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a b s t r a c t

A method is given to compute the parameter derivatives of recessive solutions of second-
order inhomogeneous linear difference equations. The case of difference equations in
which all solutions have the same rate of growth is also discussed.
The method is illustrated by numerical computations of parameter derivatives of

incomplete gamma functions and confluent hypergeometric functions.
© 2008 Elsevier B.V. All rights reserved.

1. Introduction and summary

Many special functions depend on arguments and parameters. Usually they satisfy differential equations with respect
to the arguments and difference equations with respect to the parameters. Special functions are useful tools in many
applications, and in these applications the exceptional cases often involve, what can be seen, parameter derivatives of the
special functions. For example, one of the incomplete gamma functions is defined as

0(a, z) =
∫
∞

z
e−t ta−1dt. (1.1)

See Section 11.2 in [3]. The parameter derivative is

∂

∂a
0(a, z) =

∫
∞

z
e−t ta−1 ln tdt, (1.2)

and these functions are needed in hyperasymptotics, see appendix A3 in [1]. From this example it is also obvious that known
integrals with additional logarithmic factors can often be seen as parameter derivatives. Another example is

∂

∂c
U(a, c, z) =

1
0(a)

∫
∞

0
e−zt ta−1 (1+ t)c−a−1 ln(1+ t)dt, (1.3)

where U(a, c, z) is one of the confluent hypergeometric functions. See Section 7.2 in [3].
The numerical computation of recessive solutions of second-order linear difference equations is well understood. See [2],

or Section 2 of this paper where we summarise the results of [2]. We want to compute the parameter derivatives of the
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recessive solutions of these second-order inhomogeneous linear difference equations. Our method is based on the simple
observation, made in Section 3, that the parameter derivative of the difference equation itself is of the same form as the
original difference equation, that is, only the inhomogeneous term has changed. Hence, the methods of [2] can also be used
to compute the parameter derivatives.
Themethod is illustrated in Section 4, where we discuss the computation of parameter derivatives of incomplete gamma

functions, and in Section 5, where we discuss the computation of the a and c derivatives of the confluent hypergeometric
function U(a, c, z).
The results in Sections 2 and 3 are for the computation of recessive solutions. In Section 6 we illustrate, via the confluent

hypergeometric function, the case in which all solutions of the linear difference equation have the same rate of growth. In
that case the so-called Clenshaw averaging process has to be used. Since the parameter derivative of the difference equation
is of the same form, the Clenshaw averaging process can also be used to compute the parameter derivatives.
Sections 5 and 6 include numerical illustrations.

2. Second-order linear difference equations

In this section we summarise the results in [2]. We will use the same notation and skip the proofs.
The difference equations in this paper will be second-order linear equations of the form

ar(ν)yr−1(ν)− br(ν)yr(ν)+ cr(ν)yr+1(ν) = dr(ν), (2.1)

where the coefficients ar(ν), br(ν) and cr(ν) are analytic functions of a parameter ν and the solution yr(ν)will also depend
on ν. From now onwards we will abbreviate yr(ν) to yr .
We assume that the general solution of (2.1) has the form

yr = Afr + Bgr + hr , (2.2)

in which A and B are arbitrary constants and the complementary functions fr , gr , and the particular solution hr have the
properties f0 6= 0, gr 6= 0 for all sufficiently large r , and

fr/gr → 0, hr/gr → 0, as r →∞. (2.3)

We will be looking for a solution of (2.1) that satisfies the normalising condition

∞∑
r=0

mryr = k, (2.4)

in whichmr(ν) and k(ν) are analytic functions of ν.
For the functions on the right-hand side of (2.2) we assume that∣∣∣∣∣ N∑

r=0

mrgr

∣∣∣∣∣→∞, as N →∞, (2.5)

and

∞∑
r=0

mr fr = F ,
∞∑
r=0

mrhr = H, (2.6)

where F and H are finite, and F 6= 0. Then (2.1) has a unique solution fulfilling (2.4). It is given by

yr =
k− H
F
fr + hr . (2.7)

To approximate this solution numerically we solve the system of linear algebraic equations given by

ary
(N)
r−1 − bry

(N)
r + cry

(N)
r+1 = dr , r = 1, 2, . . . ,N − 1, (2.8)

N∑
r=0

mry(N)r = k, (2.9)

and

y(N)N = 0. (2.10)
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Theorem 1. In addition to the other conditions of this section, assume that for all sufficiently large N the system of equations
(2.8)–(2.10) has a solution, that gN 6= 0, and that

fN
gN

N∑
r=0

mrgr → 0,
hN
gN

N∑
r=0

mrgr → 0, as N →∞. (2.11)

Then if r is fixed and N →∞, y(N)r → yr .

This results follows from the fact that

y(N)r = AN fr + BNgr + hr , (2.12)

where

AN =
hN

N∑
r=0
mrgr − gN

(
N∑
r=0
mrhr − k

)
gN

N∑
r=0
mr fr − fN

N∑
r=0
mrgr

,

BN =
fN

(
N∑
r=0
mrhr − k

)
− hN

N∑
r=0
mr fr

gN
N∑
r=0
mr fr − fN

N∑
r=0
mrgr

. (2.13)

Thus BN → 0 and AN → (k− H)/F .
To compute the y(N)r we introduce

q0 = 1, qr =
a1a2 · · · ar
c1c2 · · · cr

, p0 = 0, p1 = m0, e0 = k, (2.14)

and for r ≥ 1

pr+1 =
brpr − arpr−1

cr
+ qrmr , er =

arer−1 − drpr
cr

. (2.15)

Then y(N)N−1 = eN−1/pN and the remaining y
(N)
r can be computed from

pr+1y(N)r − pry
(N)
r+1 + qr

N−1∑
s=r+1

msy(N)s = er , r = N − 2, . . . , 1, 0 (2.16)

by back-substitution.
Note that in the homogeneous case we have dr = hr = H = 0 and er = kqr .

3. Parameter derivatives

In this section we want to introduce a method to compute y′r =
d
dν yr(ν)with the aid of the defining difference equation.

It is based on the simple observation that the derivative of (2.1), which is

ary′r−1 − bry
′

r + cry
′

r+1 = d
′

r − a
′

ryr−1 + b
′

ryr − c
′

ryr+1, (3.1)

is again of the form (2.1) with dr replaced by the right-hand side of (3.1). The accompanying normalising condition is

∞∑
r=0

mry′r = k
′
−

∞∑
r=0

m′ryr , (3.2)

which is again of the form (2.4). Hence, at the moment that the yr are known, the results of Section 2 can be used to
compute the y′r . In practice, we can only approximate the yr via the y

(N)
r and we will use the results of Section 2 to compute

y′(N)r = dy
(N)
r /dν as follows. We differentiate the system of equations (2.8)–(2.10) and obtain

ary′
(N)
r−1 − bry

′(N)
r + cry

′(N)
r+1 = d̃r , r = 1, 2, . . . ,N − 1, (3.3)

N∑
r=0

mry′
(N)
r = k̃, (3.4)



A.B. Olde Daalhuis / Journal of Computational and Applied Mathematics 230 (2009) 128–134 131

and

y′(N)N = 0, (3.5)

where

d̃r = d′r − a
′

ry
(N)
r−1 + b

′

ry
(N)
r − c

′

ry
(N)
r+1, and k̃ = k′ −

N∑
r=0

m′ry
(N)
r . (3.6)

Hence, the derivatives of the y(N)r are the solutions of the systemof equations (3.3)–(3.5) and can be computed via themethod
described at the end of Section 2.
Note that when we compare the system of equations (3.3)–(3.5) with the system of equations (2.8)–(2.10) we see that

only the k and dr have changed. It follows that when we use the method given in the final paragraph of Section 2, the pr and
qr will be the same for the two systems.
To show that for fixed r we have y′(N)r → y′r , as N → ∞, we have to show that for the AN and BN in (2.13) we have

A′N →
d
dν ((k− H)/F) and B

′

N → 0 as N →∞. This can be guaranteed when the following hold

d
dν
(fr/gr)→ 0,

d
dν
(hr/gr)→ 0, as r →∞, (3.7)

N∑
r=0

d
dν
(mr fr)→ F ′,

N∑
r=0

d
dν
(mrhr)→ H ′, as N →∞, (3.8)

and

d
dν

(
fN
gN

N∑
r=0

mrgr

)
→ 0,

d
dν

(
hN
gN

N∑
r=0

mrgr

)
→ 0, as N →∞. (3.9)

The original and additional conditions can often be checked by studying the rate of growth of fr , gr , hr , mr and their ν-
derivatives, as r →∞.

4. Incomplete gamma functions

The incomplete gamma functions satisfy first-order inhomogeneous linear difference equations. For that result and
notation see Section 11.2 in [3]. Here we will use the homogeneous second-order difference equation

z(r + a− 1)yr−1 − (r + a+ z)yr + yr+1 = 0. (4.1)

It has solutions

fr = γ (r + a, z), gr = 0(r + a). (4.2)

The rate of growth of the first of these is

fr ∼ e−zza+r r−1, as r →∞, |ph z| ≤ π, (4.3)

and it has the normalising condition

∞∑
r=0

1
r!
fr = a−1za. (4.4)

For these two results use (11.2) and (11.9) in [3]. It follows that the conditions for Theorem1 are satisfied and that the results
of Section 2 can be used to compute the fr numerically.
In the remainder of this section we will use the notation f ′r =

∂
∂a fr . The a-derivative of (4.1) is

z(r + a− 1)f ′r−1 − (r + a+ z)f
′

r + f
′

r+1 = fr − zfr−1, (4.5)

with normalising condition

∞∑
r=0

1
r!
f ′r = a

−2za (a ln(z)− 1) . (4.6)

Thus the results of Section 3 can be used to compute the parameter derivative of the incomplete gamma function γ (a, z).
For the parameter derivative of in the incomplete gamma function 0(a, z) we combine the above results with the identity
0(a) = 0(a, z)+ γ (a, z).



132 A.B. Olde Daalhuis / Journal of Computational and Applied Mathematics 230 (2009) 128–134

5. Confluent hypergeometric functions: The recessive case

The difference equation

(r + a− 1)yr−1 − (2r + 2a− c + z)yr + (r + a− c + 1)yr+1 = 0, (5.1)

has solutions

fr = (a)r U(a+ r, c, z), gr =
(a)r

(a− c + 1)r
M(a+ r, c, z), (5.2)

where the Pochhammer symbol is (a)r = 0(a + r)/0(a) and U(a, c, z) and M(a, c, z) are the confluent hypergeometric
functions. See chapter 7 in [3]. The notation in (5.2) already indicates that fr is the recessive solution, and gr is a dominant
solution for r →∞. This follows from

fr ∼
√
π

0(a)
ez/2z(1−2c)/4r (2c−3)/4e−2

√
zr ,

gr ∼
0(a− c + 1)0(c)
2
√
π0(a)

ez/2z(1−2c)/4r (2c−3)/4e2
√
zr , (5.3)

as r →∞, |ph z| < π . See Section 5.2 in [4]. The fr have the normalising condition

∞∑
r=0

(a− c + 1)r
r!

fr = z−a. (5.4)

The reader can check that the conditions for Theorem 1 are satisfied. It follows that the results of Section 2 can be used to
compute the fr numerically. This result is well-known. Now we will compute the derivatives. The fr is a function of a, c and
z. The z-derivative is easy since

d
dz
(a)r U(a+ r, c, z) = − (a)r+1 U(a+ r + 1, c + 1, z). (5.5)

5.1. The a-derivative

In this subsection we use the notation f ′r =
∂
∂a fr and obtain from (5.1) that

(r + a− 1)f ′r−1 − (2r + 2a− c + z)f
′

r + (r + a− c + 1)f
′

r+1 = −fr−1 + 2fr − fr+1, (5.6)

with normalising condition

∞∑
r=0

(a− c + 1)r
r!

f ′r = − ln(z)z
−a
+

∞∑
r=1

(a− c + 1)r
r!

(Ψ (a− c + 1)− Ψ (a− c + 1+ r)) fr , (5.7)

where Ψ (a) = 0′(a)/0(a) is the logarithmic derivative of the gamma function. Hence, the results of Section 3 can be used.

5.2. The c-derivative

Now we use the notation f ′r =
∂
∂c fr and obtain from (5.1) that

(r + a− 1)f ′r−1 − (2r + 2a− c + z)f
′

r + (r + a− c + 1)f
′

r+1 = fr+1 − fr , (5.8)

with normalising condition

∞∑
r=0

(a− c + 1)r
r!

f ′r =
∞∑
r=1

(a− c + 1)r
r!

(Ψ (a− c + 1+ r)− Ψ (a− c + 1)) fr . (5.9)

5.3. Numerical results

We take N = 50 and use the difference equations (5.1), (5.6), (5.8) and the methods discussed in Sections 2 and 3. The
results are given in Table 1.
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Table 1
Numerical calculations with a = 0.2, c = 0.3, z = 1.4 and N = 50.

Function |error|

f0 0.8596259193
f (N)0 0.8596259476 2.8× 10−8
∂
∂a f0 −0.7093488450
∂
∂a f

(N)
0 −0.7093485813 2.6× 10−7

∂
∂c f0 0.0688571930
∂
∂c f

(N)
0 0.0688571149 7.8× 10−8

6. Confluent hypergeometric functions: The oscillatory case

From (5.3) it follows that the method of Section 5 can be used in the sector |ph z| < π . On the line ph z = π all the
solutions of (5.1) have the same rate of growth, and we have to use the so-called Clenshaw averaging process. See Section
4.7 in [4].
Since all the solutions of (5.1) have the same rate of growthwe can use (5.1) in the forward direction. Themain difference

is that now two normalising conditions are needed. We will use

∞∑
r=0

(a− c + 1)r
r!

fr = z−a,
∞∑
r=0

(a− c)r
r!

fr = ez0(1− a, z), (6.1)

R(c− 2a) > 1
2 , where 0(1− a, z) is one of the incomplete gamma functions, see Section 4. Note that in contrast with (5.4),

we have a constraint in (6.1), indicating that the convergence in (6.1) is alsomuch slower. The second normalising condition
can be obtained from the first via the identity

∫
∞

z e
−tU(a, c, t)dt = e−zU(a, c − 1, z).

We introduce two sequences
{
y(0)r
}
and

{
y(1)r
}
via

y(0)0 = 1, y(0)1 = 0, y(1)0 = 0, y(1)1 = 1, (6.2)

and forward recursion in (5.1). For positive integer N let

K (j)N =
N−1∑
r=0

(a− c + 1)r
r!

y(j)r , L(j)N =
N−1∑
r=0

(a− c)r
r!

y(j)r , j = 0, 1, a, c, (6.3)

and let the sequence
{
f (N)r

}
be a solution of (5.1) such that

N−1∑
r=0

(a− c + 1)r
r!

f (N)r = z
−a,

N−1∑
r=0

(a− c)r
r!

f (N)r = e
z0(1− a, z). (6.4)

Then there are constants AN and BN such that

f (N)r = ANy
(0)
r + BNy

(1)
r . (6.5)

Combining (6.5) with (6.3) and (6.4) it follows that

ANK
(0)
N + BNK

(1)
N = z

−a, ANL
(0)
N + BNL

(1)
N = e

z0(1− a, z), (6.6)

and these two linear equations can be used to compute AN and BN .
It is not difficult to show that for fixed r we have f (N)r → fr as N →∞.

6.1. The a-derivative

We take the f (N)r from above and introduce the sequence
{
y(a)r
}
via y(a)0 = 0, y

(a)
1 = 1 and forward recursion in

(r + a− 1)y(a)r−1 − (2r + 2a− c + z)y
(a)
r + (r + a− c + 1)y

(a)
r+1 = −f

(N)
r−1 + 2f

(N)
r − f

(N)
r+1, (6.7)

r = 1, 2, . . . ,N − 2; compare with (5.6). Then there exist constants AN and BN such that

∂

∂a
f (N)r = y

(a)
r + ANy

(0)
r + BNy

(1)
r . (6.8)
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Table 2
Numerical calculations with a = −1.2, c = 5.3, z = 0.4eπ i and N = 400.

Function |relative error|

f0 22.47933265− 44.97489233i
f (N)0 22.47933096− 44.97489274i 3.5× 10−8

∂
∂a f0 −141.6664316+ 221.1635858i
∂
∂a f

(N)
0 −141.6664276+ 221.1635870i 1.6× 10−8

∂
∂c f0 −59.94909351− 185.4813249i
∂
∂c f

(N)
0 −59.94910020− 185.4813235i 3.5× 10−8

The a-derivative of the normalising conditions (6.1) are (5.7) and
∞∑
r=0

(a− c)r
r!

f ′r = e
z ∂

∂a
0(1− a, z)+

∞∑
r=1

(a− c)r
r!

(Ψ (a− c)− Ψ (a− c + r)) fr , (6.9)

where, again, f ′r =
∂
∂a fr . The a-derivative of the incomplete gamma function can be computed via the methods discussed in

Section 4. Combining the normalising conditions (5.7) and (6.9) with (6.8) we obtain the equations

ANK
(0)
N + BNK

(1)
N + K

(a)
N = − ln(z)z

−a
+

N−1∑
r=1

(a− c + 1)r
r!

(Ψ (a− c + 1)− Ψ (a− c + 1+ r)) f (N)r ,

ANL
(0)
N + BNL

(1)
N + L

(a)
N = e

z ∂

∂a
0(1− a, z)+

N−1∑
r=1

(a− c)r
r!

(Ψ (a− c)− Ψ (a− c + r)) f (N)r , (6.10)

which can be used to compute the constants AN and BN .

6.2. The c-derivative

Now we define the sequence
{
y(c)r
}
via y(c)0 = 0, y

(c)
1 = 1 and forward recursion in

(r + a− 1)y(c)r−1 − (2r + 2a− c + z)y
(c)
r + (r + a− c + 1)y

(c)
r+1 = f

(N)
r+1 − f

(N)
r , (6.11)

r = 1, 2, . . . ,N − 2; compare with (5.8). Then there exist constants AN and BN such that

∂

∂c
f (N)r = y

(c)
r + ANy

(0)
r + BNy

(1)
r . (6.12)

The c-derivative of the normalising conditions (6.1) are (5.9) and
∞∑
r=0

(a− c)r
r!

f ′r =
∞∑
r=1

(a− c + r)r
r!

(Ψ (a− c + r)− Ψ (a− c)) fr , (6.13)

where f ′r =
∂
∂c fr . Combining these normalising conditions with (6.12) we obtain the equations

ANK
(0)
N + BNK

(1)
N + K

(c)
N =

N−1∑
r=1

(a− c + 1)r
r!

(Ψ (a− c + 1+ r)− Ψ (a− c + 1)) f (N)r ,

ANL
(0)
N + BNL

(1)
N + L

(c)
N =

N−1∑
r=1

(a− c)r
r!

(Ψ (a− c + r)− Ψ (a− c)) f (N)r , (6.14)

which can be used to compute the constants AN and BN .

6.3. Numerical results

We take N = 400 and use the methods discussed in this section. The results are given in Table 2. Note that due to the
slow convergence of the normalising conditions we are forced to take a much larger N and make R(c − 2a) also relatively
large; compare (6.1).
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