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We consider the following nonlinear problem in R
N

{
−�u + V

(|y|)u = u
N+2
N−2 , u > 0, in R

N ;
u ∈ H1(

R
N), (0.1)

where V (r) is a bounded non-negative function, N � 5. We show
that if r2 V (r) has a local maximum point, or local minimum
point r0 > 0 with V (r0) > 0, then (0.1) has infinitely many non-
radial solutions, whose energy can be made arbitrarily large. As an
application, we show that the solution set of the following problem

−�u = λu + u
N+2
N−2 , u > 0 on S N

has unbounded energy, as long as λ < − N(N−2)
4 , N � 5.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Standing waves for the following nonlinear Schrödinger equation in R
N :

−i
∂ψ

∂t
= �ψ − Ṽ (y)ψ + |ψ |p−1ψ, (1.1)
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are solutions of the form ψ(t, y) = exp(iλt)u(y). Assuming that the amplitude u(y) is positive and
vanishes at infinity, we see that ψ satisfies (1.1) if and only if u solves the following nonlinear elliptic
problem

−�u + V (y)u = up, u > 0, lim|y|→+∞ u(y) = 0, (1.2)

where V (y) = Ṽ (y) + λ. Throughout this paper, we will assume that V is bounded, and V (y) � 0.
In this paper, we consider the critical case p = N+2

N−2 :

{
−�u + V (y)u = u

N+2
N−2 , u > 0, y ∈ R

N ,

u(y) → 0, as |y| → +∞.
(1.3)

It is easy to see that if V � 0 and V �= 0, the mountain pass value corresponding to (1.3) is not
a critical value. In contrast to the sub-critical case, there are very few results to (1.3). Benci and
Cerami [2] first studied (1.3) and proved the existence of at least one solution if V � 0 and ‖V ‖LN/2 is
sufficiently small. It seems that this is the only existence result available for general V in the critical
exponent case. It remains a question if the smallness of the norm ‖V ‖LN/2 is necessary. On the other

hand, the assumption V ∈ L
N
2 (RN ) implies that V cannot have a positive lower bound in R

N . Thus,
the existence result for the case V (y) � V 0 > 0 in R

N is completely open.
In this paper, we consider the radially symmetric potential case, i.e. V (y) = V (|y|), although this

assumption can be weakened. It follows from the Pohozaev identity that (1.3) has no solution if
(r2 V (r))′ has fixed sign and is not identically zero. Therefore, we see that to obtain a solution for (1.3),
it is necessary to assume that r2 V (r) has either a local maximum, or a local minimum at r0 > 0. The
aim of this paper is to show that this condition is not only sufficient, but also guarantees the existence
of infinitely many non-radial solutions.

Our main result in this paper can be stated as follows:

Theorem 1.1. Suppose that V (|y|) � 0 is bounded and N � 5. If r2 V (r) has either an isolated local maximum,
or an isolated local minimum at r0 > 0 with V (r0) > 0, then problem (1.3) has infinitely many non-radial
solutions.

Problem (1.3) is also related to the following Brezis–Nirenberg problem in S N

−�S N u = u
N+2
N−2 + λu, u > 0 on S N . (1.4)

In fact, by using the stereographic projection, problem (1.4) can be reduced to (1.3) with

V (y) = −N(N − 2) − 4λ

(1 + |y|2)2
.

So V (y) > 0 if λ < − N(N−2)
4 . Moreover, V (y) is radially symmetric.

Eq. (1.4) has also been studied recently by many authors. Brezis and Li [4] proved if λ > − N(N−2)
4 ,

then the only solutions to (1.4) is the constant u ≡ (−λ)
N−2

4 . On the other hand, when λ = − N(N−2)
4 ,

this is the Yamabe problem on S N : all solutions are classified [9]. When λ < − N(N−2)
4 , Druet [6] (see

also Druet and Hebey [7,8]) proved that the set of positive solutions to (1.4) is compact provided the
energy is bounded. On the other hand, it has been shown that there are more and more non-radial
solutions as λ → −∞. We refer to Brezis and Peletier [5], Bandle and Wei [3] and the references
therein. Theorem 1.1 implies that as long as λ < − N(N−2)

4 and N � 5, there are infinitely many non-
radial solutions to (1.4) whose energy can be made arbitrarily large. This shows that the boundedness
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of energy in [6] and [7] is necessary. We notice that when N = 3, Druet [6] proved that the solution
set of (1.4) has bounded energy. We believe that Theorem 1.1 also holds for N = 4.

Let us point out that in this paper, we don’t assume the condition

V
(|y|) � V 0 > 0, for |y| large,

which is essential for Schrödinger equation with sub-critical growth. In [13], we considered the fol-
lowing problem

{−�u + V
(|y|)u = up, u > 0, y ∈ R

N ,

u ∈ H1(
R

N), (1.5)

where 1 < p < N+2
N−2 . We proved that if

V (r) = V 0 + a

rm
+ O

(
1

rm+1

)
, as r → +∞

for some V 0 > 0, a > 0 and m > 1, then, (1.5) has infinitely many non-radial solutions. In fact, we
showed that (1.5) has solutions with large number of bumps near the infinity. Problem (1.5) is
non-compact due to the unboundedness of the domain, while (1.3) is non-compact due to the un-
boundedness of the domain and the critical growth of the nonlinearity. We will prove Theorem 1.1
by constructing solutions with large number of bubbles near the sphere |y| = r0. So, in view of the
construction of bubbling solutions, we can say that the effect from the critical growth is stronger
than the effect from the unboundedness of the domain.

Before we close this introduction, we outline the main idea in the proof of Theorem 1.1.
Let us fix a positive integer

k � k0,

where k0 is large, which is to be determined later.
Let 2∗ = 2N

N−2 . It is well known that the functions

Ux,μ(y) = (
N(N − 2)

) N−2
4

(
μ

1 + μ2|y − x|2
) N−2

2

, μ > 0, x ∈ R
N

are the only solutions to the problem

−�u = u
N+2
N−2 , u > 0, in R

N .

Let y = (y′, y′′), y′ ∈ R
2, y′′ ∈ R

N−2. Define

Hs =
{

u: u ∈ D1,2(
R

N), u is even in yh, h = 2, . . . , N,

u
(
r cos θ, r sin θ, y′′) = u

(
r cos

(
θ + 2π

k

)
, r sin

(
θ + 2π

k

)
, y′′

)}
.
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Let

x j =
(

r cos
2( j − 1)π

k
, r sin

2( j − 1)π

k
,0

)
, j = 1, . . . ,k,

where 0 is the zero vector in R
N−2, and let

Wr,μ(y) =
k∑

j=1

Ux j,μ(y).

Choose δ > 0 small, such that

V
(|y|) � V 0 > 0, ∀|y| ∈ [r0 − 2δ, r0 + 2δ].

In this paper, we always assume that

r ∈ [r0 − δ, r0 + δ],

and

μ ∈ [
L0k

N−2
N−4 , L1k

N−2
N−4

]
, for some constants L1 > L0 > 0.

Theorem 1.1 is a direct consequence of the following result:

Theorem 1.2. Suppose that V (|y|) � 0 is bounded and N � 5. If r2 V (r) has either an isolated local maximum,
or an isolated local minimum at r0 > 0 with V (r0) > 0, then there is an integer k0 > 0, such that for any integer
k � k0 , (1.3) has a solution uk of the form

uk = Wrk,μk (y) + ωk,

where ωk ∈ Hs, and as k → +∞, ‖ωk‖L2∗
(RN ) → 0, rk ∈ [r0 − δ, r0 + δ] and μk ∈ [L0k

N−2
N−4 , L1k

N−2
N−4 ].

We will use a reduction argument to prove Theorem 1.2. The reduction argument is a typical
technique used in the study of perturbation problems. Problem (1.3) is not a perturbation problem.
We use k, the number of bubbles of the solutions, as the parameter in order to carry out the reduction
procedure. This technique has been used successfully to study some non-compact elliptic problems.
See [11–16]. Unlike the papers [14–16], where the reduction arguments were carried out in some
weighted norm spaces, we take the advantage of the term V (|y|)u in (1.3), so in this paper, we carry
out the reduction argument in the standard Sobolev space as in [1,10]. This will make the estimates
a bit easier.

This paper is arranged as follows. In Section 2, we carry out the reduction. Theorem 1.2 is proved
in Section 3. We put the energy expansion to Appendix A.

2. Finite-dimensional reduction

In this section, we perform a finite-dimensional reduction.
Let

Zi,μ,1 = ∂Uxi ,μ

∂r
, Zi,μ,2 = ∂Uxi ,μ

∂μ
.
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The inner product in Hs is defined as follows:

〈u, v〉 =
∫

RN

(
DuD v + V

(|y|)uv
)
.

Let

Ek,r,μ =
{

φ: φ ∈ Hs,

〈
k∑

i=1

Zi,μ, j, φ

〉
= 0, j = 1,2

}
.

Let Lk,r,μ be the bounded linear operator from Ek,r,μ to Ek,r,μ , defined by the following relation

〈Lk,r,μu, v〉 =
∫

RN

(
DuD v + V

(|y|)uv − (
2∗ − 1

)
W 2∗−2

r,μ uv
)
, u, v ∈ Ek,r,μ. (2.1)

Lemma 2.1. There are ρ > 0 and k0 > 0, such that for k � k0 ,

‖Lk,r,μφ‖ � ρ‖φ‖, ∀φ ∈ Ek,r,μ.

Proof. We argue by contradiction. Suppose that there are k → +∞, rk ∈ [r0 − δ, r0 + δ], μk ∈
[L0k

N−2
N−4 , L1k

N−2
N−4 ], and φk ∈ Ek,rk,μk , satisfying

‖φk‖ = √
k, ‖Lφk‖ = o(

√
k). (2.2)

Let

Ω j =
{

y: y = (
y′, y′′) = R

2 × R
N−2,

〈
y′

|y′| ,
x j

|x j|
〉
� cos

π

k

}
.

Then, by (2.2), ∫
Ω1

(|Dφk|2 + V
(|y|)φ2

k

) = 1, (2.3)

and ∫
Ω1

(
Dφk Dω + V

(|y|)φkω − (
2∗ − 1

)
W 2∗−2

rk,μk
φkω

) = o(1), ∀ω ∈ Ek,rk,μk . (2.4)

Let φ̃k(y) = μ
− N−2

2
k φk(μ

−1
k y + x1), x1 = (r,0,0, . . . ,0). It follows from (2.3) that Dφ̃k is bounded

in L2
loc(R

N ). So, we may assume that there is a φ ∈ D1,2(RN ), such that

Dφ̃k ⇀ Dφ, weakly in L2
loc

(
R

N),
and

φ̃k → φ, strongly in L2
loc

(
R

N).
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It is easy to see that φ satisfies

−�φ − (
2∗ − 1

)
U 2∗−2

0,1 φ = 0, in R
N .

Moreover, from φk ∈ Ek,rk,μk , we find that φ is even in y j , j = 2, . . . , N , and

∫
RN

U 2∗−2
0,1

∂U0,1

∂x1
φ = 0,

∫
RN

U 2∗−2
0,1

∂U0,μ

∂μ

∣∣∣∣
μ=1

φ = 0.

So, we obtain φ = 0. Thus, for any R > 0,

∫
B R (0)

|φ̃k|2 = o(1).

As a result,

∫
B

μ−1
k R

(x1)

W 2∗−2
rk,μk

φ2
k � C

∫
B R (0)

|φ̃k|2 = o(1). (2.5)

On the other hand, it is easy to see that Wrk,μk = o(1) in Ω1 \ Bμ−1
k R(x1) for R > 0 large. Thus, in

view of

V (y) � V 0 > 0, y ∈ Br0+2δ(0) \ Br0−2δ(0),

we find

∫
Ω1∩((Br0+2δ(0)\Br0−2δ(0))\B

μ−1
k R

(x1))

W 2∗−2
rk,μk

φ2
k

= o(1)

∫
Ω1∩((Br0+2δ(0)\Br0−2δ(0))\B

μ−1
k R

(x1))

φ2
k = o(1)

∫
Ω1

V
(|y|)φ2

k . (2.6)

Moreover, from

∫
Ω1\(Br0+2δ(0)\Br0−2δ(0))

W 2∗
rk,μk

� k2∗
∫

Ω1\(Br0+2δ(0)\Br0−2δ(0))

U 2∗
x1,μk

� Ck2∗

μN
k

,

we obtain



W. Chen et al. / J. Differential Equations 252 (2012) 2425–2447 2431
∫
Ω1\(Br0+2δ(0)\Br0−2δ(0))

W 2∗−2
rk,μk

φ2
k �

( ∫
Ω1\(Br0+2δ(0)\Br0−2δ(0))

W 2∗
rk,μk

) 2
N
(∫

Ω1

|φk|2∗
) 2

2∗

� Ck
4

N−2

μ2
k

1

k
2

2∗

∫
RN

|Dφk|2 = Ck
4

N−2 + 2
N

μ2
k

∫
Ω1

|Dφk|2

= C

k2+ 4
N−4 − 4

N−2 − 2
N

∫
Ω1

|Dφk|2 = o(1)

∫
Ω1

|Dφk|2. (2.7)

Combining (2.5), (2.6) and (2.7), we are led to

o(1) =
∫
Ω1

(|Dφk|2 + V
(|y|)φ2

k − (
2∗ − 1

)
W 2∗−2

rk,μk
φ2

k

)

= (
1 + o(1)

) ∫
Ω1

(|Dφk|2 + V
(|y|)φ2

k

)+ o(1).

This is a contradiction to (2.3). �
From Lemma 2.1, using the Fredholm alternative, we can prove the following result:

Proposition 2.2. There exists k0 > 0, such that for k � k0 , Lk,r,μ is an isomorphism in Ek,r,μ .

Define the projection Q k,r,μ from Hs to Ek,r,μ as follows:

Q k,r,μu = u −
2∑

j=1

c j

k∑
i=1

Zi,μ, j, (2.8)

where c1 and c2 are chosen such that Q k,r,μu ∈ Ek,r,μ .
Now, we consider

Q k,r,μ
(−�(Wr,μ + φ) + V

(|y|)(Wr,μ + φ) − (Wr + φ)2∗−1) = 0, φ ∈ Ek,r,μ. (2.9)

We have

Proposition 2.3. There is an integer k0 > 0, such that for each k � k0 , (2.9) has a unique solution φ =
φ(r,μ) ∈ Ek,r,μ , satisfying

‖φ‖ � Ck

(
lnμ

μmin( N−2
2 ,2)

+ 1

k
1

2∗

(
k

μ

) N+1
2

)
.

Rewrite (2.9) as

Lk,r,μφ = N(φ) + lk, in R
N , (2.10)

where N(φ) ∈ Ek,r,μ and lk ∈ Ek,r,μ are defined in the following relations respectively:
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〈
N(φ),ω

〉 = ∫
RN

(
(Wr,μ + φ)2∗−1 − W 2∗−1

r,μ − (
2∗ − 1

)
W 2∗−2

r,μ φ
)
ω, ω ∈ Ek,r,μ,

and

〈lk,ω〉 =
∫

RN

(
W 2∗−1

r,μ −
k∑

j=1

U 2∗−1
x j ,Λ

− V
(|y|)Wr,μ

)
ω, ω ∈ Ek,r,μ.

In order to use the contraction mapping theorem to prove that (2.10) is uniquely solvable, we need
to estimate N(φ) and lk .

Lemma 2.4. If N � 6, then

∣∣〈N(φ),ω
〉∣∣ � C‖φ‖2∗−1‖ω‖.

If N = 5,

∣∣〈N(φ),ω
〉∣∣ � Ck

1
10 ‖φ‖2‖ω‖.

Proof. We have

N∗(φ) =: (Wr,μ + φ)2∗−1 − W 2∗−1
r,μ − (

2∗ − 1
)
W 2∗−2

r,μ φ =
{

C |φ|2∗−1, N � 6;
C W

1
3

r,μφ2, N = 5.

Thus, if N � 6,

∣∣〈N(φ),ω
〉∣∣ � C

∫
RN

|φ|2∗−1|ω| � C‖φ‖2∗−1‖ω‖.

If N = 5,

( ∫
RN

(
W

1
3

r,μφ2) 10
7

) 7
10

� C

( ∫
RN

(
W

10
3

r,μ
)) 1

10

‖φ‖2 � Ck
1

10 ‖φ‖2. �

Next, we estimate lk .

Lemma 2.5. If N � 5, then

‖lk‖ � Ck

(
lnμ

μmin( N−2
2 ,2)

+ 1

k
1

2∗

(
k

μ

) N+1
2

)
.

Proof. Write

l∗k =
(

W 2∗−1
r,μ −

k∑
j=1

U 2∗−1
x j,Λ

)
− V

(|y|)Wr,μ = J1 − J2.
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Firstly, by symmetry

〈 J2,ω〉 = k
〈
V (y)Ux1,μ,ω

〉 = kO

( ∫
RN

V (y)Ux1,μ|ω|
)

. (2.11)

We have ∫
RN\B1(x1)

V (y)Ux1,μ|ω| � C

μ
N−2

2

∫
RN\B1(x1)

1

|y − x1|N−2
V (y)|ω| � C

μ
N−2

2

‖ω‖.

On the other hand,

∫
B1(x1)

V (y)Ux1,μ|ω| �
( ∫

B1(x1)

U
2N

N+2
x1,μ

) N+2
2N

‖ω‖.

But

( ∫
B1(x1)

U
2N

N+2
x1,μ

) N+2
2N

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

O ( 1

μ
3
2
), N = 5;

O (
lnμ
μ2 ), N = 6;

O ( 1
μ2 ), N � 7.

So, we obtain

〈 J2,ω〉 = kO

(
lnμ

μmin( N−2
2 ,2)

)
‖ω‖. (2.12)

Define

Ω j =
{

y: y = (
y′, y′′) ∈ R

2 × R
N−2,

〈
y′

|y′| ,
x j

|x j|
〉
� cos

π

k

}
.

By the symmetry,

〈 J1,ω〉 = k

∫
Ω1

J1ω. (2.13)

We have

| J1| � C U
4

N−2
x1,μ

k∑
j=2

Ux j ,μ + C

(
k∑

j=2

Ux1,μ

)2∗−1

, y ∈ Ω1. (2.14)

Note that

|y − x j| � |y − x1|, ∀y ∈ Ω1.
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We claim that

|y − x j| � 1

2
|x j − x1|, ∀y ∈ Ω1.

In fact, if |y − x1| � 1
2 |x j − x1|, then

|y − x j| � |x j − x1| − |y − x1| � 1

2
|x j − x1|.

If |y − x1| � 1
2 |x j − x1|, then

|y − x j| � |y − x1| � 1

2
|x j − x1|.

So, we obtain

U
4

N−2
x1,μUx j ,μ � C

μ
N+2

2

(1 + μ|y − x1|) N+3
2

1

(μ|x j − x1|) N+1
2

, j > 1. (2.15)

Thus

U
4

N−2
x1,μ

k∑
j=2

Ux j ,μ � C
μ

N+2
2

(1 + μ|y − x1|) N+3
2

(
k

μ

) N+1
2

. (2.16)

As a result,

∫
Ω1

U
4

N−2
x1,μ

k∑
j=2

Ux j ,μ|ω| � C

(
k

μ

) N+1
2

∫
Ω1

μ
N+2

2

(1 + μ|y − x1|) N+3
2

|ω| � C

(
k

μ

) N+1
2

(∫
Ω1

|ω|2∗
) 1

2∗

� C
1

k
1

2∗

(
k

μ

) N+1
2

‖ω‖. (2.17)

Let τ > 0 be small. We have

Ux j ,μ � C

(μ|x j − x1|) N−2
2 − N−2

N+2 τ

μ
N−2

2

(1 + μ|y − x1|) N−2
2 + N−2

N+2 τ
.

Thus

k∑
j=2

Ux j ,μ � C

(
k

μ

) N−2
2 − N−2

N+2 τ
μ

N−2
2

(1 + μ|y − x1|) N−2
2 + N−2

N+2 τ
,

which gives

(
k∑

j=2

Ux j,μ

)2∗−1

� C

(
k

μ

) N+2
2 −τ

μ
N+2

2

(1 + μ|y − x1|) N+2
2 +τ

.
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As a result,

∫
Ω1

(
k∑

j=2

Ux j ,μ

)2∗−1

|ω| � C
1

k
1

2∗

(
k

μ

) N+2
2 −τ

‖ω‖. �

Now, we are ready to prove Proposition 2.3.

Proof of Proposition 2.3. Let

S =
{
ω: ω ∈ Ek,r,μ, ‖ω‖ � k

k
N−2
N−4

}
.

Then, (2.10) is equivalent to

φ = A(φ) =: L−1
k,r,μ

(
N(φ) + lk

)
.

We will prove that A is a contraction map from S to S .
In fact, if N � 6,

‖φ‖ � C
∥∥N(φ)

∥∥+ C‖lk‖

� C‖φ‖2∗−1 + Ck
1

k
N−2
N−4 +σ

� C

(
k

k
N−2
N−4

)2∗−1

+ Ck
1

k
N−2
N−4 +σ

� k

k
N−2
N−4

. (2.18)

If N = 5, then

‖φ‖ � C
∥∥N(φ)

∥∥+ C‖lk‖

� Ck
1

10 ‖φ‖2 + Ck
1

k3+σ
� Ck

1
10

1

k3
+ C

k2+σ
� 1

k2
. (2.19)

Thus, A maps S to S .
On the other hand,

∥∥A(φ1) − A(φ2)
∥∥ � C

∥∥N(φ1) − N(φ2)
∥∥.

If N � 6, then

∣∣(N∗(t)
)′∣∣ � C |t|2∗−2.

As a result,

∫
RN

∣∣N(φ1) − N(φ2)
∣∣|ω| � C

∫
RN

(|φ1|2∗−2 + |φ2|2∗−2)|φ1 − φ2||ω|

� C
(‖φ1‖2∗−2 + ‖φ2‖2∗−2)‖φ1 − φ2‖‖ω‖.
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So we have

∥∥N(φ1) − N(φ2)
∥∥ � C

(‖φ1‖2∗−2 + ‖φ2‖2∗−2)‖φ1 − φ2‖ � 1

2
‖φ1 − φ2‖.

If N = 5,

∣∣(N∗(t)
)′∣∣ � C W

1
3

r,μ|t|2.

So,

∥∥N(φ1) − N(φ2)
∥∥ � Ck

1
10 ‖φ1 − φ2‖2 � 1

2
‖φ1 − φ2‖.

Thus, A is a contraction map.
It follows from the contraction mapping theorem that there is a unique φ ∈ S , such that

φ = A(φ).

Moreover,

‖φ‖ � C‖lk‖ � Ck

(
lnμ

μmin( N−2
2 ,2)

+ 1

k
1

2∗

(
k

μ

) N+1
2

)
. �

3. Proof of the main result

Let

F (r,μ) = I(Wr,μ + φ),

where r = |x1|, φ is the function obtained in Proposition 2.3, and

I(u) = 1

2

∫
RN

(|Du|2 + V
(|y|)u2)− 1

2∗

∫
RN

|u|2∗
.

Proposition 3.1. We have

F (r,μ) = I(Wr,μ) + O

(
k

μ2+σ

)

= k

(
A + B1 V (r)

μ2
−

k∑
i=2

B2

μN−2|x1 − x j|N−2
+ O

(
1

μ2+σ

))
,

where σ > 0 is a fixed constant, Bi > 0, i = 1,2, is some constant.
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Proof. Since

〈
I ′(Wr,μ + φ),φ

〉 = 0,

there is t ∈ (0,1) such that

F (r,μ) = I(Wr,μ) + 1

2
D2 I(Wr,μ + tφ)(φ,φ)

= I(Wr,μ) + 1

2

∫
RN

(|Dφ|2 + V
(|y|)φ2 − (

2∗ − 1
)
(Wr,μ + tφ)2∗−2φ2)

= I(Wr,μ) + O

(
‖φ‖2 + ‖φ‖2∗ +

(∫
RN

W 2∗
r,μ

) 2
N

‖φ‖2
)

= I(Wr,μ) + O
(
k

2
N ‖φ‖2)

= I(Wr,μ) + k2+ 2
N O

(
ln2 μ

μmin(N−2,4)
+ 1

k
N−2

N

(
k

μ

)N+1)
.

Since

(
k

μ

)N−2

∼ 1

μ2
,

we find

k2+ 2
N

1

k
N−2

N

(
k

μ

)N+1

= kO

(
k

4
N

1

μ
6

N−2

1

μ2

)
= kO

(
1

μ2+σ

)
.

It is also easy to check that

k2+ 2
N

ln2 μ

μmin(N−2,4)
= kO

(
1

μ2+σ

)
.

So, the result follows. �
Proposition 3.2. We have

∂ F (r,μ)

∂μ
= k

(
−2B1 V (r)

μ3
+

k∑
i=2

B2(N − 2)

μN−1|x1 − x j|N−2
+ O

(
1

μ3+σ

))
,

where σ > 0 is a fixed constant.

Proof. We have

∂ F (r,μ)

∂μ
=

〈
I ′(Wr,μ + φ),

∂Wr,μ

∂μ
+ ∂φ

∂μ

〉

=
〈

I ′(Wr,μ + φ),
∂Wr,μ

∂μ

〉
+

2∑ k∑
cl

〈
Zi,μ,l,

∂φ

∂μ

〉
. (3.1)
l=1 i=1
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Now

〈
I ′(Wr,μ + φ),

∂Wr,μ

∂μ

〉

=
〈

I ′(Wr,μ),
∂Wr,μ

∂μ

〉
+

∫
RN

(
D

∂Wr,μ

∂μ
Dφ + V

(|y|)∂Wr,μ

∂μ
φ

)

−
∫

RN

(Wr,μ + φ)2∗−1 ∂Wr,μ

∂μ
+

∫
RN

W 2∗−1
r,μ

∂Wr,μ

∂μ

=
〈

I ′(Wr,μ),
∂Wr,μ

∂μ

〉
−

∫
RN

(Wr,μ + φ)2∗−1 ∂Wr,μ

∂μ
+

∫
RN

W 2∗−1
r,μ

∂Wr,μ

∂μ
(3.2)

since φ ∈ Ek,r,μ .
On the other hand,

∫
RN

(Wr,μ + φ)2∗−1 ∂Wr,μ

∂μ
−

∫
RN

W 2∗−1
r,μ

∂Wr,μ

∂μ

= (
2∗ − 1

) ∫
RN

W 2∗−2
r,μ

∂Wr,μ

∂μ
φ + O

( ∫
RN

|φ|2∗
)

. (3.3)

Moreover, from φ ∈ Ek,r,μ , we obtain

∫
RN

((
2∗ − 1

)
U 2∗−2

x j ,μ

∂Ux j,μ

∂μ
+ V

(|y|)∂Ux j,μ

∂μ

)
φ

=
∫

RN

(
D

∂Ux j,μ

∂μ
Dφ + V

(|y|)∂Ux j,μ

∂μ
φ

)
= 0.

As a result,

∫
RN

W 2∗−2
r,μ

∂Wr,μ

∂μ
φ

=
∫

RN

(
W 2∗−2

r,μ
∂Wr,μ

∂μ
−

k∑
j=1

U 2∗−2
x j ,μ

∂Ux j,μ

∂μ
− 1

2∗ − 1

k∑
j=1

V
(|y|)∂Ux j,μ

∂μ

)
φ. (3.4)

But

∣∣∣∣
∫

RN

V
(|y|)∂Ux j,μ

∂μ
φ

∣∣∣∣ � C

μ

∫
RN

V
(|y|)Ux j,μ|φ| � C

μ3+σ
, (3.5)

and
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∫
RN

(
W 2∗−2

r,μ
∂Wr,μ

∂μ
−

k∑
j=1

U 2∗−2
x j ,μ

∂Ux j,μ

∂μ

)
φ

= k

∫
Ω1

(
W 2∗−2

r,μ
∂Wr,μ

∂μ
−

k∑
j=1

U 2∗−2
x j ,μ

∂Ux j,μ

∂μ

)
φ

� Ck

μ

∫
Ω1

(
U 2∗−2

x1,μ

k∑
j=2

Ux j ,μ +
k∑

j=2

U 2∗−1
x j ,μ

)
|φ| � Ck

μ3+σ
. (3.6)

Combining (3.2)–(3.6), we obtain

〈
I ′(Wr,μ + φ),

∂Wr,μ

∂μ

〉
=

〈
I ′(Wr,μ),

∂Wr,μ

∂μ

〉
+ O

(
k

μ3+σ

)
. (3.7)

To estimate c1 and c2, we use

Lk,r,μφ − lk − N(φ) =
2∑

l=1

k∑
i=1

cl Zi,μ,l.

So,

cl

〈
k∑

i=1

Zi,μ,l, Z1,μ,l

〉
= 〈

Lk,r,μφ − lk − N(φ), Z1,μ,l
〉
. (3.8)

On the other hand, similar to the estimate of (3.3), we can deduce

〈Lk,r,μφ, Z1,μ,l〉 = 〈Lk,r,μ Z1,μ,l, φ〉

= −(
2∗ − 1

) ∫
RN

W 2∗−2
r,μ Z1,μ,lφ =

⎧⎨
⎩

O ( k
μ3+σ ), l = 2,

O ( k
μ1+σ ), l = 1,

which, together with (3.8), gives

c1 = 1

μ
O
(‖lk‖ + ∥∥N(φ)

∥∥)+ O

(
k

μ3+σ

)
, c2 = μO

(‖lk‖ + ∥∥N(φ)
∥∥)+ O

(
k

μ1+σ

)
.

But

〈
Zi,μ,l,

∂φ

∂μ

〉
= −

〈
∂ Zi,μ,l

∂μ
,φ

〉
.

Thus,

∣∣∣∣∣
k∑

cl

〈
Zi,l,

∂φ

∂μ

〉∣∣∣∣∣ � 1

μ

(‖lk‖ + ∥∥N(φ)
∥∥)‖φ‖ + O

(
k

μ3+σ

)
� Ck

μ3+σ
. (3.9)
i=1
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Combining (3.1), (3.7) and (3.9), we have proved

∂ F (r,μ)

∂μ
= ∂ I(Wr,μ)

∂μ
+ O

(
k

μ3+σ

)
,

and the result follows from Proposition A.2. �
Since

|x j − x1| = 2|x1| sin
( j − 1)π

k
, j = 2, . . . ,k,

we have

k∑
j=2

1

|x j − x1|N−2
= 1

(2|x1|)N−2

k∑
j=2

1

(sin ( j−1)π
k )N−2

=

⎧⎪⎪⎨
⎪⎪⎩

2
(2|x1|)N−2

∑ k
2
j=2

1
(sin ( j−1)π

k )N−2
+ 1

(2|x1|)N−2 , if k is even;
2

(2|x1|)N−2

∑[ k
2 ]

j=2
1

(sin ( j−1)π
k )N−2

, if k is odd.

But

0 < c′ �
sin ( j−1)π

k
( j−1)π

k

� c′′, j = 2, . . . ,

[
k

2

]
.

So, there is a constant B4 > 0, such that

k∑
j=2

1

|x j − x1|N−2
= B4kN−2

|x1|N−2
+ O

(
k

|x1|N−2

)
.

Thus, we obtain

F (r,μ) = k

(
A + B1 V (r)

μ2
− B4kN−2

μN−2rN−2
+ O

(
1

μ2+σ

))
, (3.10)

and

∂ F (r,μ)

∂μ
= k

(
−2B1 V (r)

μ3
+ B4(N − 2)kN−2

μN−1rN−2
+ O

(
1

μ3+σ

))
. (3.11)

For each fixed r ∈ [r0 − δ, r0 + δ], let Λ0(r) be the solution of

−V (r)
2B1

Λ3
+ B4(N − 2)

ΛN−1rN−2
= 0.
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Then

Λ0(r) =
(

B4(N − 2)

2B1 V (r)rN−2

) 1
N−4

.

Note that Λ0(r) is the unique maximum point of the function

V (r)
B1

Λ2
− B4

ΛN−2rN−2
.

Proof of Theorem 1.2 if r0 is a maximum of r2 V (r). Consider

max
(r,μ)∈D

F (r,μ), (3.12)

where

D =
{
(r,μ): r ∈ [r0 − δ, r0 + δ], μ = Λk

N−2
N−4 , Λ ∈

[
Λ0(r) − 1

k
N−2
N−4

3
2 θ

,Λ0(r) + 1

k
N−2
N−4

3
2 θ

]}
,

where 0 < θ � σ is a small constant, and σ > 0 is the constant in (3.11). Let (r̄k, μ̄k) ∈ D be a solution
of (3.12).

If θ > 0 is small enough, then it follows from (3.11) that

∂ F (r,μ)

∂μ
> 0 (or < 0)

if μ̄k = k
N−2
N−4 (Λ0(r) − 1

k
N−2
N−4

3
2 θ

) (or μ̄k = k
N−2
N−4 (Λ0(r) + 1

k
N−2
N−4

3
2 θ

)). So

μ̄k �= k
N−2
N−4

(
Λ0(r) ± 1

k
N−2
N−4

3
2 θ

)
.

On the other hand, for any (r,μ) ∈ D , we have

B1 V (r)

μ2
− B4kN−2

μN−2rN−2
=

(
B1 V (r)

Λ2
− B4

ΛN−2rN−2

)
1

k
2(N−2)

N−4

=
(

B1 V (r)

Λ2
0(r)

− B4

ΛN−2
0 (r)rN−2

+ O
(∣∣Λ − Λ0(r)

∣∣2)) 1

k
2(N−2)

N−4

=
(

N − 4

N − 2

B1 V (r)

Λ2
0(r)

+ O

(
1

μ3θ

))
1

k
2(N−2)

N−4

=
(

B ′(r2 V (r)
) N−2

2(N−4) + O

(
1

μ3θ

))
1

k
2(N−2)

N−4

, (3.13)

where B ′ > 0 is a constant. Since r2 V (r) has a maximum at r0, from (3.10), we see that r̄k �= r0 ± δ

for the maximum point (rk, μ̄k) ∈ D . So, (rk, μ̄k) is an interior point of D , and thus a critical point
of F (r,μ). �
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It remains to study the case that r0 is a local minimum point of r2 V (r). Define

F̄ (r,μ) = −F (r,μ), (r,μ) ∈ D.

Let

α2 = k(−A + η), α1 = k

(
−A − B ′(r2

0 V (r0)
) N−2

2(N−4) (1 − η)
1

k
2(N−2)

N−4

)
,

where η > 0 is a small constant, and B ′ > 0 is the constant in (3.13).
Let

F̄ α = {
(r,μ) ∈ D, F̄ (r,μ) � α

}
.

Consider

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dr

dt
= −Dr F̄ , t > 0;

dμ

dt
= −Dμ F̄ , t > 0;

(r,μ) ∈ F α2 .

Then

Proposition 3.3. The flow (r(t),μ(t)) does not leave D before it reaches F α1 .

Proof. If μ = (Λ0 + 1

k
N−2
N−4

3
2 θ

) 1

k
N−2
N−4

, we obtain from (3.11) that

∂ F̄ (r,μ)

∂μ
= k

(
c′

k
N−2
N−4

3
2 θ

+ O

(
1

μσ

))
1

k
3(N−2)

N−4

> 0.

So, the flow does not leave D .
Similarly, if μ = (Λ0 − 1

k
N−2
N−4

3
2 θ

) 1

k
N−2
N−4

, then we obtain from (3.11) that

∂ F̄ (r,μ)

∂μ
= k

(
− c′

k
N−2
N−4

3
2 θ

+ O

(
1

μσ

))
1

k
3(N−2)

N−4

< 0.

So, the flow does not leave D .
Suppose now |r − r0| = δ. Using (3.10) and (3.13), we obtain

F̄ (r,μ) = k

(
−A −

(
B ′((r0 ± δ)2 V (r0 ± δ)

) N−2
2(N−4) + O

(
1

μ3θ

))
1

k
2(N−2)

N−4

)

< k

(
−A − B ′(r2

0 V (r0)
) N−2

2(N−4) (1 − η)
1

k
2(N−2)

N−4

)
= α1, (3.14)

if η > 0 is small. �
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Proof of Theorem 1.2 if r0 is a minimum of r2 V (r). We will prove that F̄ , and thus F , has a critical
point in D .

Define

Γ = {
h: h(r,μ) = (

h1(r,μ),h2(r,μ)
) ∈ D, (r,μ) ∈ D, h(r,μ) = (r,μ), if |r − r0| = δ

}
.

Let

c = inf
h∈Γ

max
(r,μ)∈D

F̄
(
h(r,μ)

)
.

We claim that c is a critical value of F̄ . To prove this, we need to prove

(i) α1 < c < α2;
(ii) sup|r−r0|=δ F̄ (h(r,μ)) < α1, ∀h ∈ Γ .

To prove (ii), let h ∈ Γ . Then for any r̄ with |r̄ − r0| = δ, we have h(r̄,μ) = (r̄,μ). Thus, by (3.14),

F̄
(
h(r,μ)

) = F̄ (r,μ) < α1.

Now we prove (i). It is easy to see that

c < α2.

For any h = (h1,h2) ∈ Γ . Then h1(r,μ) = r, if |r − r0| = δ. Define

h̃1(r) = h1
(
r,Λ0(r)k

N−2
N−4

)
.

Then h̃1(r) = r, if |r − r0| = δ. So, there is an r̄ ∈ (r0 − δ, r0 + δ), such that

h̃1(r̄) = r0.

Let μ̄ = h2(r̄,Λ0(r̄)k
N−2
N−4 ). Then from (3.10) and (3.13),

max
(r,μ)∈D

F̄
(
h(r,μ)

)
� F̄

(
h(r̄,Λ0)k

N−2
N−4

) = F̄ (r0, μ̄)

= k

(
−A − B ′(r2

0 V (r0)
) N−2

2(N−4) + O

(
1

k
3θ(N−2)

N−4

))
1

k
2(N−2)

N−4

> α1. �
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Appendix A. Energy expansion

In the appendix, we always assume that

x j =
(

r cos
2( j − 1)π

k
, r sin

2( j − 1)π

k
,0

)
, j = 1, . . . ,k,

where 0 is the zero vector in R
N−2, and r ∈ [r0 − δ, r0 + δ].

Let recall that

I(u) = 1

2

∫
RN

(|Du|2 + V
(|y|)u2)− 1

2∗

∫
RN

|u|2∗
,

Ux j ,μ(y) = (
N(N − 2)

) N−2
4

μ
N−2

2

(1 + μ2|y − x j|2) N−2
2

,

and

Wr,μ(y) =
k∑

j=1

Ux j ,μ.

In this section, we will calculate I(Wr,μ).

Proposition A.1. If N � 5,

I(Wr,μ) = k

(
A + B1 V (r)

μ2
−

k∑
i=2

B2

μN−2|x1 − xi |N−2
+ O

(
1

μ2+σ

))
,

where Bi , i = 1,2, is some positive constant, A > 0 is a constant, and r = |x1|.

Proof. By using the symmetry, we have

∫
RN

|DWr,μ|2 =
k∑

j=1

k∑
i=1

∫
RN

U 2∗−1
x j ,μ

Uxi ,μ

= k

( ∫
RN

U 2∗
0,1 +

k∑
i=2

∫
RN

U 2∗−1
x1,μ Uxi ,μ

)

= k

( ∫
RN

U 2∗
0,1 +

k∑
i=2

B0

μN−2|x1 − x j|N−2
+ O

(
k∑

i=2

1

(μ|x1 − x j|)N−2+σ

))
.

Let

Ω j =
{

y: y = (
y′, y′′) = R

2 × R
N−2,

〈
y′

|y′| ,
x j

|x |
〉
� cos

π

k

}
.

j
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Then,

∫
RN

|Wr,μ|2∗ = k

∫
Ω1

|Wr,μ|2∗

= k

( ∫
Ω1

U 2∗
x1,Λ + 2∗

∫
Ω1

k∑
i=2

U 2∗−1
x1,μ Uxi ,μ + O

( ∫
Ω1

U 2∗/2
x1,μ

(
k∑

i=2

Uxi ,μ

)2∗/2))
.

Note that for y ∈ Ω1, |y − xi | � |y − x1|. So, for any α > 0 small,

k∑
i=2

Uxi ,μ � μ
N−2

2

(1 + μ|y − x1|)α
k∑

i=2

1

(μ|xi − x1|)N−2−α
.

Thus,

∫
Ω1

U 2∗/2
x1,Λ

(
k∑

i=2

Uxi ,Λ

)2∗/2

= O

((
k

μ

)N− αN
N−2

)
.

On the other hand, it is easy to show

∫
Ω1

k∑
i=2

U 2∗−1
x1,μ Uxi ,μ =

k∑
i=2

B0

μN−2|x1 − x j|N−2
+ O

((
k

μ

)N−2+σ)
.

Thus, we have proved

∫
RN

|Wr,μ|2∗ = k

( ∫
RN

|U0,1|2∗ + 2∗
k∑

i=2

B0

μN−2|x1 − xi |N−2
+ O

(
1

μ2+σ

))
.

Finally,

∫
RN

V (y)|Wr,μ|2 = k

( ∫
RN

V
(|y|)U 2

x1,μ + O

( ∫
RN

k∑
i=2

Ux1,μUxi ,μ

))
.

But

∫
RN

Ux1,ΛUxi ,μ = O

(
1

μN−2|x j − x1|N−3

)
.

Moreover,

∫
N

V
(|y|)U 2

x1,μ = V (r)
1

μ2

∫
N

U 2 + O

(
1

μ2+σ

)
.

R R
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So,

∫
RN

V (y)|Wr,μ|2 = k

(
V (r)

1

μ2

∫
RN

U 2 + O

(
1

μ2+σ
+ 1

kN−3μN−2

))
. �

We also need to calculate
∂ I(Wr,μ)

∂μ .

Proposition A.2. We have

∂ I(Wr,μ)

∂μ
= k

(
−2B1 V (r)

μ3
+

k∑
i=2

B2(N − 2)

μN−1|x1 − xi|N−2
+ O

(
1

μ3+σ

))
,

where Bi , i = 1,2, is the same positive constant as in Proposition A.1.

Proof. The proof of this proposition is similar to the proof of Proposition A.1. So we just sketch it.
We have

∂ I(Wr,μ)

∂μ
= k

((
2∗ − 1

) k∑
i=2

∫
RN

U 2∗−2
x1,μ

∂Ux1,μ

∂μ
Uxi ,μ

+
∫
Ω1

V
(|y|)Wr,μ

∂Wr,μ

∂μ
−

∫
Ω1

W 2∗−1
r,μ

∂Wr,μ

∂μ

)
.

It is easy to check that for y ∈ Ω1,

∣∣∣∣∣ ∂

∂μ

(
W 2∗

r,μ − U 2∗
x1,μ − 2∗U 2∗−1

x1,μ

k∑
i=2

Uxi ,μ

)∣∣∣∣∣ � C

μ
U 2∗/2

x1,μ

(
k∑

i=2

Uxi ,μ

)2∗/2

.

Thus,

∂

∂μ
W 2∗

r,μ = ∂

∂μ
U 2∗

x1,μ + 2∗ ∂

∂μ

(
U 2∗−1

x1,μ

k∑
i=2

Uxi ,μ

)
+ 1

μ
O

(
U 2∗/2

x1,μ

(
k∑

i=2

Uxi ,μ

)2∗/2)
.

As a result,

2∗
∫
Ω1

W 2∗−1
r,μ

∂Wr,μ

∂μ
=

∫
Ω1

∂

∂Λ
U 2∗

x1,μ + 2∗
∫
Ω1

∂

∂μ

(
U 2∗−1

x1,μ

k∑
i=2

Uxi ,μ

)
+ O

(
1

μ3+σ

)

= 2∗ ∂

∂μ

∫
Ω1

(
U 2∗−1

x1,μ

k∑
i=2

Uxi ,μ

)
+ O

(
1

μ3+σ

)
.
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Similarly,

∫
Ω1

V
(|y|)Wr,μ

∂Wr,μ

∂μ
= V (r)

1

2

∫
Ω1

∂U 2
x1,μ

∂μ
+ O

(
1

μ3+σ

)
.

The proof is thus completed. �
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