 0 to x (x ¥ (0, 1)) and interchange the order of
integration to get
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y(x)−y(0)= F
x

0
yŒ(t) dt

=−ax+bx−l F
x

0
F
t

0
sf(s, y(s)) ds dt

+l F
x

0
F
1

t
(1−s) f(s, y(s)) ds dt

=−ax+bx+l (1−x) F
x

0
sf(s, y(s)) ds

+lx F
1

x
(1−s) f(s, y(s)) ds

=−a+y(x),

so y(0)=a. Similarly integrate yŒ(t) from x (x ¥ (0, 1)) to 1 and inter-
change the order of integration to get y(1)=b. Thus if y ¥ C[0, 1] satisfies
(1.10)l then y is a solution of (1.8)l.

Define the operator N: C[0, 1]Q C[0, 1] by

Ny(t)=a(1−t)+bt+(1−t) F
t

0
sf(s, y(s)) ds(1.11)

+t F
1

t
(1−s) f(s, y(s)) ds.

Then (1.10)l is equivalent to the fixed point problem

y=(1−l) p+lNy where p=a(1−t)+bt.(1.12)l

It is easy to see [12, 14] that N: C[0, 1]Q C[0, 1] is continuous and
completely continuous. Set

U={u ¥ C[0, 1] : |u|0 <M}, K=E=C[0, 1].

Now the nonlinear alternative of Leray–Schauder type [14] guarantees
that N has a fixed point i.e., (1.10)1 has a solution.

(II) Solving (1.3) is equivalent to the fixed point problem y=Ny
where N is as in (1.11). It is easy to see that N: C[0, 1]Q C[0, 1] is
continuous and compact (since (1.9) holds). The result follows from
Schauder’s fixed point theorem [14]. L
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2. SINGULAR BOUNDARY VALUE PROBLEMS

In Section 2 we discuss positone boundary value problems. Almost all
singular papers in the 1980’s and 1990’s were devoted to such problems. In
the late 1990’s the question of multiplicity for singular positone problems
was raised, and we discuss this question in the second half of Section 2.

Consider the Dirichlet boundary value problem

yœ+q(t) f(t, y)=0, 0 < t < 1

y(0)=0=y(1).
(2.1)

Here the nonlinearity f may be singular at y=0 and q may be singular at
t=0 and/or t=1. We begin by showing that (2.1) has a C[0, 1] 5 C2(0, 1)
solution. To do so we first establish, via Theorem 1.1, the existence of a
C[0, 1] 5 C2(0, 1) solution, for each sufficiently large m, to the ‘‘modified’’
problem

yœ+q(t) f(t, y)=0, 0 < t < 1

y(0)=
1
m
=y(1).

(2.2)m

To show that (2.1) has a solution we let mQ.; the key idea in this step is
the Arzela–Ascoli theorem.

Theorem 2.1. Suppose the following conditions are satisfied:

q ¥ C(0, 1), q > 0 on (0, 1) and F
1

0
t(1−t) q(t) dt <.(2.3)

f: [0, 1]×(0,.)Q (0,.) is continuous.(2.4)

0 [ f(t, y) [ g(y)+h(y) on [0, 1]×(0,.) with(2.5)

g > 0 continuous and nonincreasing on (0,.),

h \ 0 continuous on [0,.), and h
g

nondecreasing on (0,.)

for each constant H> 0 there exists a function kH(2.6)

continuous on [0, 1] and positive on (0, 1) such that

f(t, u) \ kH(t) on (0, 1)×(0, H]
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and

,r > 0 with
1

31+h(r)
g(r)
4
F
r

0

du
g(u)

> b0(2.7)

hold; here

b0=max 32 F 1/2
0

t(1−t) q(t) dt, 2 F
1

1/2
t(1−t) q(t) dt4 .(2.8)

Then (2.1) has a solution y ¥ C[0, 1] 5 C2(0, 1) with y > 0 on (0, 1) and
|y|0 < r.

Proof. Choose e > 0, e < r, with

1

31+h(r)
g(r)
4
F
r

e

du
g(u)

> b0.(2.9)

Let n0 ¥ {1, 2, ...} be chosen so that 1
n0
< e
2 and let N0={n0, n0+1, ...}. To

show (2.2)m, m ¥N0, has a solution we examine

yœ+q(t) F(t, y)=0, 0 < t < 1

y(0)=y(1)=
1
m

, m ¥N0,
(2.10)m

where

F(t, u)=˛f(t, u), u \
1
m

f 1 t, 1
m
2, u [ 1

m
.

To show (2.10)m has a solution for each m ¥N0 we will apply Theorem 1.1.
Consider the family of problems

yœ+lq(t) F(t, y)=0, 0 < t < 1

y(0)=y(1)=
1
m

, m ¥N0,
(2.11)ml
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where 0 < l < 1. Let y be a solution of (2.11)ml . Then yœ [ 0 on (0, 1) and
y \ 1

m on [0, 1]. Also there exists tm ¥ (0, 1) with yŒ \ 0 on (0, tm) and
yŒ [ 0 on (tm, 1). For x ¥ (0, 1) we have

−yœ(x) [ g(y(x)) 31+h(y(x))
g(y(x))
4 q(x).(2.12)

Integrate from t(t [ tm) to tm to obtain

yŒ(t) [ g(y(t)) 31+h(y(tm))
g(y(tm))
4 F tm
t

q(x) dx

and then integrate from 0 to tm to obtain

F
y(tm)

1/m

du
g(u)

[ 31+h(y(tm))
g(y(tm))
4 F tm
0

xq(x) dx.

Consequently

F
y(tm)

e

du
g(u)

[ 31+h(y(tm))
g(y(tm))
4 F tm
0

xq(x) dx

and so

F
y(tm)

e

du
g(u)

[ 31+h(y(tm))
g(y(tm))
4 1
1−tm

F
tm

0
x(1−x) q(x) dx.(2.13)

Similarly if we integrate (2.12) from tm to t(t \ tm) and then from tm to 1
we obtain

F
y(tm)

e

du
g(u)

[ 31+h(y(tm))
g(y(tm))
4 1
tm

F
1

tm
x(1−x) q(x) dx.(2.14)

Now (2.13) and (2.14) imply

F
y(tm)

e

du
g(u)

[ b0 31+
h(y(tm))
g(y(tm))
4 .
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This together with (2.9) implies |y|0 ] r. Then Theorem 1.1 implies that
(2.10)m has a solution ym with |ym |0 [ r. In fact (as above),

1
m

[ ym(t) < r for t ¥ [0, 1].

Next we obtain a sharper lower bound on ym, namely we will show that
there exists a constant k > 0, independent of m, with

ym(t) \ kt(1−t) for t ¥ [0, 1].(2.15)

To see this notice (2.6) guarantees the existence of a function kr(t)
continuous on [0, 1] and positive on (0, 1) with f(t, u) \ kr(t) for
(t, u) ¥ (0, 1)×(0, r]. Now, using the Green’s function representation for
the solution of (2.10)m, we have

ym(t)=
1
m
+t F

1

t
(1−x) q(x) f(x, ym(x)) dx

+(1−t) F
t

0
xq(x) f(x, ym(x)) dx

and so

ym(t) \ t F
1

t
(1−x) q(x) kr(x) dx(2.16)

+(1−t) F
t

0
xq(x) kr(x) dx — Fr(t).

Now it is easy to check (as in Theorem 1.1) that

F −r(t)=F
1

t
(1−x) q(x) kr(x) dx−F

t

0
xq(x) kr(x) dx for t ¥ (0, 1)

with Fr(0)=Fr(1)=0. If k0 — >10 (1−x) q(x) kr(x) dx exists then F −r(0)=
k0; otherwise F −r(0)=.. In either case there exists a constant k1, indepen-
dent of m, with F −r(0) \ k1. Thus there is an e > 0 with Fr(t) \

1
2 k1t \

1
2 k1t(1−t) for t ¥ [0, e]. Similarly there is a constant k2, independent of m,
with − F −r(1) \ k2. Thus there is a d > 0 with Fr(t) \

1
2 k2 (1−t) \

1
2 k2t(1−t) for t ¥ [1−d, 1]. Finally since Fr(t)

t (1−t) is bounded away from 0 on
[e, 1−d] there is a constant k, independent of m, with Fr(t) \ kt(1−t) on
[0, 1] i.e. (2.15) is true.

Next we will show

{ym}m ¥N0 is a bounded, equicontinuous family on [0, 1].(2.17)
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Returning to (2.12) (with y replaced by ym) we have

−y'm(x) [ g(ym(x)) 31+
h(r)
g(r)
4 q(x) for x ¥ (0, 1).(2.18)

Now since y'm [ 0 on (0, 1) and ym \ 1
m on [0, 1] there exists tm ¥ (0, 1) with

y −m \ 0 on (0, tm) and y −m [ 0 on (tm, 1). Integrate (2.18) from t (t < tm) to
tm to obtain

y −m(t)
g(ym(t))

[ 31+h(r)
g(r)
4 F tm
t

q(x) dx.(2.19)

On the other hand integrate (2.18) from tm to t (t > tm) to obtain

−y −m(t)
g(ym(t))

[ 31+h(r)
g(r)
4 F t
tm
q(x) dx.(2.20)

We now claim that there exists a0 and a1 with a0 > 0, a1 < 1, a0 < a1 with

a0 < inf{tm : m ¥N0} [ sup{tm : m ¥N0} < a1.(2.21)

Remark 2.1. Here tm (as before) is the unique point in (0, 1) with
y −m(tm)=0.

We now show inf{tm : m ¥N0} > 0. If this is not true then there is a
subsequence S of N0 with tm Q 0 as mQ. in S. Now integrate (2.19) from
0 to tm to obtain

F
ym(tm)

0

du
g(u)

[ 31+h(r)
g(r)
4 F tm
0

xq(x) dx+F
1/m

0

du
g(u)

(2.22)

for m ¥ S. Since tm Q 0 as mQ. in S, we have from (2.22) that ym(tm)Q 0
as mQ. in S. However since the maximum of ym on [0, 1] occurs at tm
we have ym Q 0 in C[0, 1] as mQ. in S. This contradicts (2.15). Conse-
quently inf{tm : m ¥N0} > 0. A similar argument shows sup {tm : m ¥N0}
< 1. Let a0 and a1 be chosen as in (2.21). Now (2.19), (2.20) and (2.21)
imply

|y −m(t)|
g(ym(t))

[ 31+h(r)
g(r)
4 v(t) for t ¥ (0, 1)(2.23)

where

v(t)=F
max{t, a1}

min{t, a0}
q(x) dx.
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It is easy to see that v ¥ L1[0, 1]. Let I: [0,.)Q [0,.) be defined by

I(z)=F
z

0

du
g(u)

.

Note I is an increasing map from [0,.) onto [0,.) (notice I(.)=.
since g > 0 is nonincreasing on (0,.)) with I continuous on [0, A] for any
A > 0. Notice

{I(ym)}m ¥N0 is a bounded, equicontinuous family on [0, 1].(2.24)

The equicontinuity follows from (here t, s ¥ [0, 1])

|I(ym(t))−I(ym(s))|=:F
t

s

y −m(x)
g(ym(x))

dx : [ 31+h(r)
g(r)
4 :F t

s
v(x) dx :.

This inequality, the uniform continuity of I−1 on [0, I(r)], and

|ym(t)−ym(s)|=|I−1(I(ym(t)))−I−1(I(ym(s)))|

now establishes (2.17).
The Arzela–Ascoli Theorem guarantees the existence of a subsequence N

of N0 and a function y ¥ C[0, 1] with ym converging uniformly on [0, 1] to
y as mQ. through N. Also y(0)=y(1)=0, |y|0 [ r and y(t) \ kt(1−t)
for t ¥ [0, 1]. In particular y > 0 on (0, 1). Fix t ¥ (0, 1) (without loss of
generality assume t ] 1

2). Now ym, m ¥N, satisfies the integral equation

ym(x)=ym(
1
2)+y −m(

1
2)(x−

1
2)+F

x

1/2
(s−x) q(s) f(s, ym(s)) ds

for x ¥ (0, 1). Notice (take x=2
3) that {y −m(

1
2)}, m ¥N, is a bounded

sequence since ks(1−s) [ ym(s) [ r for s ¥ [0, 1]. Thus {y −m(
1
2)}m ¥N has a

convergent subsequence; for convenience let {y −m(
1
2)}m ¥N denote this sub-

sequence also and let r0 ¥ R be its limit. Now for the above fixed t,

ym(t)=ym(
1
2)+y −m(

1
2)(t−

1
2)+F

x

1/2
(s− t) q(s) f(s, ym(s)) ds

and let mQ. through N (we note here that f is uniformly continuous on
compact subsets of [min(12 , t), max(12 , t)]×(0, r]) to obtain

y(t)=y(12)+r0(t−
1
2)+F

t

1/2
(s− t) q(s) f(s, y(s)) ds.

402 AGARWAL AND O’REGAN



We can do this argument for each t ¥ (0, 1) and so yœ(t)+
q(t) f(t, y(t))=0 for 0 < t < 1. Finally it is easy to see that |y|0 < r (note if
|y|0=r then following essentially the argument from (2.12)–(2.14) will
yield a contradiction). L

Next we establish the existence of two nonnegative solutions to the
singular second order Dirichlet problem

yœ(t)+q(t)[g(y(t))+h(y(t))]=0, 0 < t < 1

y(0)=y(1)=0;
(2.25)

here our nonlinear term g+h may be singular at y=0. The results pre-
sented here improve those in Agarwal and O’Regan [1]. First we state the
fixed point result we will use to establish multiplicity (see [9, 13] for a
proof).

Theorem 2.2. Let E=(E, || · ||) be a Banach space and let K … E be a
cone in E. Also r, R are constants with 0 < r < R. Suppose A : WR 5KQK
(here WR={x ¥ E : ||x|| < R}) is a continuous, compact map and assume the
following conditions hold:

x ] lA(x) for l ¥ [0, 1) and x ¥ “EWr 5K(2.26)

and

there exists a v ¥K0{0} with x ] A (x)+dv(2.27)

for any d > 0 and x ¥ “EWR 5K.

Then A has a fixed point in K 5 {x ¥ E : r [ ||x|| [ R}.

Remark 2.2. In Theorem 2.2 if (2.26) and (2.27) are replaced by

x ] lA(x) for l ¥ [0, 1) and x ¥ “EWR 5K(2.26)a

and

there exists a v ¥K0{0} with x ] A(x)+d v(2.27)a

for any d > 0 and x ¥ “EWr 5K

then A has also a fixed point in K 5 {x ¥ E : r [ ||x|| [ R}.
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Theorem 2.3. Let E=(E, || · ||) be a Banach space, K … E a cone and let
|| . || be increasing with respect to K. Also r, R are constants with 0 < r < R.
Suppose A: WR 5KQK (here WR={x ¥ E : ||x|| < R}) is a continuous,
compact map and assume the following conditions hold:

x ] lA(x) for l ¥ [0, 1) and x ¥ “EWr 5K(2.28)

and

||Ax|| > ||x|| for x ¥ “EWR 5K.(2.29)

Then A has a fixed point in K 5 {x ¥ E : r [ ||x|| [ R}.

Proof. Notice (2.29) guarantees that (2.27) is true. This is a standard
argument and for completeness we supply it here. Suppose there exists
v ¥K0{0} with x=A(x)+dv for some d > 0 and x ¥ “EWR 5K. Then since
|| · || is increasing with respect to K we have since dv ¥K,

||x||=||Ax+dv|| \ ||Ax|| > ||x||,

a contradiction. The result now follows from Theorem 2.2. L

Remark 2.3. In Theorem 2.3 if (2.28) and (2.29) are replaced by

x ] lA(x) for l ¥ [0, 1) and x ¥ “EWR 5K(2.28)a

and

||Ax|| > ||x|| for x ¥ “EWr 5K.(2.29)a

then A has a fixed point in K 5 {x ¥ E : r [ ||x|| [ R}.
Now E=(C[0, 1], | · |0) (here |u|0=supt ¥ [0, 1] |u(t)|, u ¥ C[0, 1]) will be

our Banach space and

K={y ¥ C[0, 1] : y(t) \ 0, t ¥ [0, 1] and y(t) concave on [0, 1]}.(2.30)

Let h: [0, 1]×[0, 1]Q [0,.) be defined by

h(t, s)=˛
t
s

if 0 [ t [ s

1−t
1−s

if s [ t [ 1.

The following result is easy to prove and is well known.
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Theorem 2.4. Let y ¥K (as in (2.30)). Then there exists t0 ¥ [0, 1] with
y(t0)=|y|0 and

y(t) \ h(t, t0) |y|0 \ t (1−t) |y|0 for t ¥ [0, 1].

Proof. The existence of t0 is immediate. Now if 0 [ t [ t0 then since
y(t) is concave on [0, 1] we have

y(t)=y 111− t
t0
2 0+ t

t0
t0 2 \ 11−

t
t0
2 y(0)+ t

t0
y(t0).

That is

y(t) \
t
t0
y(t0)=h(t, t0) |y|0 \ t(1−t) |y|0.

A similar argument establishes the result if t0 [ t [ 1. L

From Theorem 2.1 we have immediately the following existence result
for (2.25).

Theorem 2.5. Suppose the following conditions are satisfied:

q ¥ C(0, 1), q > 0 on (0, 1) and F
1

0
t(1−t) q(t) dt <.(2.31)

g > 0 is continuous and nonincreasing on (0,.)(2.32)

h \ 0 continuous on [0,.) with
h
g
nondecreasing on (0,.)(2.33)

and

,r > 0 with
1

31+h(r)
g(r)
4
F
r

0

du
g(u)

> b0;(2.34)

here

b0=max 32 F 1/2
0

t(1−t) q(t) dt, 2 F
1

1/2
t(1−t) q(t) dt4 .(2.35)

Then (2.25) has a solution y ¥ C[0, 1] 5 C2(0, 1) with y > 0 on (0, 1) and
|y|0 < r.
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Proof. The result follows from Theorem 2.1 with f(t, u)=g(u)+h(u).
Notice (2.6) is clearly satisfied with kH(t)=g(H). L

Theorem 2.6. Assume (2.31)–(2.34) hold. Choose a ¥ (0, 12) and fix it
and suppose there exists R > r with

Rg(a(1−a) R)
g(R) g(a(1−a) R)+g(R) h(a(1−a) R)

[ F
1−a

a
G(s, s) q(s) ds;(2.36)

here 0 [ s [ 1 is such that

F
1−a

a
G(s, s) q(s) ds= sup

t ¥ [0, 1]
F
1−a

a
G(t, s) q(s) ds(2.37)

and

G(t, s)=˛ (1−t) s, 0 [ s [ t
(1−s) t, t [ s [ 1.

Then (2.25) has a solution y ¥ C[0, 1] 5 C2(0, 1) with y > 0 on (0, 1) and
r < |y|0 [ R.

Proof. To show the existence of the solution described in the statement
of Theorem 2.6 we will apply Theorem 2.3. First however choose e > 0 and
e < r with

1

31+h(r)
g(r)
4
F
r

e

du
g(u)

> b0.(2.38)

Let m0 ¥ {1, 2, ...} be chosen so that 1
m0

< e
2 and 1

m0
< a(1−a) R and let

N0={m0, m0+1, ...}. We first show that

yœ(t)+q(t)[g(y(t))+h(y(t))]=0, 0 < t < 1

y(0)=y(1)=
1
m

(2.39)m

has a solution ym for each m ¥N0 with ym > 1
m on (0, 1) and r [ |ym |0 [ R.

To show (2.39)m has such a solution for each m ¥N0, we will look at

yœ(t)+q(t)[ga(y(t))+h(y(t))]=0, 0 < t < 1

y(0)=y(1)=
1
m

(2.40)m
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with

ga(u)=˛g(u), u \
1
m

g 1 1
m
2 , 0 [ u [

1
m

.

Remark 2.4. Notice ga(u) [ g(u) for u > 0.
Fix m ¥N0. Let E=(C[0, 1], | · |0) and

K={u ¥ C[0, 1] : u(t) \ 0, t ¥ [0, 1] and u(t) concave on [0, 1]}.(2.41)

Clearly K is a cone of E. Let A: KQ C[0, 1] be defined by

Ay(t)=
1
m
+F

1

0
G(t, s) q(s)[ga(y(s))+h(y(s))] ds.(2.42)

A standard argument implies A: KQ C[0, 1] is continuous and completely
continuous. Next we show A: KQK. If u ¥K then clearly Au(t) \ 0 for
t ¥ [0, 1]. Also notice that

(Au)œ (t) [ 0 on (0, 1)

Au(0)=Au(1)=
1
m

so Au(t) is concave on [0, 1]. Consequently Au ¥K so A: KQK. Let

W1={u ¥ C[0, 1] : |u|0 < r} and W2={u ¥ C[0, 1] : |u|0 < R}.

We first show

y ] lAy for l ¥ [0, 1] and y ¥K 5 “W1.(2.43)

Suppose this is false i.e., suppose there exists y ¥K 5 “W1 and l ¥ [0, 1)
with y=lAy. We can assume l ] 0. Now since y=lAy we have

yœ(t)+lq(t)[ga(y(t))+h(y(t))]=0, 0 < t < 1

y(0)=y(1)=
1
m

.
(2.44)
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Since yœ [ 0 on (0, 1) and y \ 1
m on [0, 1] there exists t0 ¥ (0, 1) with yŒ \ 0

on (0, t0), yŒ [ 0 on (t0, 1) and y(t0)=|y|0=r (note y ¥K 5 “W1). Also
notice

ga(y(t))+h(y(t)) [ g(y(t))+h(y(t)) for t ¥ (0, 1)

since g is nonincreasing on (0,.). For x ¥ (0, 1) we have

−yœ(x) [ g(y(x)) 31+h(y(x))
g(y(x))
4 q(x).(2.45)

Integrate from t(t [ t0) to t0 to obtain

yŒ(t) [ g(y(t)) 31+h(r)
g(r)
4 F t0
t
q(x) dx

and then integrate from 0 to t0 to obtain

F
r

1/m

du
g(u)

[ 31+h(r)
g(r)
4 F t0
0
xq(x) dx.

Consequently

F
r

e

du
g(u)

[ 31+h(r)
g(r)
4 F t0
0
xq(x) dx

and so

F
r

e

du
g(u)

[ 31+h(r)
g(r)
4 1
1−t0

F
t0

0
x(1−x) q(x) dx.(2.46)

Similarly if we integrate (2.45) from t0 to t(t \ t0) and then from t0 to 1 we
obtain

F
r

e

du
g(u)

[ 31+h(r)
g(r)
4 1
t0
F
1

t0
x(1−x) q(x) dx.(2.47)

Now (2.46) and (2.47) imply

F
r

e

du
g(u)

[ b0 31+
h(r)
g(r)
4,(2.48)

where b0 is as defined in (2.35). This contradicts (2.38) and consequently
(2.43) is true.
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Next we show

|Ay|0 > |y|0 for y ¥K 5 “W2.(2.49)

To see this let y ¥K 5 “W2 so |y|0=R. Also since y(t) is concave on [0, 1]
(since y ¥K) we have from Theorem 2.4 that y(t) \ t(1−t) |y|0 \ t(1−t) R
for t ¥ [0, 1]. Also for s ¥ [a, 1−a] we have

ga(y(s))+h(y(s))=g(y(s))+h(y(s))

since y(s) \ a(1−a) R > 1/m0 for s ¥ [a, 1−a]. Note in particular that

y(s) ¥ [a(1−a) R, R] for s ¥ [a, 1−a].(2.50)

With s as defined in (2.37) we have using (2.50) and (2.36),

Ay(s)=
1
m
+F

1

0
G(s, s) q(s)[ga(y(s))+h(y(s))] ds

> F
1−a

a
G(s, s) q(s)[ga(y(s))+h(y(s))] ds

=F
1−a

a
G(s, s) q(s) g(y(s)) 31+h(y(s))

g(y(s))
4 ds

\ g(R) 31+h(a(1−a) R)
g(a(1−a) R)

4 F 1−a
a

G(s, s) q(s) ds

\ R=|y|0,

and so |Ay|0 > |y|0. Hence (2.49) is true.
Now Theorem 2.3 implies A has a fixed point ym ¥K 5 (W2 0W1) i.e.,

r [ |ym |0 [ R. In fact |ym |0 > r (note if |ym |0=r then following essentially
the same argument from (2.45)–(2.48) will yield a contradiction). Conse-
quently (2.40)m (and also (2.39)m) has a solution ym ¥ C[0, 1] 5 C2(0, 1),
ym ¥K, with

1
m

[ ym(t) for t ¥ [0, 1], r < |ym |0 [ R(2.51)
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and (from Theorem 2.4, note ym ¥K)

ym(t) \ t(1−t) r for t ¥ [0, 1].(2.52)

Next we will show

{ym}m ¥N0 is a bounded, equicontinuous family on [0, 1].(2.53)

Returning to (2.45) (with y replaced by ym) we have

−y'm(x) [ g(ym(x)) 31+
h(R)
g(R)
4 q(x) for x ¥ (0, 1).(2.54)

Now since y'm [ 0 on (0, 1) and ym \ 1
m on [0, 1] there exists tm ¥ (0, 1) with

y −m \ 0 on (0, tm) and y −m [ 0 on (tm, 1). Integrate (2.54) from t (t < tm) to
tm to obtain

y −m(t)
g(ym(t))

[ 31+h(R)
g(R)
4 F tm
t

q(x) dx.(2.55)

On the other hand integrate (2.54) from tm to t (t > tm) to obtain

−y −m(t)
g(ym(t))

[ 31+h(R)
g(R)
4 F t
tm
q(x) dx.(2.56)

We now claim that there exists a0 and a1 with a0 > 0, a1 < 1, a0 < a1 with

a0 < inf {tm : m ¥N0} [ sup{tm : m ¥N0} < a1.(2.57)

Remark 2.5. Here tm (as before) is the unique point in (0, 1) with
y −m(tm)=0.

We now show inf {tm : m ¥N0} > 0. If this is not true then there is a
subsequence S of N0 with tm Q 0 as mQ. in S. Now integrate (2.55) from
0 to tm to obtain

F
ym(tm)

0

du
g(u)

[ 31+h(R)
g(R)
4 F tm
0

xq(x) dx+F
1/m

0

du
g(u)

(2.58)

for m ¥ S. Since tm Q 0 as mQ. in S, we have from (2.58) that ym(tm)Q 0
as mQ. in S. However since the maximum of ym on [0, 1] occurs at tm
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we have ym Q 0 in C[0, 1] as mQ. in S. This contradicts (2.52). Con-
sequently inf{tm : m ¥N0} > 0. A similar argument shows sup{tm : m ¥N0}
< 1. Let a0 and a1 be chosen as in (2.57). Now (2.55), (2.56) and (2.57)
imply

|y −m(t)|
g(ym(t))

[ 31+h(R)
g(R)
4 v(t) for t ¥ (0, 1)(2.59)

where

v(t)=F
max{t, a1}

min{t, a0}
q(x) dx.

It is easy to see that v ¥ L1[0, 1]. Let I: [0,.)Q [0,.) be defined by

I(z)=F
z

0

du
g(u)

.

Note I is an increasing map from [0,.) onto [0,.) (notice I(.)=.
since g > 0 is nonincreasing on (0,.)) with I continuous on [0, A] for any
A > 0. Notice

{I(ym)}m ¥N0 is a bounded, equicontinuous family on [0, 1].(2.60)

The equicontinuity follows from (here t, s ¥ [0, 1])

|I(ym(t))−I(ym(s))|=:F
t

s

y −m(x)
g(ym(x))

dx : [ 31+h(R)
g(R)
4 :F t

s
v(x) dx :.

This inequality, the uniform continuity of I−1 on [0, I(R)], and

|ym(t)−ym(s)|=|I−1(I(ym(t)))−I−1(I(ym(s)))|

now establishes (2.53).
The Arzela–Ascoli Theorem guarantees the existence of a subsequence N

of N0 and a function y ¥ C[0, 1] with ym converging uniformly on [0, 1]
to y as mQ. through N. Also y(0)=y(1)=0, r [ |y|0 [ R and
y(t) \ t (1−t) r for t ¥ [0, 1]. In particular y > 0 on (0, 1). Fix t ¥ (0, 1)
(without loss of generality assume t ] 1

2). Now ym, m ¥N, satisfies the
integral equation

ym(x)=ym(
1
2)+y −m(

1
2)(x−

1
2)+F

x

1/2
(s−x) q(s)[g(ym(s))+h(ym(s))] ds

for x ¥ (0, 1). Notice (take x=2
3) that {y −m(

1
2)}, m ¥N, is a bounded

sequence since rs(1−s) [ ym(s) [ R for s ¥ [0, 1]. Thus {y −m(
1
2)}m ¥N has a
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convergent subsequence; for convenience let {y −m(
1
2)}m ¥N denote this sub-

sequence also and let r0 ¥ R be its limit. Now for the above fixed t,

ym(t)=ym(
1
2)+y −m(

1
2)(t−

1
2)+F

t

1/2
(s− t) q(s)[g(ym(s))+h(ym(s))] ds,

and let mQ. through N (we note here that g+h is uniformly continuous
on compact subsets of [min(12 , t), max(12 , t)]×(0, R]) to obtain

y(t)=y(12)+r0(t−
1
2)+F

t

1/2
(s− t) q(s)[g(y(s))+h(y(s))] ds.

We can do this argument for each t ¥ (0, 1) and so yœ(t)+q(t)[g(y(t))+
h(y(t))]=0 for 0 < t < 1. Finally it is easy to see that |y|0 > r (note if
|y|0=r then following essentially the argument from (2.45)–(2.48) will
yield a contradiction). L

Remark 2.6. If in (2.36) we have R < r then (2.25) has a solution
y ¥ C[0, 1] 5 C2(0, 1) with y > 0 on (0, 1) and R [ |y|0 < r. The argument
is similar to that in Theorem 2.6 except here we use Remark 2.3.

Remark 2.7. It is also possible to use the ideas in Theorem 2.6 to
discuss other boundary conditions; for example yŒ(0)=y(1)=0.

Remark 2.8. If we use Krasnoselski’s fixed point theorem in a cone we
need more that (2.31)–(2.34), (2.36) to establish the existence of a solution
y ¥ C[0, 1] 5 C2(0, 1) with y > 0 on (0, 1) and r < |y|0 [ R. This is because
(2.43) is less restrictive than |Ay|0 [ |y|0 for y ¥K 5 “W1.

Theorem 2.7. Assume (2.31)–(2.34) and (2.36) hold. Then (2.25) has
two solutions y1, y2 ¥ C[0, 1] 5 C2(0, 1) with y1 > 0, y2 > 0 on (0, 1) and
|y1 |0 < r < |y2 |0 [ R.

Proof. The existence of y1 follows from Theorem 2.5 and the existence
of y2 follows from Theorem 2.6. L

Example 2.1. The singular boundary value problem

yœ+
1
a+1

(y−a+yb+1)=0 on (0, 1)

y(0)=y(1)=0, a > 0, b > 1

(2.61)

has two solutions y1, y2 ¥ C[0, 1] 5 C2(0, 1) with y1 > 0, y2 > 0 on (0, 1)
and |y1 |0 < 1 < |y2 |0.
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To see this we will apply Theorem 2.7 with q= 1
a+1 , g(u)=u−a and

h(u)=ub+1. Clearly (2.31)–(2.33) hold. Also note

b0=max 3 2
a+1

F
1/2

0
t(1−t) dt,

2
a+1

F
1

1/2
t(1−t) dt4= 1

6(a+1)
.

Consequently (2.34) holds (with r=1) since

1

31+h(r)
g(r)
4
F
r

0

du
g(u)

=
1

(1+ra+b+ra)
1 ra+1
a+1
2

=
1

3(a+1)
> b0=

1
6(a+1)

.

Finally note (since b > 1), take a=1
4 , that

lim
RQ.

Rg 13R
16
2

g(R) g 13R
16
2+g(R) h 13R

16
2

= lim
RQ.

Ra+1 1 3
16
2−a

1 3
16
2−a+1 3

16
2b Ra+b+Ra

=0

so there exists R > 1 with (2.36) holding. The result now follows from
Theorem 2.7.
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