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The theories of current graphs and voltage graphs give powerful methods for constructing 
graph embeddings and branched coverings of surfaces. Gross and Alpert first showed that these 
two theories were dual, that is, that a current assignment on an embedded graph was 

equivalent to a voltage assignment on the embedded dual. In this paper we examine current 

and voltage graphs in the context of the medial graph, a 4-regular graph formed from an 

embedded graph which encodes both the primal and dual graphs. As a consequence we obtain 

new insights into voltage-current duality, including wrapped coverings. We also develop a 

method for simultaneously giving a voltage and a current assignment on an embedded graph in 

the case that the voltage-current group is abelian. We apply this technique to construct 

self-dual embeddings for a variety of graphs. We also construct orientable and non-orientable 

embeddings of Q4 with dual K,, for all possible p, q, r, s even with pq = rs. 

1. Introduction 

History 
A seminal question in topological graph theory was the map coloring problem, 

introduced by Heawood [20]. In this paper he showed that each surface S has a 

finite chromatic number, an integer k(S) such that any map on that surface could 

be properly colored in k(S) colors. Establishing a lower bound for the chromatic 

number of a surface was then reduced to calculating the genus of the complete 

graph. Ringel and Youngs [28] did just this, yielding a complete solution to the 

map color problem. The total effort was tremendous, occupying roughly 300 

journal pages. The proof was later condensed and systematically presented in 

Pd. 
Heffter [19] gave the first construction for the genus of (some) complete 

graphs. His method of map schemes was further developed by Ringel. Edmonds 
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[13] introduced map schemes in their dual form as vertex rotations. In whichever 

form, the importance of these methods is the reduction of the embedding 

question to a combinatorial problem. Gustin [17] introduced current graphs as a 

method of generating embedding schemes. Originally current graphs were not 

considered independently interesting; rather they were mere ‘nomograms’ used in 

generating the rows of embedding schemes. To cover the different cases of the 

map color problem many modifications were made to the basic construction. 

Youngs [34] introduced excess currents at vertices, and introduced cascades [35] 

for the non-orientable case. Finally, in 1974 Gross and Alpert [12] unified all of 

these modifications and gave the general theory of current graphs. 

Gross invented the voltage graph, the dual of a current graph [lo, 121. He also 

interpreted the graphical projection maps as coverings [ll] and found the related 

branched coverings of surfaces. This was extended to nonregular coverings via 

permutation-voltage assignments by Gross and Tucker [16]. Finally, the full 

symmetry of voltage-current duality was given by Jackson et al. [21], who studied 

the dual of the derived graph and wrapped coverings of graphs. 

Our goal 

The purpose of this paper is to give a unified treatment of the dual current- 

voltage graph construction in the context of the medial graph. We consider both 

orientable and non-orientable surfaces. Similarly our current-voltage groups may 

be either abelian or non-abelian. We do however, consider only ordinary (as 

opposed to permutation) voltage assignments. Hence we get regular (as opposed 

to arbitrary) branched coverings. Our treatment will give properties of the 

derived graph and the dual derived graph, together with the aforementioned 

covering maps and wrapped coverings maps. We also extend current and voltage 

constructions to allow (in the abelian case) a simultaneous voltage and current 

assignment. This leads to several nice applications, including the construction of 

self-dual embeddings. 

The paper is organized as follows. In Section 2 we give the requisite 

background information on graph embeddings and define the medial graph of an 

embedding. In Section 3 we give a brief review of the theories of current and 

voltage graphs. In Section 4 we then show how to transfer a voltage or current 

assignment to a voltage assignment on the medial graph. We do this so that the 

graph derived from the medial graph is the medial of the graph derived from the 

original assignment. We also introduce simultaneous voltage and current assign- 

ments on the same graph. In Section 5 we give some properties of the derived 

graph and its dual, including a special case which is especially easy to analyze. In 

Section 6 we introduce wrapped coverings, and interpret wrapped coverings in 

our context of the medial graph. We also define a special kind of wrapped 

covering called a composition. In Section 7 we examine how to assign excess 

currents to the graph so as to derive embeddings of compositions. In Section 8 we 

give applications of our theory, including coverings with both the primal and dual 
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graph compositions. These coverings give a variety of self-dual embeddings. We 

also note several known genus formulas as corollaries of our theorems, including 

genus embeddings of K,,, and of K,,,,,. Finally, in Section 9 we give some 

concluding remarks, primarily on our restriction to ordinary current-voltages. 

2. Embeddings and medial graphs 

In this section we show how to use signed graphs and rotation schemes to 

describe embeddings of graphs into surfaces. We refer the reader to [15,16] for 

more details. We also describe the medial graph of an embedding-a 4-regular 

graph which simultaneously encodes the primal and dual graphs. The medial 

graph has also been called the web graph [25]. 

Embeddings as signed rotations 

Following the usual convention of topological graph theorists, our graphs are 

connected and may have loops and multiple edges. What is occasionally referred 

to in the literature as a simple graph, where loops and multiple edges are not 

allowed, is called here simplicial. We begin by replacing each edge with a pair of 

oppositely directed edges, e+ and e-, where e+ runs in some preferred direction. 

Two graphs are considered equivalent if one can be obtained from the other by 

reversing preferred directions (switching e+ and e-) and/or the usual graph 

isomorphism. 

We begin with a description of cellular embeddings into orientable surfaces. 

Let G be a graph embedded on an orientable surface S. Fix an orientation on S, 

say counterclockwise. This orientation determines a cyclic permutation pV of the 

outwardly directed incident edges at each vertex u, called a local rotation. The 

collection of local rotations, one per vertex, is called a rotation on G, denoted p. 

Note that p is just a permutation of the directed edges whose orbits cyclically 

permute the outwardly directed edges at each vertex. 

Conversely, if we are given a rotation on a graph, then there exists a unique 

cellular embedding in an oriented surface such that at each vertex the local 

rotation on the outwardly directed edges coincides with the cyclic permutation 

induced by the fixed orientation [13]. Let 6 be the fixed-point-free involution 

which switches e+ and e- for each edge. Then a rotation p induces a rotation p* 

defined by the composition p* = pS. The faces of the embedding can be 

recovered by tracing out the action on the directed edges of the graph of p*. If 

we replace each local rotation p by p-l, then we obtain the embedding of the 

graph in the same surface, but with the opposite orientation. 

It is a bit more difficult to describe embeddings of a graph into non-orientable 

surfaces, as we cannot consistently distinguish between local rotations n and JC-~. 

In addition to the rotation scheme, we need a signature on G, defined as a 

mapping o from the edge set of G to { +, - }. In the literature a positively signed 
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edge is called type 0, while a negatively signed edge is called type 1. We prefer the 
more descriptive terminology (coming from the band decomposition of an 
embedding) where a positively signed edge is straight and a negatively signed 
edge is twisted, although we still refer to the sign as the type of the edge. 

Suppose that the graph G is embedded on a non-orientable surface S. Then we 
can arbitrarily fix an orientation at each vertex of the graph. This collection of 
local orientations determines a rotation scheme on G where the local rotation at a 
vertex is induced by the choice of local orientation. It also determines a signature 
on G, as we define an edge to be straight if and only if the local orientations on 
the ends agree. 

Conversely, suppose that we are given a graph G with a signature and a 
rotation scheme. Then there exists a unique embedding of G into a surface 
together with a local orientation at each vertex so that the procedure above 
recovers the rotation scheme and signature [30]. To recover the faces of the 
embedded graph we proceed as in the orientable case, except that traversing a 
twisted edge ‘toggles’ between states which use the rotations p and p-l. 

If we modify the signature and rotation scheme on a graph by switching all 
signs on the edges incident with a vertex ZJ and replacing the local rotation pU at u 
with p;‘, then we get the same embedded graph. This corresponds to choosing a 
different local orientation at u in the embedded graph. Hence two embeddings 
will be considered equivalent if one can be obtained from another by a sequence 
of these local sign switches. 

The graph G with signature u and rotation scheme p describe an embedding 
into an orientable surface if and only if (a, p) is equivalent (under local 
switchings) to (a+, p’) where CT+ is the signature with every edge positive. Thus 
the signed rotation (a, p) can be used to describe both orientable and non- 
orientable embeddings of G. In practice, it is easier to dispense with the signature 
if the surface is orientable, since we can find an equivalent embedding with each 
edge straight. 

Medial graphs 

Let G be a graph embedded in a surface S. A corner is a pair of consecutive 
edges {el, ez} in some face boundary (so that p*(e,) = e2 or vice versa). The 
medial graph, M(G), is the graph whose vertex set is the edge set of G, and 
having an edge joining each pair vertices which correspond to the edges in a 
comer. For example, Fig. 1 shows the octahedron (dashed lines) as the medial 
graph of the tetrahedron (solid lines). 

The medial graph is 4-regular, as each face creates two adjacencies for each 
edge in its boundary. It inherits an embedding in S from the embedding of G. 
The faces of this embedding fall into two classes, those corresponding to the 
vertices of G and those corresponding to the faces of G. 

Define the dual G* of an embedded graph G as the graph with vertex set the 
faces of G, and with an edge e* for each edge e of G joining the two faces on 
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either side of e. In this context we call G the primal graph. The dual has a natural 
embedding into the same surface as the primal. With this embedding, the taking 
of duals is involutory, that is, (G*)* = G. Note that the medial graph of the dual 
is the medial graph of the primal. 

The following theorem characterizes medial graphs. 

Theorem 2.1. Any embedded 4-regular graph whose faces can be 2-colored is the 
medial graph of a unique dual pair of embedding graphs. 

The dual of the medial graph is called the radial graph. Radial graphs have 
vertices corresponding to the vertices and faces of the embedded G, with edges 
joining incident elements (use multiple edges for multiple incidences). The radial 
graph is bipartite, and embeds in S such that each face is a quadrilateral. In fact, 
as in the preceding theorem, any bipartite quadrangulation of a surface is a radial 
graph of a dual pair of embedded graphs. As before, the radial graph of the dual 
is the radial graph of the primal. 

3. Current graphs and voltage graphs 

In this section we briefly review the rich theories of voltage graphs and current 
graphs. We consider embeddings in an orientable or a non-orientable surface, 
using voltages and currents from an abelian or a non-abelian group. However, we 
consider only ‘ordinary’, not ‘permutation’, voltages. We refer the reader to 
[15, 161 for a more detailed development of the material sketched herein. 

Voltage graph.9 
Let G = (V, E) be a graph. A voltage assignment on G is a mapping Y from the 

directed edges of G to elements in some group r such that oppositely directed 
edges receive inverse group elements. In practice we only define the voltage in 
one direction, which forces the voltage in the opposite direction. The elements of 
rare called voltages and r is called the voltage group. 

We next describe the derived graph G from a voltage assignment. Note that the 
derived graph depends only on the voltage assignment, not on an embedding. 



116 D. Archdeacon 

The vertex set of G is v = V x r; each vertex of G lifts to (r( vertices of G. Let 

e = uu be a directed edge of G receiving voltage Y. Then e lifts to Irl edges in G’, 

joining vertices (u, (Y) to (v, av). So oppositely directed edges in the base graph 

lift to oppositely directed edges in the derived graph. 

Suppose that the base graph G is embedded in a surface S. Then there is a 

natural embedding of the derived G in a surface 3. The local rotation j?& for this 

embedding is the lift of the local rotation pU on the base graph. Fix a vertex 

(v, 12) E V. Let (e,, e2,. . . , ek) be the local rotation at u in the embedded G. 

Each ej lifts to a unique edge Ei incident with (u, a). The local rotation of (v, (u) is 

then (t?,, Z2, . . . , Zk). Similarly the signature on G is the lift of the signature on 

G. That is, we define a signature 6 so that an edge d is twisted if and only if it lies 

above a twisted edge e. 

There is a natural way to describe the faces of the derived embedding. In 

particular, it is easy to determine the number and size of the faces. Define the 

excess voltage on a face f as the product of the voltages on the edges in the order 

they appear in a boundary walk. If the voltage group is non-abelian, then the 

excess voltage will depend on the starting edge of the product, but any two such 

values are conjugate and hence have the same order. Similarly if the boundary is 

traversed in the opposite direction, the excess voltage is the inverse of its previous 

value, and hence has the same order. In the derived G there are indexdvf) faces 

lying above f, each of size IfI * order,(vf). If V~ is zero for each 21 then we say that 

Kirchhoffs voltage law holds. Note that a triangulation whose voltage assignment 

satisfies Kirchhoff’s voltage law lifts to a triangular embedding of the derived 

graph. 

We will need the following sequence of lemmas which show how certain 

modifications of the base graph G affect the derived voltage graph 6. The first 

shows that the derived embedding is well defined. 

Lemma 3.1. Let G, and G2 be equivalent and embedded voltage graphs. Then the 

derived embedded graphs G, and G2 are equivalent. 

Proof. A local switch of the signature in the base graph lifts to a local switch of 

the signatures in the derived graph. Simultaneously reversing the local orientation 

in the base graph reverses the local orientation in the derived graph. Hence the 

two derived embeddings are equivalent. Cl 

The next lemma allows us to perform a local voltage modification. 

Lemma 3.2. Let G be an embedded voltage graph. Form G’ from G by replacing 

each voltage Y with CYV on the edges directed out from a vertex v. Then the 

embedded derived graph G’ is isomorphic to the embedded derived G. 

Proof. We merely use an isomorphism from G to G’ which maps each vertex 

(v, y) in the fiber above v to (v, y(~-I), while leaving all other vertices fixed. 0 
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We say two voltage graphs are equivalent if we can form one from the other by 
a sequence of local voltage modifications. 

For a graph G define the subdivided graph G’ as the graph formed by replacing 
every edge e with a path e,, e2 of length two. The subdivided voltage assignment 
has voltage y(eJ = v(e) and v(eJ = id (the identity element). Note that by the 
preceding lemma, the order of the path does not matter, as the two subdivided 
voltage assignments are equivalent under a local voltage modification at the new 
degree two vertex. The following is immediate. 

Lemma 3.3. Let G’ the subdivided voltage graph of G. Then the derived G’ is the 
subdivision of the derived G. 

Of course, we could subdivide some subset of the edges, even a single edge, 
instead of every edge. Finally, the following lemma allows us to add edges across 
a face of the embedding. 

Lemma 3.4. Let G be an embedded voltage graph, and let u and v be two vertices 
on a face f. Let P be a portion of the boundary walk off from u to v and v(P) be 
the product of the voltages assigned to the edges of P. Form G’ from G by adding 
in f the edge e = uv with voltage v(P). Then the derived graph G’ is the derived 
graph G with edges E added in the faces f lying above f. 

Proof. By our choice of the voltage on the new edge we can always add in the 
corresponding covering edges in the derived graph. 0 

Current graphs 
We begin with a graph G* embedded in a surface S with signed rotation (p, a). 

Let F* denote the faces of the embedding. A current assignment on the 
embedded G* is a mapping K from the directed edges of G* to elements in some 
r such that K(e-) = K(e+)-’ for straight edges and K(e-) = K(e+) for twisted 
edges. The elements of r are called the currents, and r is called the current 
group. Note that when assigning voltages and currents to twisted edges the two 
directions receive inverse voltages but identical currents. 

We can form a derived graph G which ‘lies above the dual G’ by using the 
current assignment and the signed rotation on G. The vertex set of G is 
v = F* x r; we say that each face of G lifts to Ir( vertices of G. Let e+ be an 
edge of G, and suppose that the rotation at the initial vertex of e+ carries face f 
to face g across e+. Then e+ lifts to Irl edges in G‘, joining vertices (f, a) to 
(g, cYK(e+)) for each (Y E K 

We must show that the derived graph is well defined, as we may choose the 
direction on e in two ways. But if the edge e is straight, then the rotation at the 
initial vertex of e- carries g to f, and lifts to edges (g, a) to (f, arc(e-)) = 
(f, ax(e+)-‘). If e is twisted, then the rotation at the initial vertex of e- still 
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carries f to g, and lifts to edges joining (f, a-) to (f, LyK(e-)) = (f, mK(e+)). It is to 
make the derived graph well defined that we required reversing the direction on 
an edge to invert the current if the edge is straight but to leave the current 
unchanged if the edge is twisted. 

It appears that the current assignment, as well as the derived graph, is 
dependent on the particular (p, (-I) used to define the graph. Suppose that we 
form (p’, a’) by switching signs at a vertex v. Then we define the local current 
switch K’ by K’(e+) = K(e+)-’ if the initial vertex of e+ is v, and leaving the 
current unchanged otherwise. Define two current graphs to be equivalent if we 
can form one from the other by a sequence of local sign switches with 
corresponding local current switches. 

Lemma 3.5. Two equivalent current graphs generate identical derived graphs. 

Proof. Switching at v toggles the type of each incident edge, but inverting the 
current on outgoing edges implies that K’ still has inverse currents on straight 
edges and identical currents on twisted edges. Hence K’ is a current assignment. 
We have also reversed the local orientation. Now the rotation at the initial vertex 
of e+ carries g to f. It follows that (g, (Y) is adjacent to (f, ax’(e+)) for each 
a. And so (g, cuK(e+)) = (g, aK’(e+)-‘) is adjacent to (f, (u) as desired. 0 

By Lemma 3.5 the derived graph depends only on the embedding and the 
currents, not on the particular signed rotation used to describe the embedding. 

The derived graph has a natural derived embedding. The rotation scheme for 
this embedding is given by lifting the face walks of the embedded G*. We begin 
by fixing an orientation on each face f E F*, and let (el, ezr . . . , ek) be the 
boundary walk of f in the induced direction. Each vertex (f, a) E v is incident 
with an edge 2; lying above ei. The local rotation of (f, (u) is then (c?,, &., . . . , Ek). 

We next need to define the signature. Let f and g be the faces incident with an 
edge e. If the orientations on f and g induce opposite directions on e, then each 
edge F above e is straight. If the induced directions agree each P is twisted. 

We must show that the derived embedding is well defined, as we may choose 
the orientation on f in two ways. But reversing the orientation on f reverses the 
local rotations at each (f, LY) and changes the signature of each incident edge, so 
that it gives an equivalent derived embedding. 

There is a natural way to describe the faces of the derived embedding. In 
particular, it is easy to determine the number and size of the faces. Define the 
excess current K,, at a vertex v as the product of the currents directed out of v of 
G, in the order determined by the local rotation. The excess current will depend 
on the starting edge of the product (if the current group is non-abelian) as well as 
the direction induced by the local rotation, but any two such values are conjugate 
or inverses and hence have the same order. There are indexA- faces in the 
derived G lying above v, each of size deg,(v) . orderdK”c,). This has been most 
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widely used in the case K,, is the identing for each v (Kirchhofs current law 

holds) and G is cubic. In this case, the embedding of the derived graph is 
triangular, and hence a genus embedding. 

The following sequence of lemmas are similar to those for voltage graphs; in 
fact, we shall see that they are dual. Their proofs are omitted. 

Define the edge duplicated current graph G’ by replacing every edge with two 
edges in parallel. The edges lie alongside each other in the embedding; that is, 
they bound a face of size two. We define a modified current assignment on the 
derived graph by giving one copy of the edge the current inherited from the 
current on G, and the other copy the identity. 

Lemma 3.6. The derived graph G’ of the edge duplicated graph is the subdivision 

of the derived graph of G *. 

Finally, define a splitting of a vertex, sp,,(G*) in an embedded current graph. 
Divide the edges incident with v into sets E,, E2 compatible with the rotation at 
v; that is, so that there are only two edges such that p(e) is not in the same part 
as e. The vertex set of the split is formed by replacing v with two adjacent 
vertices. Each new vertex vi is incident with those edges in Ej (in place of their 
incidence with v). We modify the embedding locally as shown in Fig. 2. 
Contracting the new edge v1v2 in the surface recovers the original graph with the 
original embedding. Note that we do not define an arbitrary splitting, only one in 
which the bipartition of the edges respects the rotation. We give both new 
vertices the same local orientation as the original vertex, make the new edge 
straight, and assign it an identity current. 

Lemma 3.7. Let sp”(G*) be a split of an embedded voltage graph G. Then the 

derived graph is formed from the derived graph of G by adding an edge across 

each face corresponding to v such that E, and E2 together with this new edge are 

the two new face boundaries. 

Current-voltage duality 

Let G be a current graph embedded in a surface S and let G* be its dual. 
Choose a local orientation at each vertex of G and G* ; these local orientations 
determine rotation schemes and signatures for the embeddings. We will show 

Spv (G”) 

Fig. 2. 
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how to transfer a current assignment on G* to a voltage assignment on G which 

generates the same derived graph. Likewise, we will transfer a voltage assignment 

to a dual current assignment. 

We begin with a current assignment on G*. Let e be an edge of G* and fix a 

direction e+. Let f and g be the faces incident with e, and suppose that the local 

rotation at the initial vertex of e+ carries f to g across e. Let e*+ be the dual edge 

directed from f to g. Then we assign the voltage v(e*+) = K(e+). 

We need to verify that the transferred voltage assignment is well defined, as 

there is a choice in the direction ef. But if e is a straight edge, then the local 

rotation at the initial vertex of e- carries g to f, and the directed dual edge e*- is 

assigned voltage v(e*-) = K(e-). Since the opposite directed arcs e+ and e- 

receive inverse elements, so do the opposite directed arcs e*+ and e*-. Likewise, 

if e is a twisted edge then the local rotation at the initial vertex of e- carries f to 

g, and the directed dual edge again gets voltage rc(e-). In this case the two 

directed dual edges are identical, and receive the same voltage. 

In Fig. 3 we illustrate how to transfer the current LY on the solid edge to a 

voltage (Y on the dashed dual edge. The four cases depend on the type and 

direction of e E E(G*). 

It is a straightforward application of the definitions to verify that the derived 

graphs of the dual current and voltage assignments are the same. 

We next investigate how to reverse the above process, that is, how to transfer a 

voltage assignment to a current assignment. As before, let G be an embedded 

graph with dual G* and with voltage assignment Y. Moreover, let e* be an edge 

of G* with dual edge e. 

Fix a direction e*+ and suppose that the local rotation at the initial vertex 

carries face f to face g across e. Give the primal edge a direction e+ which runs 

from f to g in G (recall that the faces of G* correspond to the vertices of G). 

Then we can define K(e*+) = v(e+). 

In Fig. 3 we show a voltage LY on the dashed edge transferred to a current (Y on 

the dual solid edge. The four cases arise from the direction and type of the dual 

edge. From this figure we deduce that the transfer is well defined. 

Fig. 3. 
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If we first transfer a current assignment to a voltage assignment and then 

transfer back again, we regain the original current assignment. Similarly, the two 

processes are inverses of each other in the other order. This shows that our 

transference of a voltage assignment to a current assignment preserves the 

derived graph. If an embedded voltage graph and dual embedded current graph 

are related in this way we call them dual embedded voltage-current graphs. We 

can then summarize the above as follows. 

Theorem 3.8. Let (G, Y) and (G*, K) be dual embedded voltage-current graphs. 
Then the two derived embeddings are identical. 

Under this relationship two theories of current graphs and voltage graphs are 

essentially the same. 

4. Transferring voltages and currents to the medial 

Voltages on medial graphs 
Let M be a medial graph in S of some dual pair of graphs G and G*. Let Y be a 

voltage assignment on M from the voltage group lY Form the derived graph fi 

with a derived embedding in a surface 3. Note that I@ is 4-regular, since voltage 

assignments preserve degrees in the derived graph. Also note that the faces of the 

embedding can be 2-colored; we merely lift the 2-coloring on the faces of M. 
Hence by Theorem 2.1, M is the medial graph of some dual pair of embedded 

graphs G and G*. Name these graphs so that V(e) covers V(G) and V(C?*) 
covers V(G*). 

Transferring a voltage assignment to the medial graph 
We now describe a method for transferring a voltage assignment Y on an 

embedded graph G to a voltage assignment Y,,, on its medial graph M. We want 

the embedded derived medial graph &f to be the medial graph of the derived 

embedding G. For notational convenience we first transfer the voltage assignment 

to the subdivided medial graph M’. This corresponds to a voltage assignment on 

M, as we can perform a local voltage modfication (Lemma 3.2) on each 

degree-two vertex so that one incident edge receives the identity voltage, then 

collapse that edge using Lemma 3.3. 

Let e be an edge of G and fix a direction ec on e. Let v, be the corresponding 

vertex in the subdivided medial graph. There are two corners of the original 

embedding centered at the initial vertex of e and containing e. These correspond 

to two edges in the subdivided medial graph incident with v,. Direct these two 

edges e; and el so that they have terminal vertex v,. The voltage v(e+) is then 

assigned to both e: and e:. Of course, the oppositely directed e; and e; receive 

the inverse voltage element. 

We need to check that the transferred voltage assignment on M’ is well 

defined. We first note that each edge of M’ is incident with a unique vertex of 
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e‘ 

Fig. 4. 

degree 4 and hence can be assigned a voltage transferred from at most one edge 

e. In other words, if we transfer all of the voltages simultaneously we do not get 

conflicting voltage assignments on an edge of M’. We also need to check that the 

voltage assigned to M’ does not depend on the choice of a direction on e. But if 

we reverse the direction e-, the other two edges incident with V, receive 

transferred current v-l. Hence the two subdivided medial voltage assignments 

generate isomorphic graphs and isomorphic embeddings by Lemma 3.2. Figure 4 

illustrates the transference of a voltage Y on G (solid lines) to voltages Y on the 

medial (dotted lines). 

We now show that the derived h? under the transferred voltage assignment is 

the medial graph of the derived 6. Define the total graph T(G) of an embedded 

graph G as the graph formed by subdividing each edge of G and adding in edges 

across each corner. Thus the total graph has both the medial graph and the 

subdivided primal graph as subgraphs. 

Theorem 4.1. Let G be an embedded voltage graph and let M be its medial graph 
with the transferred voltage. Then the derived medial fi is the medial of the 
derived c?. 

Proof. We begin first with the embedded graph G. By Lemma 3.3 the subdivided 

graph G’ has a voltage assignment which generates the subdivided derived graph 

G’. We now add, one by one, the edges across the corners using Lemma 3.4. 

After adding each such edge, we obtain an embedding of the total graph T(G). 
Figure 5 shows a voltage on the subdivided G’ extended to a voltage on T, where 

some edges of T have been subdivided for clarity. 

I a 

/p!2-4+ 
G' 

Fig. 5. 
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Similarly, consider the medial graph M with the transferred voltage assignment. 
Then across each face of M which corresponds to a vertex of g we add in edges 
(with the first one subdivided) using Lemma 3.4 until we again build an 
embedding of the total graph T(G). It is easy to check that the two embeddings 
of T(G) are equivalent under a sequence of local voltage changes, hence they 
generate isomorphic embeddings by Lemma 3.2. For example, Fig. 5 shows the 
voltage on G’ transferred to voltages on a subdivided medial M’, with the 
extension to T. 

When we undo the operations in the derived graph which formed the total 
graph, we obtain in the first case the derived graph G and in the second case the 
derived graph I@. It follows that fi is the medial of G as desired. 0 

Characterization of a transferred voltage assignment 
When is a voltage assignment on the medial graph equivalent to one 

transferred from a voltage assignment on the primal graph? Before answering this 
question, define a black, or primal-vertex face of the medial graph as one which 
corresponds to a vertex of the primal, while a white, or dual-vertex face 
corresponds to a vertex of the dual. 

Theorem 4.2. A 
the primal graph 
identity. 

vdtage assignment YM is a transfer of a voltage assignment Y on 
if and only if the excess voltage on each primal-vertex face is the 

Proof. Let v be a vertex of G, let e+ be an edge directed from v, and let fu be the 
primal-vertex face in M corresponding to v. Then in the subdivided medial graph 
the voltage v(e+) transfers to two consecutive voltages v(e+) and v(e+)-‘. These 
voltages cancel when calculating the excess voltage on fu, so that the excess 
voltage on fV is the identity. 

Conversely, suppose that we are given a voltage assignment on M with no 
excess current on any primal-vertex face. Subdivide each edge of M to form M’. 
Now, fix a primal-vertex face fv of M and let (ei, . . . , e,) be the boundary cycle 
of fV. Each ei corresponds to two edges ej and elin M’. Direct these edges so that 
their initial vertices are of degree 2. Thus the boundary walk in fv is 

,- 
cl , ep, . . . , e;-, e:. Define the voltage assignment on M’ by v(e;-) = 
I$I’,-’ v(eJ (so that v(e;) is the identity), and v(eI) = HiI: v(ei). (See Fig. 6 for 

Fig. 6. 

ab abc 
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an example.) Note that v(ei)Y(e,!‘) = Y(e,), so that this voltage assignment yields 

the same derived graph by Lemmas 3.2 and 3.3. Also note that at each degree 4 

vertex of the two incoming voltages are identical; in particular, this is true at the 

vertex between e, and e, since the excess voltage of fu is the identity. 

We now show how this equivalent voltage assignment on M’ arises from a 

voltage assignment on G. At each vertex v of G we have 4 edges directed in 

towards v. These edges receive voltages my, LY, /I, p where two edges with the 

same voltage lie on the corner of a black face. We now change the local voltage 

assignment at this degree 4 vertex, so that the edges now get voltages id, id, /3tiM1, 

@a-’ (see Fig. 7). Th’ d is oes not change the derived graph by Lemma 3.2. If we 

let u be the vertex corresponding to the black face with the corner receiving 

voltage /36’ and v be the other black corner, then this voltage assignment arises 

(by subdividing, as in Lemma 3.3) from a voltage cu-‘p on the edge uv in G. 0 

Transferring current assignments to the medial graph 
We next describe a method for transferring a voltage assignment K on an 

embedded graph G* to a voltage assignment Y,,, on its medial graph M. Again, 

we want the embedded derived medial graph fi to be the medial graph of the 

derived embedding G. As in the transfer of a voltage assignment to the medial, 

we will use the subdivided medial M’. 
Let e be an edge of G* and fix a direction e+ on e. Suppose that the rotation at 

the initial vertex of e+ carries face f to face g across e. There are two corners of g 

containing e. These correspond to two edges in the subdivided medial graph. 

Direct these two edges e: and e: so that they have terminal vertex v,, the vertex 

of the medial corresponding to e. The current v(e+) is then assigned as a voltage 

to both e: and e:. Of course, the oppositely directed e; and e; receive the 

inverse voltage element. 

We need to check that this voltage assignment on M’ is well defined. But the 

proof is similar to the proof in the voltage case, and is omitted. We do, however, 

refer the reader to Fig. 8, where we show a current (Y on G* (solid lines) 

transferred to a voltage (Y on the medial (dashed lines). The four cases depend on 

the type and direction of e. 

Theorem 4.3. The derived graph kl from the transferred current assignment is the 
medial graph of the derived graph. 
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Fig. 8. 

Proof. The proof is similar to that of Theorem 4.1. By the duplication of edges 

and a sequence of vertex splittings on G* we could form a related current graph 

G*’ whose derived graph is the total graph T(G). We can recover G by deleting 

the edges and suppressing the degree two vertices created by the edge 

duplications and vertex splittings on G*. But by starting with the medial graph 

with the voltage assignment transferred from the current graph, we can build the 

total graph of T(G*), which lifts to the same T(G). 0 

We could also prove the preceding theorem by citing the voltage-current 

duality shown in Section 3. The current assignment on G* transfers to a voltage 

assignment on G with the same derived graph. This voltage assignment transfers 

to a voltage on the medial graph M which builds the medial graph of the derived 

graph. We would need only check that the composition of the two transfers gives 

the same voltages on M as does transferring the currents directly form G* to M. 

The proof of the following is identical to that of Theorem 4.2. 

Theorem 4.4. A VOkZ@? mignment vM is a transfer of a current assignment v on 
the dual graph G* if and only if the excess voltage on any black face is the identity. 

We could use the medial graph to give a new proof of voltage-current duality. 

We start with a current assignment on G*. If we transfer it to a voltage 

assignment on M then no black face has excess current by Theorem 4.4. It follows 

from Theorem 4.2 that this medial assignment also arises from a voltage 

assignment on G. Likewise, a voltage assignment on G gives the same derived 

graph as some current assignment on G*. These dual current-voltage assignments 

are, of course, the ones which we get by transferring directly. 

Simultaneous voltage and current assignments 
We now introduce one of the most important ideas of this paper; we show how 

to simultaneously make a voltage and a current assignment on a graph. Under 

duality, this is equivalent to making a current assignment to both the primal and 

dual graphs, or to making a voltage assignment to both the primal and dual. The 
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trick is to transfer both assignments to the medial graph, take the lift of that 
medial graph to covering medial graph, and then to return back to the primal and 
dual of this derived medial. We consider only the case when the voltage-current 
group is abelian, as there is a much cleaner analysis of the derived graph in this 
case. 

We begin with an embedded graph G and an abelian group r Let K be a 
current assignment using currents from r, and let Y be a voltage assignment using 
voltages from r Thus rplays both the role of the current group and the voltage 
group. We would like to transfer both assignments directly to the subdivided 
medial graph, but there now is a problem. An edge of the subdivided medial 
graph may receive both a transferred current and a transferred voltage. For 
suppose that a directed edge e receives voltage Y and current K. Let V, be the 
vertex in the subdivided medial corresponding to the edge e. Then when we 
transfer the voltage, two edges incident with v, will receive voltage Y, one in each 
face of G. But when we transfer the current two edges incident with u, will 
receive voltage K, both in the same face. So one edge should receive both voltage 
K and voltage Y (see Fig. 9, where the edge indicated receives a voltage Y and the 
current K has been transferred to a voltage K on the dual vertical edge). In this 
case assign the voltage Y + K = K + Y (the group is abelian). By Lemma 3.3 this 
voltage assignment on the subdivided medial corresponds to a voltage assignment 
on the medial graph. 

Let v be a vertex of G, and let fu be the black face of the subdivided medial 
corresponding to V. What is the excess voltage around fU? Let e,, . . . , e, be the 
edges incident with u directed away from V. Then each v(eJ appears twice in the 
boundary walk of fv, once in each direction. Since the group is abelian these 
transferred voltages cancel. On the other hand, each K(ei) occurs once in the 
boundary walk. We have the following. 

Lemma 4%. The excess voltage on a black face of the medial is the excess current 
on the corresponding vertex in the primal. 

Similarly we get the next lemma. 

Lemma 4.6. The excess voltage on a white face of the medial is the excess voltage 
on the corresponding face of the primal. 

Fig. 9. 
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This independence will prove very useful in the applications. The number and 
degrees of the vertices depend only on current assignment. Likewise the number 
and sizes of the faces depend only on the voltage assignment. However, we 
emphasize that the adjacencies in the derived graph depend on both the current 
and voltage assignments. We will introduce a special case in the next section in 
which these adjacencies are especially easy to describe. 

We note that the previous two lemmas are false if we allow a non-abelian 
current-voltage group. For when an edge of the subdivided medial is to receive 
both a voltage Y transferred from a voltage assignment and a voltage K 

transferred from a current assignment we cannot assign a voltage which ensures 
that the Y’S cancel on the black faces and the K'S cancel on the white faces. We 
could introduce an additional requirement that the voltage and current assigned 
to an edge always commute, but this does not seem to gain much advantage. If 
we arbitrarily establish that the transferred currents should cancel, it is difficult to 
determine the excess voltage around a white face. Similarly we cannot arbitrarily 
establish that the transferred voltages should cancel. If the reader feels that the 
use of a non-abelian group is essential in an application, then the author 
recommends working directly with a voltage assignment on the medial graph. 

5. Properties of the derived graph 

In Section 4 we saw how to make simultaneous current and voltage 
assignments on a graph G from an abelian group r and how to find the derived 
graph G. In this section we study the general relationship between G and G’, 
where the derived graph is formed from a voltage assignment on the medial graph 
M of G. We do not require that the voltage group be abelian, although in practice 
most of our medial voltage assignments will come from simultaneous current and 
voltage assignments and hence the group will be abelian. 

We first examine the lift of a vertex in G to vertices in 6. Let u be a vertex of 
G and let fU be its corresponding face in the medial M. Suppose that fu gets an 
excess voltage of v”. Then in the derived graph fi, fv lifts to indexdv,,) faces, 
each of size orderdv,) . Iful. It follows that G has indexdv,) vertices lying above 
V, each of degree order,(v,) * deg,(v). 

We next examine the lift on an edge e = uv of G. This corresponds in M to 
black faces fU and fU incident with a common vertex u,. These in turn lift to sets of 
faces fU,i and fv,j incident with vertices of the form (v,, (u) for (Y E lY If (u,, (Y) is 
on the boundary of fU,i and f”,j then it corresponds to an edge between vertices ui 
and uj in G. 

We begin with the vertex (x,, id) (where id is the identity element in the group) 
incident with say faces fu,o and f+ If we walk once around the lift of the 
boundary of fu we arrive at the vertex (v,, v,) in fi. Continuing the walk a second 
time gets us to (r~,, Y:). It follows that the face fu,o contains exactly those vertices 
of the form (u,, a) where (Y is in the subgroup generated by v,, denoted (vu). 
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More strongly, other faces fU,i will contain vertices of the form (v,, LX) where (Y 

is in the ith coset of (vu). Thus the faces above fU are in a bijective 

correspondence with the cosets of (v,). A similar statement holds for the faces 

fU,p Hence the lift of an edge e in G is determined by the intersection pattern 

among cosets of the groups generated by the excess voltages at the medial faces 

corresponding to the ends of e. We formalize this in the following theorem. 

Theorem 5.1. Let e = uv be an edge in G where the faces corresponding to u and v 
in M get excess currents Y, and V” respectively. Then e lifts to a subgraph having 
index,-(( vU, v,, )) components, each a complete bipartite subgraph with vertex parts 
of sizes index( yU,yU ) ((vu)) above u and index(,,,,) ((v,)) above v, with each edge 
duplicated ( ( vu ) fl ( v,, ) 1 times. 

For arbitrary values vu and v,, the derived graph is difficult to describe. In the 

following special cases the description is easier. We say that two subgroups of F 

are disjoint if they have only the identity element in common. The following two 

special cases of Theorem 5.1 are of special interest. 

Corollary 5.2. (i) There is at most one edge joining ti, 8 provided that yU and -vu 
generate disjoint subgroups. 

(ii) There is at least one edge joining ti, I? provided that vU and vu together 
generate all of r. 

Even more special, we say that two elements vu and vu are disjoint generators 
for a group F if together they generate the group, but individually they generate 

disjoint subgroups. Then we have the following. 

Corollary 5.3. if e = uv has u and v receiving disjoint generators in the transferred 
voltage assignment on M, then e lifts to a complete bipartite subgraph with vertex 
parts the vertices above u and above v. 

6. Wrapped coverings and compositions 

The dual derived graph 
There is a basic asymmetry in the theory of voltage-current duality; both the 

voltage on the primal graph and the current on the dual graph are used to 

construct the same derived graph. Moreover there is a graph covering from the 

derived G to the primal G. What can we say about the dual G* of the derived 

graph? Is there a map from G* to G *? This issue was first addressed by Jackson, 

Parsons and Pisanski [21,22] (see also [l]), who developed wrapped covering 

maps. We now interpret their theory using the medial graph. 
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Wrapped coverings 
Let G and G be graphs. A wrapped covering of order n is a homomorphism w 

from G to G such that E(G) maps to E(G) in an n - 1 fashion and for each 

t7 E V(G) there is a positive integer S(C) such that the edges incident to ti map to 

the edges incident with v = w(C) in a S(C)-1 fashion. This S is called the 

wrapping index of o at 6. The sum of the wrapping indices above a vertex v E G 

is n. If the wrapping index is 1 for each vertex of G’, then the wrapped covering is 

a covering in the usual sense. For example, Fig. 10 shows a wrapped covering of 

the 3-wheel by the 6-wheel (vertices on the left are labeled by their image on the 

right). Every vertex of the 6-wheel has wrapping index 1, except the hub which 

has wrapping index 2. 

Suppose that G is a wrapped covering of G, and that these graphs are 

embedded in surfaces 3 and S respectively using signed rotations (0, ~5) and 

(p, o) respectively. We say that (0, 5) is a wrapped signed rotation provided that 

u preserves the type of each edge and op = pw. Thus if the local rotation at v 

looks like (e,, . . . , e,), then the local rotation at the covering vertex fi looks like 

(& . . . , if;, I?:, . . . ) t?‘,, . . . ) E:, . . . , if:), where k is the wrapping index at fi and 

each Zj maps to ei under o. For example, Fig. 10 also illustrates a wrapped 

generalized rotation scheme, where the graphs are embedded in the plane as 

shown. Note that this wrapped covering extends to a branched covering of the 

sphere by itself with two branch points, one at the hub and one at 00. Jackson, 

Parsons and Pisanski [21] have shown that in the orientable case a wrapped 

covering always extends to a branched covering of the surfaces. The correspond- 

ing result for non-orientable wrapped coverings was shown in [l]. The following 

holds for both orientable and non-orientable surfaces. 

Theorem 6.1. Let G be an embedded wrapped covering of an embedded G using a 
wrapped signed rotation. Then the dual G* is an embedded wrapped cover of the 
dual G*, with wrapped signed rotations. Moreover, these wrapped coverings 
extend to a branched covering of the surfaces, where the prebranch points occur 
precisely at the vertices of G and G* with wrapping index exceeding 1. 

Proof. The wrapped covering and wrapped signed rotation can be used to show 

that the medial graph ti is a covering graph of M. Each face boundary in &Z maps 

Fig. 10. 
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to the corresponding face boundary in M with wrapping since the signed rotations 

are wrapped. The result now follows by extending this wrapping to a disk with a 

single branch point as in [lo]. 0 

The extension to embedded wrapped coverings restores a full symmetry to 

current-voltage duality by the following theorem, whose proof is omitted. 

Theorem 6.2. Let G* be a current graph. Then the dual G* of the derived graph 

G is an embedded wrapped covering of G *. Moreover the branch points are at 

precisely those vertices of G* with nontrivial excess current, and the order of the 

branching is the order of the excess current. 

Compositions 

Among all wrapped coverings the easiest to describe-and perhaps the most 

interesting-are the following. 

Let G be a graph and let n be an integer. The composition G’“’ is the graph 

formed from G be replacing each vertex with n independent vertices, and 

replacing each edge of G with a complete bipartite graph K,,, whose vertex parts 

are the new vertices replacing the ends of e. For example, the composition Kim) is 

the regular multipartite graph with n sets of m vertices, K,+,. 

There is a natural projection map from G’“’ to G, and it is easy to check that 

this is a wrapped covering. In particular this projection maps the edges of G(“) to 

the edges of G in an n2-to-l fashion. Observe that (G’“‘)‘“’ = G’““‘. This will 

prove useful, as the upcoming constructions are easier for n prime. 

If GM is bipartite with vertex parts A and B, then we define a bipartite 

composition G$‘,$” as the graph formed by replacing each vertex in A by n 

independent vertices, each vertex in B by m independent vertices, and each edge 

by the complete bipartite graph K,,, on these new vertices. For example, the 

composition Kg? is K,,,bd, where we let vertex part A be the a vertices of degree 

6. 

As before, the natural projection map is a wrapped covering. It maps the edges 

of the composition to the edges of the base graph in an nm-to-l fashion. We will 

use G$’ to denote the bipartite composition G;;B. ( I) In the upcoming theorems it 

will prove useful to consider only bipartite compositions G$” with p prime. But 

we can form any bipartite composition by iterating such unilateral prime bipartite 

compositions. 

In general we would like to replace vertices of G with sets of independent 

vertices, and edges with complete bipartite graphs. However, if we want the 

projection map from the composition to the original graph to be a wrapped 

covering, then we must have nm constant for each edge, where n and m are the 

number of vertices above the ends of that edge. It follows that the compositions 

described in the preceding two paragraphs are the only ones where the projection 

map is a wrapped covering. 
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We close by noting that Harary [S] defines a general composition of two 

graphs. Comparing notations, our G’“’ in his G[mK,]. 

7. Assigning excess currents 

In this section we examine how to assign currents from an abelian group r to 

an embedded graph G* so that the dual derived graph G* is a composition. Let 

vU and v,, be the excess voltages on the faces of the medial corresponding to 

adjacent vertices u and v. Then by Lemma 5.3 we need that Y, and vu are disjoint 

generators for the group K Moreover, note that by Lemma 4.6 this excess voltage 

on the faces is determined solely by the current assignment on G*, not by a 

simultaneous voltage assignment. This independence will allow us to construct (in 

Section 8) simultaneous voltage-current assignments for which both the primal 

and dual derived graphs are compositions respectively of the base primal and dual 

graphs. 

What group r should be use? To use simultaneous current-voltage assignments 

we need r to be abelian. We also need r to have two disjoint generators. The 

only such groups are either cyclic or the product of two cyclic groups. It is more 

convenient to work with the latter. In fact, it is most convenient to work with 

$ x Z,,, where p is the prime. For in this group, any element has order p, and 

any two non-identity elements which do not generate the same subgroup must be 

disjoint generators. Moreover, as discussed in Section 6, we can iterate to form 

nonprime compositions. Except for the following Lemma 7.1, we will assume that 

the current group is ZP X Z,,. 

Feasible current assignments 
Define an excess current assignment on G as a function E from V(G) to the 

current group. We say that E is feasible provided that there is a current 

assignment K which has excess current E(V) for each vertex u. The following 

lemma characterizes feasible excesss current assignments. 

Lemma 7.1. An excess current assignment E is feasible if and only if C, E(V) = 0. 
Moreover if 9 is a set of edges whose removal does not disconnect the graph, then 
E is realizable by a current assignment which is identically 0 on 9. 

Proof. The proof proceeds by induction on n, the number of vertices with 

nonzero excess voltage. If n = 0 then we can realize E with the current assignment 

which is identically 0 on every edge. Suppose that n > 0, and select a vertex u 

with E(U) # 0. Then since C, E(V) # 0 there exists a second vertex v with 

E(V) # 0. 

Define an excess current assignment E’ by E’(U) = 0, E’(V) = E(V) - E(U), and 

E’(W) = E(W) for all other vertices. Then E’ has at most n - 1 vertices with a 
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nonzero excess current. By induction there is a current assignment K’ which 

realizes E’. Moreover we may assumed that K’ is identically 0 on 9. 

Since 9 does not disconnect the graph there is a directed path P from u to ZI 

missing 9. By a sequence of local switchings we may assume that each edge in P 
is straight. Define a current assignment K by I = I’ + E(U) and rc(e-) = 

-K(e+) if e is a directed edge in P, and K(e) = K’(e) otherwise. It is routine to 

verify that K realizes E and that K is identically 0 on 9. 0 

An excess current assignment E is disjoint if E(U) and E(U) generate disjoint 

subgroups for each edge UZI. Similarly E is generating if E(U) and E(V) together 

generate I’for each edge UV. For the derived graph to be a composition, we need 

to find a feasible disjoint generating excess current assignment. This phrase is 

rather unwieldy; call such an assignment a composition assignment. Easy ways to 

find composition assignments are given in the following three propositions. 

Proposition 7.2. Let G be a graph with at least three vertices and with chromatic 
number k, and let p be a prime at least 5. Then G has a composition assignment in 
ZpxZpifandonlyifp2k-1. 

Proof. We begin by noting that each element of ZP x 22, is of order p. It follows 

that there are exactly p + 1 subgroups of order p, each containing exactly p - 1 

nonzero elements. Moreover, any two such subgroups are disjoint and 

generating. 

In any composition assignment each vertex has an associated order p subgroup, 

the one generated by its excess current. Since adjacent vertices are associated 

with disjoint subgroups, the composition assignment gives a proper coloring using 

the order p subgroups as colors. It follows that the chromatic number is at most 

p + 1. 

Conversely, suppose that we have a k coloring of G using the order p 
subgroups as colors. Then we need to pick one element from each subgroup at a 

vertex so that their sum is 0. If so, then the disjoint generating assignment is 

feasible by Lemma 7.1. 

Let the vertices of G be vlr . . . , v,. Assume without loss of generality that 

v,-, is associated with ((l,O)), v, with ((0,l)). and vi with ((1,l)). We will 

define E vertex by vertex. We will require that for each 1 <j < n - 1, Ci+ E(v~) is 

nonzero in each component. Begin by assigning vi the excess current (l,l). Let 

j <n - 1 and suppose that we have defined E(Vi) for each i <j. Let (a, 6) = 
CiCj E(v~). Since p - 1 > 2, there is a non-identity element (c, d) in the subgroup 

associated with vj with c + a # 0 and d + b Z 0 (at most one element makes the 

first sum 0, and at most one makes the second sum 0). We define E(ej) = (c, d). 
We have left only to define c(v,_J and ~(21,). Again let (a, b) = CiCn--l E(v~). 
Define E(v,_,) = (-a, 0) and E(v,) = (0, -6). It is clear that the sum of the 

excess current assignments is 0, and hence it is feasible. 0 
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The cases p = 2 and p = 3 are somewhat different, and are covered in the 

following two propositions. 

Proposition 7.3. A graph G has a composition assignment in Z2 x Z2 if and only if 
it has a proper vertex 3-coloring with all three color classes having the same parity. 

Proof. There are three pairwise disjoint generating subgroups of Z2 x Z2, each 

with a single nonzero element. Suppose we have a proper 3-coloring of G with 

color classes of size a, 6, and c all of the same parity. Consider the excess current 

assignment of (1, 0), (0, l), (1,l) to each vertex in the first, second and third 

color classes respectively. Then the first coordinate in the sum of the excess 

currents is 0 since a and c have the same parity. Similarly the second coordinate is 

0 since b and c have the same parity. By Lemma 7.4 the excess current 

assignment is feasible; it is also disjoint and separating. 

Conversely, a composition assignment gives a proper 3-coloring with all three 

color classes of the same parity. 0 

Proposition 7.4. A graph G has a composition assignment in Z3 x Z3 if and only if 
it has chromatic number at most 4 and is not K, or K,. 

Proof. That the chromatic number is at most 4 follows as in the preceding 

propositions. 

We proceed as in Proposition 7.2, defining the excess voltage assignment vertex 

by vertex. Again we assume that v,-r is associated with ((1, 0))) and v, with 

((0,l)). We begin by defining a = (0, 1) and E(Q) = (1, l), so that the sum 

of the excess voltages is nonzero in both coordinates. To define E(Vj) we pick an 

element in the associated subgroup so that the sum of the excess currents defined 

to date is nonzero in the first coordinate. If perchance the second coordinate is 

zero, we redefine E(v,) as the other nonzero element in ((0,l)). We define 

l (v,_r) and ~(21,) as before so that the assignment is feasible. 

The proof breaks down if we cannot find at least two vertices in at least one 

color class (to serve as vl and u,), so that the graph is complete. But excess 

currents (0, l), (1, 0), and (2,2) are feasible for K,. It is straightforward to check 

that K, and K, do not have the desired assignment. 0 

In Section 6 we noted that we lose no generality by considering only 

compositions Gcp) for p prime. But could it be that by using Z, x Z, we could find 

appropriate excess current assignments, even if there was no such assignment for 

a prime factor p of n? No, as the following argument shows. Let G be a graph 

with chromatic number k. 
To form a composition G’“’ using a voltage group Z,, x Z,, where n = p1p2, 

the excess voltage assigned to a vertex must form a subgroup of Z, x Z, of order 
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n. How many such groups are there ? Each such group must contain p, - 1 

elements of order p2. There are p: - 1 such elements. Hence the number of such 

subgroups is at most p, + 1. It follows that the chromatic number of G can be at 

most p1 + 1. A similar argument works for the product of an arbitrary number of 

primes. 

The following theorem summarizes the preceding three propositions. 

Theorem 7.5. Let G be a graph with chromatic number k. Then there exists a 
sequence of composition assignments yielding G(“’ provided that each prime factor 
of n is at least k - 1, except when 

(i) n is even and every 3-coloring of G has color classes of different partity, and 
(ii) G = K4 and n = 3. 

Proof. Suppose that G # K4. By Propositions 7.2-7.4 we can form a composition 

of order p for each prime at least k - 1 provided that (i) does not hold. Note that 

the graph GCp) also has chromatic number k. Moreover, if p is odd then Go’) has 

a 3-coloring with all classes of equal parity if and only if G does. We iteratively 

compose by each prime factor to obtain G’“‘, noting that (G(Pl))(Pz) = G(plJ’z) 

If G = K, we proceed as before, except that we first compose by a prime factor 

not equal to 3. The resulting composition is not K4, so that we can compose by 3. 

If G = K4 and n is a power of three, we begin with the composition assignment 

(1,2), (7, S), (1, O), and (0,8) in Z, x i&,, and then compose by any remaining 

powers of three. q 

The bipartite case 
We begin with a bipartite graph G having vertex parts A and B. We restrict our 

attention to unilateral prime bipartite compositions G$“‘, in which each vertex in 

one part A is replaced with p vertices having the same adjacencies. We use 

bipartite composition assignments from the current group Zp for p prime. For the 

derived graph to be G$‘j we need that each vertex in A receives the identity 

excess current and each vertex in B receives a non-identity excess current. 

Theorem 7.6. Let G be a bipartite graph with vertex parts A and B. Then there is 
a sequence of bipartite composition assignments giving the derived graph G$) 
unless 1 B 1 is odd and n is even. 

Proof. That we can make a bipartite composition in Iz,, p prime, follows as in 

Propositions 7.2-7.4. Note that doing a composition with an odd prime does not 

change the parity of the vertex part corresponding to B. The proof of Theorem 

7.6 now follows as in the proof of Theorem 7.5. Cl 
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8. Applications 

In this section we apply the theory of composition assignments to construct a 
wide variety of graph embeddings. We start with quadrilateral embeddings of 
K m.fE* 

Example 8.1. Consider the 3-cycle embedded in the plane. Then each face is a 
triangle. Moreover, in a 3-coloring of the vertices all three parts have exactly one 
vertex. Hence by Theorem 7.5 we can find a sequence of composition 
assignments giving an orientable triangular embedding of K,,,,, for all 12. Thus 
the genus of this graph is (n - l)(n - 2)/2, as first shown in (29). 

Example 8.2. In [21] Jackson et al. showed that a triangular embedding of G lifts 
to one of G’“’ for all m relatively prime to some M which depends on the 
chromatic number of G. This result now follows as a corollary to our Theorem 
7.5. In fact, we have a smaller M which improves the result. 

Example 8.3. Abu-Sbeih and Parsons [2] have results on lifting quadrilateral 
embeddings of bipartite graphs to quadrilateral embeddings of bipartite composi- 
tions. Their results follow as a special case of our Theorem 7.6. They did not find 
the analogue of our Theorem 7.1, which complicated the statement and proof of 
their results. 

Example 8.4. Consider a quadrilateral embedding of KZ,n in the plane. Let A be 
the vertex part with two vertices of degree n, and let B be the n vertices of degree 
2. 

If IZ = IBI is even, then by Theorem 7.6 we can find a sequence of bipartite 
composition assignments giving the derived graph Glm) = K,,Zm for all m. 
Moreover, as the dual base graph is 4-regular, the dual derived graph is 4-regular. 
So the embedding constructed has every face a 4-cycle. In other words, for all 
bipartite graphs with both parts even we can find quadrilateral, and hence genus, 
embeddings. 

If it is odd, then again by Theorem 7.6 we can find a sequence of bipartite 
composition assignments giving G$” = K,,2m for all odd m. As before, we have 
constructed quadrilateral, and hence genus, embeddings for all complete bipartite 
graphs with one part odd and the other part 2 modulo 4. (See [27] for the full 
proof of the genus of K,,,.) 

It is an easy application of Euler’s formula to show that these are the only 
possible congruence classes of m and 12 for which quadrilateral embeddings of 
complete bipartite graphs are possible. 

Example 8.5. Figure 11 shows a quadrilateral embedding of G = K+, in the torus 
(solid lines). The medial graph is C4 X C, (dotted lines). Note that there is a map 
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Fig. 11 

isomorphism of the embedded C, x C, which switches the primal-vertex faces and 

the dual-vertex faces. It follows that the dual of G is also K+,. 

By Theorem 7.6 there exists a current assignment K on G in ZP such that the 

derived graph is K+,+ Similarly there exists a dual current assignment K* on G* 

so that the dual derived graph is K+,. But a current assignment on both G and 

G* corresponds to a simultaneous voltage-current assignment on G. By Lemma 

4.5 the excess voltage on a primal-vertex face depends only on the excess current 

on the primal vertex. In particular, it is independent of the dual current 

assignment K*. Similarly, by Lemma 4.6 the excess voltage on a dual-vertex face 

is independent of K. It follows that when making both current assignments 

simultaneously both the derived and dual derived graphs are still K,,,. Hence we 

have constructed a self-dual embedding of this graph. By iterating this process, 

switching the vertex parts if needed, we conclude the following. 

Theorem 8.6. K4,,+, has an orientable self -dual embedding for all n and m. 

Such embeddings were also given in [3]. But we can do much more here, as the 

following shows. 

Theorem 8.7. Let p,q,r,s be even integers exceeding 2 with pq = rs. Then there 
exist both orientable and non-orientable embeddings of KP,9 with dual K,,, except 
that there is no orientable self -dual embedding of K,,,. 

Proof. The proof proceeds inductively on the number of prime factors in 

n =pq/4. Since p and q are even integers exceeding 2, n has at least 2 prime 

factors. 

Suppose that n has exactly two prime factors. Then there is a unique way to 

factor 4n =pq into even numbers exceeding 2. Hence we may assume that r =p 
and s = q, so that we are looking for a self-dual embedding of KP,4. Both 
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orientable and non-orientable self-dual embeddings of KP,q are given in [3], 

except that there is no orientable self-dual embedding of K6,6. These embeddings 

give the start of our induction. 

Next suppose that rz has at least three prime factors. Then at most two of p, q, 
r, s are twice a prime. Hence we can find a prime factor a of n which divides 

(without loss of generality) both p and r such that p’ =p/a and r’ = r/a are even 

numbers exceeding 2. 

In the orientable case we can find an embedding of K,.,, with dual K,.,,, unless 

p’ = q = r’ = s = 6. But in this case the desired embedding is Kti,6 with dual K&r,6 
which exists by [3]. So we can assume that there is an embedding of K,.,, with 

dual K,.,,. By Theorem 7.6 we can find a bipartite composition assignment from 

z, on KP,,q which gives the derived graph KP,4. Likewise, we can hnd a bipartite 

composition assignment on K,.,, which gives the derived K,,,. By making these 

current assignments on the embedded graph and its dual simultaneously, we get a 

derived orientable embedding of KP,4 with dual K,,, as desired. 

In the non-orientable case we can always find the embedding of KP.,4 with dual 

K ,, . Similarly we can always find bipartite composition assignments on KP.,4 and 

K:,,: to get a derived embedding of KP,4 with dual K,,. But we need to ensure 

that the derived embedding is still non-orientable. To do this we first find an 

orientation-reversing 4-cycle in the base embedding. This is possible, since if 

every 4-cycle were orientation-preserving the embedding is orientable (the 

4-cycles generate the cycle space, so that every cycle would then be orientation- 

preserving). The four edges in this 4-cycle are not all incident with a common 

vertex in either G or in G*. Hence they do not disconnect either graph. By 

Lemma 7.1 we can realize the bipartite composition assignments so that these 4 

edges all get 0 voltage. This implies that the orientation-reversing 4-cycle lifts to 

an orientation-reversing 4-cycle. Hence the derived embedding is non-orientable, 

and the theorem is demonstrated. 0 

The following theorem lifts self-dual embeddings in the nonbipartite case. 

Theorem 8.8. Let G be an embedded self-dual graph with chromatic number k. 
Suppose that n has no prime factor less than k - 1, and if n is divisible by three 
that there is a vertex 3-coloring with all three color classes of equal parity. Then 
G@” has a self -dual embedding. 

Proof. The proof follows as in the proof of Theorem 8.6, except that we need to 

use Theorem 7.5 in place of Theorem 7.6. The special case G = K4 and n = 3 is 

covered in Example 8.10. 

The following is a special case of Theorem 8.8. 

Example 8.9. It follows from Euler’s formula that K,, can have an orientable 

self-dual embedding only when n is 0 or 1 modulo 4. White [33] constructed such 
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embeddings for n = 1 modulo 4; Pengelley [24] did the remaining case. Note that 

the composition Kim) is the regular complete multipartite graph K,,Cm). By 

Theorem 8.8 we can lift these embeddings to construct self-dual embeddings of 

K nc,,,j for ail II = 0 or 1 modulo 4 and all m with no prime factor less than n - 1. 

In general, this covers only a small fraction of the possible complete multipartite 

graphs. Stahl [31] has also constructed self-dual embeddings of regular complete 

multipartite graphs. There is some overlap between his work and ours, but each 

covers some cases the other cannot. 

The special case 12 = 4 is worthy of note, as we get self-dual embeddings of 

K m,m,m,m for all m odd except m = 3. 

Example 8.10. We examine the omitted case in the previous example. Specifi- 

cally, is there a self-dual embedding of K3,3,3,3 ? We begin with the tetrahedron, a 

self-dual embedding of K4 into the sphere. We know (Theorem 7.5) that we 

cannot give a feasible excess current assignment from Z3 x if3 to the vertices so 

that the derived graph is K3,3,3,3 = K+). In particular, we cannot use Theorem 7.5 
to construct a triangular embedding of K 4c3j. (Indeed, Jungerman [23] reports the 
results of a computer search which reveal that there is no orientable triangular 

embedding of K4c3j.) 
It would seem similarly hopeless to try to construct a self-dual embedding of 

Khc3) using excess current assignments, since we cannot assign either the primal or 

the dual requisite currents. So we cannot construct a self-dual embedding of Kac3) 
using a simultaneous current-voltage assignment on the tetrahedron. But surpris- 

ingly, we can construct such a self-dual embedding if we work directly from a 

current assignment on the medial graph. The medial graph of the tetrahedron is 

the octahedron. In Fig. 12 we show a voltage assignment on the octahedron. For 

this assignment it is easy to check that faces corresponding to the vertices of the 

primal K4 receive excess voltages (l,O), (0,2), (1,1) and (2, l), while the 

remaining faces receive excess voltages (2,0), (0, l), (2,2) and (1,2). In both the 

primal and the dual, adjacent vertices correspond to faces in the medial with 

disjoint generating excess voltages. Hence the derived graph and its dual are both 

K 4(3). 

(O,l) 

:..:. .,. 

@ 

(1,O) .:: (JJ) 

($21 

Fig. 12. 
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Note that the sum of the excess voltages around the medial faces corresponding 

to the vertices of the primal is not 0. Hence this does not contradict Lemma 7.1. 

But the total sum of the excess voltages is 0. This must hold in an abelian voltage 

group with an orientable surface, since we may arrange the sum so that each edge 

is covered once in each direction. With this arrangement the voltages cancel in 

pairs. 

9. Conclusion 

Any covering constructed from a voltage assignment is regular, that is, there is 

a group of automorphisms with the fibers as the vertex orbits. This is not 

necessarily the case for an arbitrary covering graph embedded with a lifted 

rotation scheme. In fact, there may not be any nontrivial fiber-preserving 

automorphisms. Gross and Tucker [5,16] defined permutation voltage assign- 
ments which yield arbitrary coverings, not just regular coverings. 

In this paper we have been concerned solely with regular voltage assignments. 

To what extent do our results extend to permutation voltage assignments? How 

can they be improved in the more general setting? 

There is hope for substantial progress using nonregular voltage assignments. 

For example, Bouchet [5] constructs triangular embeddings of compositions from 

triangular embeddings of the base graph using nowhere-zero flows. These 

embeddings are nonregular. They have order p* (where p is an odd prime), with 

an order p fiber-preserving free automorphism, but also with a nonregular order p 

component. By iterating these compositions-as we have also done in Sections 7 

and g-he can lift triangular embeddings of G to ones of G”“’ for all m relatively 

prime to 30. Moreover, if every 2-edge-connected graph has a 5-flow, as 

conjectured by Tutte [32], then the result is improved to all m relatively prime to 

6. 

Jackson has used a similar technique to construct triangular embeddings of 

K(m)* Here he starts with the base graph K,,, triangularly embedded and lifts 

these to an embedding of the composition for i relatively prime to 6. 

Both the results of Bouchet and Jackson rely on lifting triangulations only. Can 

the results in this paper be used to lift other embeddings? Can such compositions 

be done simultaneously on primal and dual graphs? 

Voltage graphs construct coverings of surfaces in which the branch points lie in 

the interior of faces. Dually, current graphs construct coverings with branch 

points at the vertices. The techniques of this paper cover the general case with 

branch points in both vertices and faces. Note that if a branch point on an edge 

were desired, we would apply the present theory by first subdividing that edge, 

then placing the branch point on the new degree two vertex. 

Bouchet [6] has constructed interesting graph embeddings using coverings with 

folds. Is there an easy way to describe coverings with folds in our context? 
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We have chosen to describe our results in terms of voltage assignments on the 

medial graph. By duality, we could have used current assignments on the radial 

graph. The two theories are equivalent, and in practice each method has its own 

advantages. For example, in current graphs the technique of excess currents gives 

a great flexibility in constructing covering triangulations. Likewise, current graphs 

are quite useful under the special conditions needed in the proof of the map color 

theorem [26]. On the other hand, when using voltage graphs the derived graph is 

independent of the embedding. This allows one to first search for suitable 

quotient graphs and then study their various embeddings. 
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