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ABSTRACT 

We say that  a graph is point-symmetric if, given any two points of the graph, there is 
an automorphism of the graph that  sends the first point to the second. Similarly, we 
say that a graph is line-symmetric if, given any two lines of the graph, there is an auto- 
morphism that  sends the first line to the second. 

In general a line-symmetric graph need not be point-symmetric. For example, any 
complete bipartite graph is line-symmetric, but if it is not  regular then it is not point- 
symmetric. In this paper we investigate the extent to which line symmetry and regularity 
imply point  symmetry. 

We first give some conditions on the number of points and the degree of regularity 
under which line symmetry and regularity imply point symmetry. We then give some 
general methods for constructing graphs which are line-symmetric and regular but not 
point-symmetric. Finally we summarize what is known about the number  of points 
that  a regular line-symmetric graph which is not point-symmetric can have. We conclude 
with a list of unsolved problems in this area. 

1. INTRODUCTION 

Let G be a graph. An automorphism of G is a permutation of the 
points of G that preserves adjacency. W e  say points u and v of G are 
similar if there is an automorphism of G that sends u to v. Lines e and f 
in G are said to be similar if there is an automorphism that sends the 
end-points of e to the end-points of f We say that G is point (line)- 
symmetric if all of its points (lines) are similar. 

In [2], Dauber and Harary investigated the relationship between line 
symmetry and point symmetry. They give simple examples of graphs that 
are line-symmetric but not point-symmetric and vice versa. However, 
their line-symmetric graphs that are not point-symmetric fail to be point- 
symmetric because they are not regular. This raises the question of 
whether or not a regular line-symmetric graph must be point-symmetric. 

Dauber and Harary give a partial answer to this question. They show 
that, if G is a line-symmetric graph with v points, which is regular of 
degree d, then G must be point-symmetric if v is odd or if d ~ v/2. 
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216 FOLKMAN 

Here we investigate the casev even and d < v/2. We first show (Theorem 2) 
that, if v = 2p or 2p 2 where p is prime, then G must be point-symmetric. 
We then give some methods for constructing regular graphs that are line- 
symmetric but not point-symmetric (Theorems 3 and 4). Finally, we sum- 
marize what is known about the values of  v for which there is a line- 
symmetric graph with v points that is not point-symmetric (Theorem 5). 
In the concluding section we give some problems that are still open. 

2. CONDITIONS FOR LINE SYMMETRY TO IMPLY POINT SYMMETRY 

To fix our notation we make the following formal definitions. A graph 
is an ordered pair (V, E), where V is a finite set (the points of the graph) 
and E is a collection of two element subsets of  V (the lines of the graph). 
I f  e ~ {u, v} is a line, then u and v are the end-points ofe. The degree of a 
point u is the number  of lines with u as an end-point.  A graph is regular of  
degree d if every point of  the graph has degree d. 

An automorphism of the graph G = (V, E) is a permutation cr of V with 
the property that if  {u, v} ~ E, then {or(u), ~r(v)} ~ E. The automorphisms of 
G form a group fr This group is a permutation group on V by definition. 
I t  acts as a permutation group on E if we set r v}) = {or(u), or(v)} for 
~ 6 f ~ , { u , v } ~ E .  

Let fr be a permutation group on a set S and let x ~ S. We define 
fr the orbit o f  x, by 

~(x) = M x )  l r  ~ ~}. 

We say that fq is transitive on S i f  ~(x) = S for some (and hence all) 
x ~ S. We define ~ ,  the stability subgroup of  x, by 

We have the relation I f~(x) I = (f~ : fg~), where I N(x)l is the number of  
elements in fq(x) and (N : f~)  is the index of the subgroup fg, in the 
group f~. With this terminology it is clear that a graph G = (V, E) is point 
(line)-symmetric if and only if its automorphism group is transitive on 
V(E). 

The following theorem and its corollary are due to Dauber  and Harary 
[2] in a slightly different form. We include a proof  here for completeness. 

THEOREM 1, (Dauber and Harary).  Let G ~ (V, E) be a graph with no 
isolated points (i.e., no points o f  degree zero). Let ~ be a subgroup of  the 
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group o f  automorph&ms o f  G, which is transitive on E but not on 1,7. Then V 
is the disjoint union o f  subsets Va and V2 with the following properties: 

(2.1) ~ acts as a transitive permutation group on V x and V2 �9 

(2.2) Each line o f  G has one end-point in V x and the other in V2 . 

PROOF: Let {vl,  v2} ~ E. Set I71 = ~ ( v 0 ,  V~ = ~ ( v 2 ) .  Let u E V. Since 
u is not  isolated, {u, u'} E E for some u' ~ V. N o w ~  is transitive on E, so 
{u, u')  = or{v1, v2) for  some cr ~ .  Therefore either u = 0"(/J1) or u = 0 " ( / . ) 3 ) ,  

In  either case, u ~ 1/1 w I"2, so V = I"1 u Vs. I f  1/1 and V2 were not  
disjoint we would have ~ ( v l )  - -  ~ (v2)  = V, contradict ing the assump- 
t ion that  ~ is not  transitiVe on IT. 

Let ~r ~ ~ and let u ~ V~, i ---- 1 or 2. Then u = r(vi) for some ~- E ~r 
so ~(u) = cn-(vi) E ~r = Vs. Hence,  ~ acts as a permutat ion group 
on V~. The action is transitive, since V~ = JC~(v~). 
N o w  let e ~ E. Since ~ is transitive on E, 

e = a({vl ,  v2}) = {0"(vl), 0"(v2)) 

for some 0" e ~ '  N o w  or(v0 c 171 and 0"(v2)c V~, so (2.2) holds. This 
completes the proof.  

COROLLARY 1.1 (Dauber  and Harary).  Let  G = (II, E)  be a line- 
symmetric  graph that is regular o f  degree d > O, Let  v -~ ] V [. I f  v is odd 
or d ~ v/2, then G is point-symmetric.  

PROOF: Suppose G is not  point-symmetric.  Then we may apply 
Theorem 1 with ~ the entire group of  au tomorphisms o f  G. By (2.2) 

d l V l l  = I E t  = d l  V21, 

so I V1 I = I V~I and v = 21 1t11 is even. Hence, we must  have d ~ v/2. 
Again by (2.2), a point  i n  V1 is an  end-point  of  at most  ] V2 ] = v/2 lines, 
so we must  have d = v/2. But this implies that the lines o f  G are all pairs 
with one element in Va and the other in V 2 . Since ] V 1 [ = I V21, this 
graph is point-symmetric,  so we have arrived at a contradiction. 

The following result gives another condit ion which guarantees that  a 
line-symmetric graph is point-symmetric.  

THEOREM 2. Let  G = (V, E) be a line-symmetric graph that is regular 
o f  degree d. If[ V t = 2p or 2p 2, where p is prime, then G is point-symmetric.  

PROOF: Suppose G is not  point-symmetric.  A graph that  is regular o f  
degree 0 is clearly point-symmetric,  so we must  have d > 0. Hence, we 
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may apply Theorem 1 with ~ ---- fg, the entire group of  automorphisms 
of  G. By (2.2), 

d lV~I=IEI  = d l  Vml, 

SO [ V 1 [ = [ V 2 [ = �89 ] V I = p~, w h e r e  t = 1 or 2. 

Let ~ be a p-Sylow subgroup of  fr 

LEMMA 2.1. ~ is transitive on I11 and Vs. 

PROOF: Let I f9 [ = p~k, where p does not  divide k. Then l ~ I = P~. 
Let v ~ V~, i = 1 or 2. Since fg is transitive on V~, we have 

( f~ : fg~) = ] fg(v) l = I V, ] = pt. 

Therefore, t ~  I =P~-~k.  N o w  J l ~  is a p-group and ~ C ~ ,  so 
I ~v~ I ~< p~-t. Therefore, 

I ~ ( v ) [  = ( ~ : ~ )  = I ~ l / l ~ f ~ l  ~ P ' -  

Hence we must  have ~ ( v )  ---- V~ as required. 

LEMMA 2.2. Let  v I ~ W 1 and v2 ~ 112, with {vl , v2} ~ E. Suppose there is 
a subset S = {or 1 ..... (r~} o f  elements o f  f~ such that the points 
Crl(Vi) ..... (r~,(vi) are distinct f o r  i = 1 and for  i = 2. Then the subgroup o f  
f~ generated by S is non-Abelian. 

PROOF: Suppose not. Let i = 1 or 2. Suppose cr71(vi) = o ' k l ( v i )  for 
some j and k, with 1 ~< j < k ~< p~. Then, since S generates an Abelian 
subgroup, 

~(v/)  = ~ , ~ - 1 ( v 3  = ~ o ~ l ( v ~ )  = ~(v,), 

contradicting our  hypotheses. Hence, we have 

g i = {O-x(Vi) . . . . .  (Y~,(vi)) = {o-11(v i )  . . . . .  o'~-1(1)i)} , 

Therefore the function ~/: V ~ V defined by 

~'](O'i(Vl) ) = O' i - l (v2)  

and 

is a permutat ion o f  V. 

~(~(v~)) = ~71(v~) 
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N o w  we show that ~/is an au tomorph ism of  G. To see this, let 

{~,(vO, ~j(v~)} ~ E. 

Then, since S generates an Abelian subgroup, 

{~Gi(Vl) ' T]O.j(D2)} --1 --' = {o ,  (v~), ~j-(v0} 
= {(r)-l~r/lcq(v2), a~-lc~71ai(vl) } e E 

because ~-1a-1 is an au tomorph ism of  G. Hence, ~7 ~ f~ .  But this is a 2 
contradict ion because every element of  G maps  /11 onto I11, while 
maps V1 onto /12. 

We are now ready to resume the p roo f  o f  Theorem 2. First assume 
that t = 1 (i.e., I V I = 2p). N o w  ~ is a p -group  and ~ is nontrivial by 
Lemma 2.1, so Yt ~ has a non-trivial center. Let ~ be a cyclic subgroup of  
order p in the center of  3eg. Let {Vx, v2} E E, with v1 e V1, v2 e Vs. For  
i =  l o r 2 ,  w e h a v e  

[ o ,~(v i ) l  : (~'~ : JT'~,) = 1 o r  p .  

Therefore, either oYf(vi)= {vi} or o ,~(v i )=  Vi. I f  ~T'(v0 = VI and 
~(v2)  = V2, we may take S = s/~ r in Lemma 2.2, and we have a contra- 
diction. Hence, either ~fr(vl) = {vl} or Yf(v~) = {v2}, and without  loss of  
generality we may  assume 3r = {Vl}. Suppose that 3r = {v2}. 
Let u E I"71. By Lemma2 .1 ,  u = a(Vl) for some e e l .  Since ~ is a 
central subgroup of  o~, 

~g'-(U) = f0" ( /31)  = E r r ( v 1 )  = O'({Vl} ) = {U}.  

Similarly, if u ~ I12, then .Y,'-(u) = {u}. Therefore. the only permutat ion in 
~d" is the identity permutat ion,  contradicting the fact that  ~ has order p. 

The only remaining possibility is that  Yl(Vx) = {Vl} and ~r(v2) - -  II2. 
N o w  {Vl, v~} ~ E and the permutat ions in s/f preserve adjacency, so 
{ v l , u } e E  for every ue112 .  This implies that d > ~ p  = ~  V[/2. By 
Corollary 1.1, G is point-symmetric ,  contradicting our assumption to the 
contrary. 

N o w  assume that t - - 2 (  V '  --2p2).  Let ~e be the center of  ~ .  
Suppose that for every (r e ~ which is not  the identity, we have rr(v) -s- v 
for every v ~ 1,1. Let {vl. v2} ~ E, with vi ~ Vi, i = 1, 2. We have 

I ~ ( v 3 1  - -  ( ~ :  ~ , )  - ~ , 

since ~ e  __ {1}. N o w  Y. is a non- t r iv ia lp-group and I ~e(vi)t ~< I V~ t _pZ ,  
so [ ~ I = P or p2. I f  l ~ [ - -  pZ we could take S - -  ~ in L e m m a  2.2 and 
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obtain  a contradict ion,  since ~e, the subgroup of  f# generated by ~:~', is 
Abelian. Hence, I :Z I = P. 

Let i = 1 or  2. Let ~ be the subgroup of  ~ generated by ~e and ~ '~, .  
By our  assumption on ~ ,  ~ c~ ~vt~ = {1}. N o w  ~ is a normal  subgroup 
o f  ~ ,  so 

~ / ~  = aex~,/ae _~ x'~,/ae c~ x~, ~ x '~ .  

Hence, 

I~1  = I ~1 I ~ / ~ 1  = I ~1 I~ ,1  = p I ~ ,  I. 

By Lemma 2.1, 

I ~ e l  = ( ~  : ~e~,)l ~ , ,  I = I ~e(vDI I ~eo, I = p~ I ~ ,  I- 

Therefore, I ~ l  ---- I ,~al fP.  
Since ~ and ~ are subgroups o f  <r ~, 1 s ~1  n ~ .  

Therefore, 

I ~ 1  = I~11 + l ~ l - I ~ m ~ l  ~ l ~ l  + I ~ 1 - - 1  

= - 2 1 ~ e l - I  < I~e I 1. 
P 

Let  e ~ Jr --  (Jdl t.) Jd~). Since I :~e I = P, ~ is a cyclic group generated 
by an element 7. Let 

S = {crq'Jl0 ~< i , j  < p ) .  

Let  k = 1 or 2. Suppose crirS(vk) = oi 'r~'(vk) for some o%~, cr%-J' ~ S. Then 
cri-i '~J-J'(vk) = v ~ ,  since ~- commutes  with ~. Therefore, o i - e r  j-j '  ~.r 
so <#-i' = (cri-i 'r~-s').rs'-j  ~ ~ k .  The order o f  g is a power o f  p, so if  p 
does not  divide i - -  i '  there is an l such that  cr = (cr~-i')t ~ ~ .  This is 
impossible, so p divides i - - i ' .  But L i - -  i ' [ < p ,  so i = i ' .  Hence, 
~-J(vk) ---- rY(vk), so rs-~'(vk) = v~ .  By our assumption on ~ ,  ~-~-J' = 1. 
N o w  r has order p and I J - -  J '  I < P, so j = j ' .  We now conclude that  the 
set S satisfies the hypotheses o f  Lemma 2.2. The subgroup of  ff generated 
by S is the subgroup generated by cr and ~-. Since ~ and r commute,  this 
subgroup is Abelian, contradicting the conclusion o f  Lemma 2.2. 

We have now shown that  the assumption we made about  ~ is false, 
i.e., there is a cr ~ ~ with cr : #  1 and a point  Vx E V such that  g(vl) = vl �9 
N o w  cr has order p~ for some o~ >~ 1. Replacing cr by cr ~-~ we may assume 
that  e has order  p. Let ~r be the subgroup of  ~ generated by cr. 

Without  loss o f  generality we m a y  assume that  Vl E V1. Choose v2 ~ 1/2 
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so {v~, v~} ~ E. Let u ~ Va. By Lemma 2.1 there is a T r ~ such that 
u = ~'(Vl). Since ~r r ~ we have 

O'(U) = O'T(Va) = TO'(Vl) = T(U1) = U, 

so (r leaves every element o f  V~ fixe& I f  (r(v2) = v2 a similar argument  
would show that  ~r leaves every element o f  V~ fixed. This would  imply 
that  ~ = 1. But (r # 1, so rr(v~) 3& v~. Hence, I ~/(v2)l > 1. N o w  

I ~(v~)[ = ( ~  : ~,~) = 1 or  p,  

s o  1 ~ = p .  
Let 

= {~ E ~ e  1 ~(v,) ~ ~ / (v , )} .  

I f  z, ~ ~ ~U, then z(v~) = cd(v2) and ~/(v2) = r for some i and j. There- 
fore, 

r = r = ~Jr = oJ~(v2) ~ ~(v~), 

so T~ 7 ~ ~Y'. Therefore, ~Y~ is a subgroup of  ~ .  We need several facts 
about  ~ .  These facts are proved in the following lemmas. 

LEMMA 2.3. The subgroup ~Y" is normal in ~,~t ~, and ( ; / f  : ~ )  = p. 

PROOF: Since ~ is a p-group,  any subgroup of  index p is normal.  (See, 
for  example, [1, Theorem IV, p. 122].) Hence, it suffices to show that 
( ~  : ~ )  = p. We have ~ C J l ,  so q/(v2) C ~(v2)  C ~'(v~). Therefore, 
I ~(v~)l = I~(v~)l = p. N o w  ~ C sU, so s(~,  = ~ c3 ~r = ~r  
Hence, 

p2 = I ~r = ( ~ :  ~ , )  = ( j t~:  : ( ) ( ~  : ~ )  

s o  ( ~  : ~ )  = p .  

LEMMA 2.4. Let  {u 1 , u2~ ~ E with ul ~ V1 and u2 ~ Vs .  Le t  "r ~ ~r .  
Then {ul,  ~'(u2)} ~ E and {T(Ul) , Us} ~ E. 

PROOF: By Lemma 2.1 there is an ~/~ ~ such that ~)(v~) = u2 �9 Since 
JY" is normal ,  ~-IT~ 7 E ~Y~'. Therefore, ~ - - I T ~ ( U 2 )  = O'i(V2) for  some i. Hence, 
we have 

-4u2) = nn-l~-n(v~) = w ' ( v ~ )  = ~ 'n(v2) = ~i(u~). 

Since cr leaves every point  in V1 fixed, we  have cri(ul) = Ul. Therefore,  

{Ul, ~(u~)} = {~'(u0, ~'(u~)} E e .  
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Now 
('~(uO. us) = {~'(u0. ~-(~-~(u,))} e e 

because {ua, ~--a(u~)} ~ E by what  we have already shown. 

LEMMA 2.5. Let  u ~ V. Then I~(u)t = p. 

PROOF: We  have pZ>~[.Cg(u)l = ( ~ : ~ ) = W  for  some a, so 
[ ~"(u)] = 1, p,  or  p~. I f  1 Sr = 1, then ~ C ~ .  This is impossible 
since ( ~  : ~ )  = p2 while (~F : ~ )  = p. Suppose I o~U(u)l = p~. Choose 
u' ~ V, so {u, u'} E E. By Lemrna 2.4, {v, u'} e E for  every v ~ ~U(u). This 
implies that  d ~ p2 = 1/2 I V I �9 By Corrollary 1.1, G is point-symmetric,  
contradicting our  assumption to the contrary.  Hence, I ~ ( u ) l  = P. 

LEMMA 2.6. Le t  ~1 ~ ~ and let u ~ V. I f  ~lgtt"(u) C~ aT'(u) is non-empty. 
then ~ ~ aT'. 

PROOF: Since aT" is normal,  ~Tag" = aT'~/, so 

nat(u) = ~ n ( u )  = ~ ( ~ ( u ) ) .  

The orbits under  a'U of  any two points are either equal or disjoint, so 

n K(u) = ~ ( n ( u ) )  = d ( u ) .  

Let ~ be the subgroup of  ~ generated by ~/and Yg~. Both ~7 and ~ map 
the set W(u)  into itself, so ~ maps ~ ( u )  into itself. Therefore, 
5r = JT'(u). We  have ~ C ~9 ~ C ~ and ( ~  : ~ )  = p which is prime, 
so either So = W or s162 = ;U. N o w  

I ~ ( u ) l  = p2 > p = [ Jr(u) l  = I ~ ( u ) [ .  

so s : / :  3r Therefore, ~ = aU, so ~1 E s = ~( .  

LEMMA 2.7. Let  *1 ~ yt~ --  JT~ and let i = 1 or  2. Then V, is the disjoint 

union o f  the sets 

PROOF: By L e m m a 2 . 5  and the normali ty o f  ~ ,  

1 n j x ( v 0 1  = I ~nJ (v~) l  = p .  

There are p subsets and I V~ ] = p*, so it suffices to show that ~/~ ~U(v,) and 
~/k Jg'(v~) are disjoint for 0 ~ j < k ~ p --  1. Suppose 

u ~ ~ ~ ( v 3  c~ n k ~ ( v 3 .  
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Then 
n-J(u) ~ ~ ( v i )  m n ~-~ X'(v3,  

By L e m m a  2.6, ~7 k-j ~ :r N o w  0 < k - -  j < p and the order  of  ~ is a 
power  of  p, so there is an l such that  ~7 = (~k-j)t. This contradicts the 
hypothesis  that  ~ r Jd .  

We are now ready to complete  the p r o o f  of  Theorem 2. By L e m m a  2.3 
there is an ~7 ~ ~ - -  ~r .  Fo r  each i with 0 ~< i < p let ~, be a 1-1 m a p  of  
~*~r onto ~-*~(((vz) and let fl~ be a 1-1 map  of  ~Ti~(v~) onto ~7-iJd(v0. 
Such maps  exist because, by L e m m a  2.5 and the normal i ty  of  ~ ,  the sets 
~TiS(v~), - - p  < i < p,  j : 1 or 2 all contain exactly p elements. Applying 
L e m m a  2.7 to the elements ~ and ~7 -1 we see that  we m a y  define a permuta-  
t ion ~0 of  V by setting ~0(u) = ~(u)  for  u e C J l ( v 0  and ~o(u) = fl~(u) for  
u E ~ iX ' (v2) .  

N o w  we show that  9 is an au tomorph i sm of  G. Let  {Ul, u2} ~ E with 
Ux e V1 and u2 E Vs. Then Ul = r and u2 = ~Jz2(v~) for  some 
i, j ,  T~, "r 2 with 0 ~< i, j < p, and ~'x, z2 ~ J~f'. We have 9(ux) = ~7-q's(v2) and 
9(u2) = ~7-~T4(Vl) for  some zz ,  ~'4 ~ dgr- N o w  

{n--JTl(/)l), n--iT2(/)2)} = {n--i--J(Ul), n--i--J(U$)) ~ E. 

Since )t" is normal ,  ~-~-~-~-~7 ~ and ~-~zs~'~-l~ ~ are in Jd .  Therefore,  by 
L e m m a  2.4, 

{~D(Ul), ~/9(U2)) = {n--~'T4(/)l), n-iTS(l)])} 

= {(n--JT4Tlln~)(n--JT1)(Vl), (n--iTST-21n)(gl~--iT2)(I)2)) ~ E, 

Hence,  ~o ~ ~.  But this is a contradict ion since every element  of  ~ maps  V~ 
onto  V1 while 9 maps  V~ onto 1/2. 

3. REGULAR LINE-SYMMETRIC GRAPHS WHICH ARE NOT POINT-SYMMETRIC 

In  this section we give some methods  of  construct ing regular line- 
symmetr ic  graphs that  are not  point-symmetr ic .  To  avoid endless repetit ion 
of  the phrase  "regular  and l ine-symmetric but  not  po in t - symmetr ic"  we 
use the following definition. A graph is said to be admissible if  it is regular 
and l ine-symmetric but  not  point-symmetr ic .  The degree of  an admissible 
graph is its degree o f  regularity. 

We will be part icular ly interested in the number  of  points that  an 
admissible graph may  have. Observe that  if G is an admissible graph with 
v points, then the graph  consisting of  r disjoint copies of  G is an admissible 
graph with rv points. In  view of  this trivial construction,  it would be more  
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pertinent to ask how many  points a connected admissible graph may have. 
The corollary to the following result shows that the addit ional requirement 
of  connectedness does no t  change the number  of  points that  an admissible 
graph may have. 

THEOREM 3. Let G = (II, E) be an admissible graph of  degree d with 
v points. Let r be a positive integer. Then there is an admissible graph 0 of  
degree rd with rv points. Furthermore, i f  G is connected, then 0 is connected. 

PROOF: Let R = {1, 2 ..... r}: We define 0 : (~ , /~ )  by setting 
1~ : V x R and 

/~ = {{(u, i), (v,j)}l{u, v} e E and i , j  ~ R} . 

Clearly 0 is regular o f  degree rd and 0 has rv points. Furthermore,  if G is 
connected,  then so is O. Let a be  an a u t o m o r p h i s m  of  G. F o r  each v e V 
let r~ be a permutat ion o f  R. Then the permutat ion ~7 o f  1~ defined by 

�9 /((v, i)) : (a(v), ~-~(i)) 

is an au tomorphism of  O. F r o m  this observation and the fact that  G is line- 
symmetric, it follows that  0 is line-symmetric. 

I t  remains to show that  0 is not  point-symmetric.  Suppose the contrary.  
Let v~, v2 ~ V. Then there is an au tomorph i sm a o f  ~ such that 

a((va, 1)) = (v2,1).  

I claim that  there is a permutat ion r o f  V such that " / ' (01)  : /)2 and for each 
u ~ V there are numbers  i, j e R with 

~(u, i) = (~(u),j) .  

To see this, for each u E V --  {vx} let 

S ,  = {u' e V - -  {v2}l a((u, i ) ) :  (u' , j)  for some i , ]E  R}.  

Let ul ..... uk ~ V - -  {Vl} and let S = S~ 1 u -.. u S ~ .  Then 

~(({ul ..... u~} x R) v { ( n ,  1)}) C (S u {M)  x R. 

Since cr is a 1-1 map  o f  V x R onto itself, this implies that  

r I S u {v~}l : I(S u {v~}) x R I ~ rk + 1. 
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Hence, 

I S I  = [ s u { v s ) l -  1 ~ k --  1 q _ l  > k -- 1, 
r 

so IS[  ~ k. Therefore, the family {S,,}~v_~,,ll of subsets of V - -  {vs} 
satisfies the condition in Hall's Theorem [3, Theorem 1.1, p. 48] for the 
existence of  a system of  distinct representatives. Consequently, for each 
u~  V--{or} there is an element ~'(u)~ V--{v2} with r ( u ) ~ S ,  and 
z(u) ~ ~(u') for u :/: u'. If we set ~'(vx) = vs, then r is the required per- 
mutation of V. 

Let (ux, u2} E V. Let ix, Jx, is, Js ~ R be such that 

cr((Ul, ix)) = (r(Ux), h )  and a((us , is)) = O'(us), Js). 

Now {(ul, i0, (u~, i~)} ~/~, so {(~'(u0, J0, (z(u~), A), A)) ~/~ and therefore 
{~-(u0, z(us)} ~ E. Hence, ~- is an automorphism of G. But z(v0 ---- vs and 
vi and v~ are arbitrary points in 11. This implies that G is point-symmetric, 
contradicting the hypothesis that G is admissible. 

COROLLARY 3.1. I f  there is an admissible graph with v points, then 
there is a connected admissible graph with v points. 

PROOF: Let G be an admissible graph with v points. Then each 
connected component of  G is admissible 'and all components of  G are 
isomorphic. Let G' be a connected component of  G and let v' be the 
number of points in G'. If G has r components, then v = rv'. The con- 
clusion follows by applying Theorem 3 to the connected admissible 
graph G'. 

THEOREM 4. Let  d be an Abelian group with " + "  as the binary 
operation. Let  T be an automorphism o f  d .  Let  r ~ 1 be an integer and let 
a ~ d .  Suppose that T'(a) = 4- a, Ti(a) :/= a for  0 < i < r, and Ti(a) =/= - -a  
for  0 <~ i < r. Then there is an admissible graph G with 2r I ~r I points and 
degree 2r. 

PROOF: Define a set V by 

V = { 0 ,  1) • {0, 1,2 ..... r - -  1} • d .  

Let E be the set of  all two element subsets of V that are of the form 

{O, i, x), (1,• x)} or {(0, i, x), ( I ,L  x + T~(a))}. 

Let G = (V, E). Then G has 2r [ d [ points and G is regular of degree 2r. 
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We define permutat ions % ,  z, ~, and p of  V as follows 

au((E, i, x)) = ( e , i , x + y )  for  y E ~ r  

r((O, i, x)) = (0, i, x), 

t(1, i + l , x ) ,  if i < r - - 1 ,  
r((1, i ,x) )  = {(1, O,x),  if i =  r - -  1, 

~1((0, i, x))  = (0, i, - - x  - -  T'(a)),  

�9 /((1, i, x)) = (1, i, - -x) ,  

p((1, i, x)) = (1, i, T(x)) ,  

( (O, i d- 1, T(x)) ,  i f  i < r - - 1 ,  
p((O, i, x))  = l (O, O, T(x) ) ,  i f  i = r - -  1 a n d  T"(a) -= a, 

[ (O, O, T (x )  - -  a), i f  i =  r - - 1  a n d T ~ ( a )  =- - a .  

It  is easy to verify that  these permutat ions are automorphisms of  G. 
Fur thermore ,  by repeated applications of  these automorphisms any line 
of  G may be t ransformed into any other  line. Hence, G is line-symmetric. 

For  each u ~ V let 

L(u)  = {v ~ V I{u, v} ~ E ) .  

I f  a is an au tomorphism of  G, then L(o~(u)) = a(L(u)).  Suppose G is point-  
symmetric. Then there is an au tomorphism a of  G such that  a((1, 0, 0)) = 
(0, 0, 0). Let  

c~((1, 1, 0)) = (,, i, x). 

We have 

SO 

L((1, O, 0)) = L((1, 1, 0)), 

L(O,  O, 0)) = L((~, i, x)). 

N o w  (1, 0, 0) ~ L((0, 0, 0)) = L((E, i, x)) so we must have ~ = 0. Clearly, 
L((0, i, x)) = L((0, j, y)) if and only if {x, x + T~(a)} = {y, y § Tr 
Therefore,  {x, x § Ti(a)} = {0, a}. There are two possibilities. First, we 
may have x = a  and x §  This implies that  T ~ ( a ) = - - a ,  
contradicting our hypotheses. The only remaining possibility is x = 0 and 
x + T~(a) = a. This implies that T ~ ( a ) =  a, which is possible only if 
i = 0. We have now arrived at the conclusion that 

a((1, 1, 0)) = (0, O, O) = cx((1, O, 0)). 
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This contradicts the fact that  ~ is a permutat ion o f  V. Hence, G is not 
point-symmetric,  so it is admissible. 

The following theorem summarizes what  is known  about  the number  o f  
points that  an admissible graph may have. 

FIGURE 1. An admissible graph with 20 vertices. 

THEOREM 5. Let  v be a positive integer. There are no admissible graphs 
with v points i f  v satisfies one o f  the following conditions: 

(3.1) v is odd; 
(3,2) v = 2p or 2p ~, where p is prime; 
(3.3) v < 30 a n d 4  does not divide v; 
(3.4) v < 20. 

There is an admissible graph with v points i f  v satisfies one o f  the follow- 
ing conditions: 

(3.5) v is divisible by 2p 3, where p is an odd prime;  
(3.6) v is divisible by 2pq, where p and q are odd primes, and p divides 

q - - l ;  
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(3.7) v is divisible by  2pq 2, where p and q are primes,  q is odd, and p 
divides q + 1 ; 

(3.8) v ~> 20 and 4 divides v. 

PROOF: Assume (3.1). The conclusion follows f rom Corol lary 1.1. 
Assume (3.2). The conclusion follows f rom Theorem 2. Assume (3.3) but 
not  (3.1) or  (3.2). Then v = 2 and the conclusion is obvious. Assume (3.4) 
but not  (3.2) or (3.3). Then v : 12 or 16. The only p roo f  we have in these 
cases consists o f  examining all line-symmetric graphs with v vertices that 
satisfy the conclusion of  Theorem 1. This argument  is too  lengthy to be 
included here. 

Condit ions (3.5) to (3.7) are all of  the fo rm "v is divisible n," where n 
has some specified form. By Theorem 3 it suffices to construct  an ad- 
missible graph with v points when v : n. The constructions will be based 
on Theorem 4. As usual, Zn will denote the cyclic group of  order  n. 

(3.5) Let d : Z~ • Z~,  where the two copies o f  Z~ have generators 
gl and g~. Let T be the au tomorphism of  ~r defined by T(gl) : 
gl -~ g2 ,  T(g2) = g2 �9 Let a = gl and r = p. N o w  T i ( g l )  : gl q- ig~. 

Hence, T~(gx) = gl q- Pg~ = g l ,  Zi (g l )  = g l  q- ig~ 5z 5: g l  for  0 < i < p, 
and Ti(ga) -~ gl  + ig2 ~ - - g l  for  all i because p is odd. 

(3.6) Let d = Zq with generator  g. Since q is prime a n d p  divides q --  1, 
there is an integer x such that  x ~ ~ 1 (mod q) but x * ~ 1 (mod q) for 
0 < i < p. Let T be the au tomorph ism of  d defined by T(g)  = xg. Let 
a = g and r = p. N o w  Ti(g) = xig,  so Ti(g) = ng if and only if x i =~ n 

(mod q). Hence, TP(g) = g but  Ti(g) 5& g f o r 0  < i < p .  Suppose 
T~(g) = - - g  for  some i. Then x ~ ~ --1 (mod q). Since p is odd, this 
implies that  

- -1 ~-- ( - -1)  ~ = (xi) ~ =-- (x~) i ~ 1 i ~ 1 (mod q). 

This is impossible because q is odd. 
(3.7) Let ~ = Zq x Zq where the two copies of  Zq have generators 

gl and gs �9 First suppose that  p = 2. Let T be the au tomorphism of  d 
defined by T ( g l ) = g ~  and T ( g ~ ) = g l .  Let a = g l  and r = 2 .  Then 
T2(gi) = g~,  T(g~) = g2 ~ 4- gx and T~ = gx ~ - -g l  since q is odd. 

N o w  suppose that p is odd. The group of  automorphisms of  ~r is just 
the group of  all 2 • 2 non-singular  matrices with coefficients in the finite 
field Z q .  This group contains (q --  1)~q(q -}- 1) elements. N o w  p is prime 
and p divides q -k 1, so there is an au tomorph ism T of  d such that 
T ~ =  1 but  T ~:;~ I for 0 < i < p .  Let r = p .  Since T3& 1, there is an 
a ~ ~r with T(a) ~-  a. We have T~(a) = a. Suppose Ti(a) = a for some i 
with 0 < i < p. Then Tai+~(a) = a for all integers )t and/z.  N o w  i and p 
are relatively prime so we can choose A and/~  so that  Ai + / z p  = 1. This 
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contradicts our  assumption that  T(a) ~ a. Finally, suppose T~(a) = - - a  

for some i. N o w  p is odd so 

- - a  = (--1)~a = (TO~(a) = (T~)i(a) = a. 

Since q is odd, this is possible only if a = 0. But T(0) = 0, so this contra-  
dicts our  assumption that  T(a) :~ a. 

N o w  assume that  (3.8) holds. We consider four  cases: 

(i) v = 4p, where p is prime and p --~ 1 (mod 4). 

Let d = Z~ with generator  g. Since p = 1 (mod 4), there is an integer 
x with x 2 ~= --1 (mod p). Let T be the au tomorph ism o f  d defined by 
T(g) = xg.  Let a = g and r = 2. Then T2(g) = x2g = - -g .  I f  T(g) = + g  

then x = :tzl (modp) ,  so --1 ~ x 2 ~= ( •  3 ~ 1 (modp) .  Furthermore,  
if g --= T~ = , g ,  then 1 = --  1 (mod p). But 1 ~ - -  1 (mod p) because 
p > / 5 .  

(ii) v = 4p, where p is prime, p ~ - -  1 (mod 4), and p 7> 7. We cannot  
use Theorem 4 in this case, so we explicitly construct an admissible graph 
with v vertices. 

Let g be a generator  o f  the cyclic group Z~. Let V ----- {0, 1} • {0, 1} • Z~. 
Let E be the set of  all two element subsets o f  V of  the fo rm 

{(0, 0, x), (1, , ,  x + i2g)} 

or {(0, i, x), (1, ~, x - -  F g ) } ,  where E = 0 or 1, x ~ Z~,  and i is an integer 
with 1 ~< i <~ (p --  1)/2. Let G = (V, E). Clearly G is regular of  degree 
p - - 1 .  

The following permutat ions o f  V are au tomorphisms of  G: 

a ( ( ~ , ~ , x ) = ( E ,  3, x + g )  ~,~ ---- 0, 1, x e ~ r  

~-((0, 0, x)) = (0, 1, - -x)  
r((0, 1, x)) = (0, 0, - -x)  x e ~r , = 0, 1, 
~-((1, , ,  x)) = (1, , ,  - -x)  

~((0, , ,  x))  = (0, , ,  x)  
~((1, o, x))  = (1, 1, x)  x , d ,  , = o, 1, 
r/((1, 1, x)) = (1, O, x) 

m((~, ~, x))  = (~, 3, i~x) , ,  ~ = 0, 1, x E d 

for 1 ~< i ~< (p - -  1)/2. To see that  pi is an au tomorphism o f  G, we observe 
that  if 1 ~< i, j <~ (1) - -1 ) /2 ,  then i j - - - - ~ k ( m o d p )  for some k with 
1 ~< k ~< (p - -  1)/2 so i~flg = k2g. By successive applications o f  the 
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a b o v e  automorphisms,  any line o f  G can be t ransformed into any other 
line o f  G. Hence, G is line-symmetric. 

As in the p roo f  o f  Theorem 4, for  u ~ V let 

L @  = {o V I{u, E} .  

Suppose G is point-symmetric.  Then there is an au tomorph ism a o f  G such 
that  ~((1, 0, 0)) = (0, 0, 0). Let  ~((1, 1, 0)) = (7,3, rig), where 7,3 = 0 
or 1 and 0 ~< n < p. N o w  L((1, 0, 0)) ---= L((1, 1, 0)), so L((0, 0, 0)) = 
L((7, 3, rig)). Therefore, 7 = 0. Suppose n ---- 0. Then 3 = 1 since ~ is 1 - -  1. 
Hence, 

(1, O, - -g)  ~ L((O, 1, 0)) = L((O, O, 0)). 

This implies that  - -1 ~ i 2 (mod p) for  some integer i. This is impossible 
since --1 is no t  a quadratic residue m od  p. (p --= --1 (mod 4)). Therefore, 
0 < n < p .  

I f  n is a quadratic residue m od  p, there is an i with 1 ~< i ~< (p - -  t)/2 and 
?n ~ 1 (modp) .  I f n  is a non-residue, there is a n / w i t h  1 ~< i ~< (p --  I)/2 
and iSn ~ --1 (mod p). In either case we can choose i so pi((0, $, n g ) ) =  
(0, 3, Eg), where r = -4-1. N o w  pi((0, 0, 0)) = (0, 0, 0), so L((0, 0, 0)) = 
L((0,8, Eg)). Suppose ~ = 0 .  I f  E = 1, then (1,0,  g) ~ L((0, 0, 0)) = 
L((0, 0, g)). This implies that g = g § iSg for  some i with 1 ~< i ~< (p - -  1)/2. 
But g = g  § iSg only if i s ~ 0 ( m o d p )  and this is clearly impossible. 
I f  E = --1,  then (1, 0, 0) r L((0, 0, - -g))  = L((0, 0, 0)), which is impos- 
sible. Hence, 3 = 1. I f  E = 1 then (1, 0, g) z L((0, 0, 0)) = L((0, 1, g)), 
which is impossible. Therefore, E = --1.  

We have now arrived at the conclusion that L((0, 0, 0)) = L((0, 1, --g)). 
This implies that  for  every i with 1 ~< i ~< (p - -  1)/2 there is a j with 
1 ~< j ~< (p --  1)/2 and j2 = _ i  s _ _  ] (modp) .  In  other words, if r is a 
quadratic residue m o d p ,  then so is - - r  --  1. N o w p  ~> 7, so 1 = 12, 4 = 22, 
and 9 = 3 s are all quadrat ic residues, rood p. Hence, so are 
- - 2  = - - 1 - -  1 , - - 5  = - - 4 - - 1 ,  and - -10  = - - 9 - -  1. Therefore, 
10 = ( - -2 ) ( - -5 )  is a quadratic residue m o d p .  But if 10 and - -10  are both  
residues, then - -  1 must  be a residue. This contradicts the fact that  p ~ --  1 
(rood 4) and completes the p r o o f  that  G is admissible. 

By (i), (ii), and Theorem 3, an admissible graph with v points exists 
whenever v satisfies (3.8) and v is divisible by a p r i m e p  ~> 5. It remains to 
consider the cases v = 2  a . 3  b , a ~ > 2 , 2  a - 3  b ~>20. I f  b > ~ 2 ,  then 
2 �9 2 �9 3 s divides v. N o w  2 and 3 are prime, 3 is odd, and 2 divides 3 + 1, 
so v satisfies (3.7). I f  b = 1, then 24 divides v. I f  b = 0, then 32 divides v. 
By Theorem 3 it now suffices to consider the cases v = 32 and v = 24. 
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(iii) v = 32. Let  d = Z8 with generator g. Let  T be the au tomorphism 
of  d defined by T(g) = 3g. Let  a = g and r = 2. Then 

T~(g) = 9g = g, T(g)  = 3g :~  4- g, and g = T~ 5/: --g.  

(iv) v = 24. Let  A = {0, 1} • {0, 1} • {1, 2, 3}. Let  B be the set of  all 
subsets of  A that are of  the form 

{(0,8, i), (1,3, i), (0, E,j), (1, , , j )},  

where 8, E = 0 ,  1 a n d l  ~ < i < j ~ <  3. Let  V = A v o B .  Let 

E = {{a, b}l a ~ A, b ~ B, and a ~ b}. 

Let  G = (V, E). Then G is a graph with 24 points, which is regular of  
degree 4. 

Let cr and r be permutat ions of  {0, 1} and {1, 2, 3}, respectively. For  
each i ~ {1, 2, 3}, let pi be a permuta t ion  of  {0, 1}. Define a permutat ion 

of  V by 

o~((8, , ,  i)) = ((r(~), pi(,) ,  "r(i)) 

for  (8, E, i) ~ A and 

c~({ax, a2, aa ,  a,}) = {~x(al) , ~x(a2), ~x(az), ~(a4) ) 

for  {ax, a2,  aa ,  a4} e B. Then a is an au tomorphism of  G. Fur thermore ,  
given any two lines in G, there is an au tomorphism of  this form sending 
one into the other. Hence, G is line'symmetric. 

Suppose G is point-symmetric.  Then there is an automorphism c~ of  G 
with ~((0, 0, 1)) ~ B. Now 

SO 

Hence, 

L((O, O, 1)) ----- L((1, O, 1)), 

L(c~(O, 0, 1) : L(~(1, 0, 1)). 

a((1, O, 1)) 6 B. 

But for b ~ B, L(b)  = b, so 

~((o, o, 1)) = L(~((O, O, 1))) = L(~((1, O, 1))) = ~((1, O, 1)). 

This contradicts the fact that  a is 1-1 and completes the p roo f  that  G is 
admissible. 
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4. OPEN PROBLEMS 

We conclude with a Iist of  questions about admissible graphs which 
have not been answered. 

(4.1) For  which integers v is there an admissible graph with v points ? 

{4.2) Is there an admissible graph with 30 points ? (This is the smallest 
value of v for which (4.i) is open.) 

(4.3) Is there an admissible graph with 2pq points, where p and q are 
odd primes, p < q, and p does not divide q --  1 ? (This is the simplest 
class of  values of  v for which (4.1) is open.) 

Is there an admissible graph with v = 2v' points and degree d when 

(4.4) d >~ v/4 ? 

(4.5) d is prime ? 

(4.6) d and v' are relatively prime ? 

(4.7) d is prime and d does not divide v'? (None of the admissible graphs 
that we have constructed satisfies any of the conditions (4.4) to (4.7).) 

(4.8) For which pairs of  integers v and d is there a connected admissible 
graph with v points and degree d?  
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