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For selfadjoint extensions Ã of a symmetric densely defined
positive operator Amin, the lower boundedness problem is the
question of whether Ã is lower bounded if and only if an associated
operator T in abstract boundary spaces is lower bounded. It holds
when the Friedrichs extension Aγ has compact inverse (Grubb,
1974, also Gorbachuk and Mikhailets, 1976); this applies to elliptic
operators A on bounded domains.
For exterior domains, A−1

γ is not compact, and whereas the lower

bounds satisfy m(T ) � m( Ã), the implication of lower boundedness
from T to Ã has only been known when m(T ) > −m(Aγ ). We now
show it for general T .
The operator Aa corresponding to T = aI , generalizing the Krein–
von Neumann extension A0, appears here; its possible lower
boundedness for all real a is decisive. We study this Krein-
like extension, showing for bounded domains that the discrete
eigenvalues satisfy N+(t; Aa) = c Atn/2m + O (t(n−1+ε)/2m) for t → ∞.
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1. Introduction

The study of extensions of a symmetric operator (or a dual pair of operators) in a Hilbert space
has a long history, with prominent contributions from J. von Neumann in 1929 [50], K. Friedrichs,
1934 [19], M.G. Krein, 1947 [43], M.I. Vishik, 1952 [55], M.S. Birman, 1956 [9] and others. The present
author made a number of contributions in 1968–1974 [25–28], completing the preceding theories
and working out applications to elliptic boundary value problems, fully for bounded domains; further
developments are found in [30,31].
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At the same time there was another, separate development of abstract extension theories, where
the operator concept gradually began to be replaced by the concept of relations. This development has
been aimed primarily towards applications to ODE, however including operator-valued such equations
and Schrödinger operators on R

n; keywords in this connection are: Boundary triples theory, Weyl–
Titchmarsh m-functions and Krein resolvent formulas, cf. e.g. Kočubeı̆ [40], Vainerman [54], Lyantze
and Storozh [45], Gorbachuk and Gorbachuk [24], Derkach and Malamud [17], Arlinskii [5], Mala-
mud and Mogilevskii [47], Brüning, Geyler and Pankrashkin [16], and their references. In recent years
there have also been applications to elliptic boundary value problems, cf. e.g. Amrein and Pearson [4],
Behrndt and Langer [8], Ryzhov [53], Brown, Marletta, Naboko and Wood [15], Gesztesy and Mitrea
[20], and their references.

The connection between the two lines of extension theories has been clarified in a recent work
of Brown, Grubb and Wood [14]. Further developments for nonsmooth domains are found in [34],
Posilicano and Raimondi [52], Gesztesy and Mitrea [21], Abels, Grubb and Wood [1].

There still remain some hitherto unsolved questions, for example concerning operators over exte-
rior (unbounded) sets, and various questions in spectral theory.

Meanwhile, there have also been developed powerful tools for PDE in microlocal analysis, begin-
ning with pseudodifferential operators (ψdo’s) and, of relevance here, going on to pseudodifferential
boundary operators (ψdbo’s) with or without parameters. In a modern treatment it is natural to draw
on such techniques when they can be applied efficiently to solve the problems. Indeed it is the case
for the problems treated in the present paper.

1.1. Lower boundedness

In the study of realizations Ã of a strongly elliptic 2m-order differential operator A on a bounded
smooth domain Ω ⊂ R

n , it has been known since 1974 that the realization is lower bounded if
and only if a certain operator T determining its boundary condition is lower bounded. (See Grubb
[28]; an announcement for the symmetric case was also given by Gorbachuk and Mikhailets [23].)
This proof uses the fact that the inverse of the Dirichlet realization Aγ (the Friedrichs extension
[19]) is compact. It is a result in functional analysis of operators in Hilbert space, and in [28]
it is primarily shown in the abstract setting of closed extensions of dual pairs of lower bounded
operators Amin, A′

min with Amin ⊂ Amax = (A′
min)∗ , as developed in [25]. Then it is applied to the

study of general normal boundary conditions for strongly elliptic systems on compact manifolds with
boundary. A further analysis of the lower boundedness problem was given in Derkach and Mala-
mud [17].

Assuming only positivity of Aγ , one has rather easily that lower boundedness of Ã implies lower
boundedness of T , and that a conclusion in the opposite direction holds if the lower bound of T
is above minus the lower bound of Aγ ; the hard question is to treat large negative lower bounds
of T .

In the application of the abstract theory to the case where Ω is an exterior domain (the comple-
ment of a compact smooth set in R

n) the Dirichlet solution operator A−1
γ is not compact, and it has

been an open problem whether one always could conclude from lower boundedness of T to lower
boundedness of Ã. We shall show in this paper that it is indeed so. The proof uses that the boundary
is compact, and takes advantage of principles and results for pseudodifferential boundary operators
[13,31,33].

Both symmetric and nonsymmetric cases were treated in [28], but the decisive step takes place in
the symmetric setting where Amin = A′

min. Once it is established there, one can follow the method of
[28] (the passage from Section 2 to Section 3 there) to extend the result to dual pairs. Therefore we
shall here focus the attention on the symmetric case.

The abstract theory is recalled in Section 2, its implementation for exterior domains is explained
in Section 3, and the lower boundedness result is shown in Section 4.

Section 4 ends with some (easier) observations on Gårding-type inequalities, that are not tied to
bounded boundaries in the same way.
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1.2. Krein-like extensions

In the treatment of these lower boundedness questions, a certain family of non-elliptic realizations
comes naturally into the picture. They are generalizations of the Krein–von Neumann extension [50,
43] that we shall here denote A0; it is the restriction of Amax with domain D(A0) = D(Amin) +̇ Z
where Z = ker Amax, and has attracted much interest through the years, see e.g. the studies of its
spectral properties by Alonso and Simon [2,3], Grubb [30], Ashbaugh, Gesztesy, Mitrea, Shterenberg
and Teschl [6,7], with further references.

The larger family we shall consider (calling them Krein-like extensions) is the scale of selfadjoint
operators Aa acting as Amax with domains

D(Aa) = {
u = v + aA−1

γ z + z
∣∣ v ∈ D(Amin), z ∈ Z

}
, (1.1)

for a ∈ R. In the application to boundary value problems, they are determined by Neumann-type
boundary conditions with pseudodifferential elements; however, they are non-elliptic and the do-
mains contain L2-functions that are not in Hs for any s > 0. For both interior and exterior domains,
their lower boundedness is crucial for the general lower boundedness problem. Moreover, they play a
role in a study [36] of perturbations of essential spectra.

In the case of a bounded domain, they will have the single point a as essential spectrum, and one
can ask for the asymptotic behavior of the eigenvalue sequence converging to +∞ that must exist. In
the final Section 5, we deal with this question, showing that the number N+(t; Aa) of eigenvalues in
[r, t] (for some r > a) has the asymptotic behavior

N+(t; Aa) − c Atn/2m = O
(
t(n−1+ε)/2m)

for t → ∞, (1.2)

any ε > 0, with the same constant c A as for the Dirichlet problem. Here we use results for singular
Green operators obtained in [31]. We also show this estimate for A0.

2. The abstract setting

We first recall how the general characterization of extensions is set up.
There is given a symmetric, closed, densely defined operator Amin in a complex Hilbert space H ,

assumed injective with closed range. Moreover, there is given an invertible selfadjoint extension Aγ ,
such that we have

Amin ⊂ Aγ ⊂ Amax ≡ (Amin)∗.

Let

M = { Ã | Amin ⊂ Ã ⊂ Amax}.

To simplify notation, we write Ãu as Au, any Ã ∈ M. Since Amin has closed range, there is an orthog-
onal decomposition

H = R ⊕ Z , R = ran Amin, Z = ker Amax. (2.1)

When X is a closed subspace of H , we denote by prX u = u X the orthogonal projection of u onto X .
The idempotent operators prγ = A−1

γ Amax and prζ = I −prγ on D(Amax) define a (non-orthogonal)
decomposition of D(Amax)

D(Amax) = D(Aγ ) +̇ Z , (2.2)
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denoted u = uγ + uζ = prγ u + prζ u, which allows writing an “abstract Green’s formula” for u, v ∈
D(Amax):

(Au, v) − (u, Av) = (
(Au)Z , vζ

) − (
uζ , (Av)Z

)
. (2.3)

On the basis of (2.3) one can establish a 1–1 correspondence ([25], also described in [35, Chapter 13])
between the closed operators Ã in M and the closed, densely defined operators T : V → W , where
V and W are closed subspaces of Z , such that

graph of T = {(
prζ u, (Au)W

) ∣∣ u ∈ D( Ã)
}
. (2.4)

Here V = prζ D( Ã) and W = prζ D( Ã∗). For a given operator T : V → W , one finds the corresponding
operator Ã from the formula

D( Ã) = {
u ∈ D(Amax)

∣∣ prζ u ∈ D(T ), (Au)W = T prζ u
}
. (2.5)

In this correspondence, one has moreover:

(a) Ã∗ corresponds analogously to T ∗ : W → V . In particular, Ã is selfadjoint if and only if V = W
and T = T ∗ .

(b) Ã is symmetric if and only if V ⊂ W and T is symmetric.
(c) ker Ã = ker T ; ran Ã = ran T + (H 
 W ).
(d) When Ã is bijective,

Ã−1 = A−1
γ + iV T −1 prW . (2.6)

Here iV denotes the injection of V into H .
The analysis is related to that of Vishik [55], except that he sets the Ã in relation to operators over

the nullspace going in the opposite direction of our T ’s and in this context focuses on those Ã’s that
have closed range. Our analysis covers all closed Ã.

We recall furthermore that in view of (2.1), the decomposition (2.2) has the refinement

D(Amax) = D(Amin) +̇ A−1
γ Z +̇ Z; (2.7)

it allows to show that when Ã corresponds to T , then

D( Ã) = {
u = v + A−1

γ (T z + f ) + z
∣∣ v ∈ D(Amin), z ∈ D(T ), f ∈ Z 
 W

}
. (2.8)

The lower bound of an operator P is denoted by m(P ):

m(P ) = inf
{

Re(P u, u)
∣∣ u ∈ D(P ), ‖u‖ = 1

}
� −∞; (2.9)

when it is finite, P is said to be lower bounded.
Assume now moreover that Amin has a positive lower bound and that Aγ is the Friedrichs exten-

sion of Amin; it has the same lower bound as Amin. Then we have in addition the following facts,
shown in [26] (also described in [35]):

(e) If m( Ã) > −∞, then V ⊂ W and m(T ) � m( Ã).
(f) If V ⊂ W and m(T ) > −m(Aγ ), then m( Ã) � m(T )m(Aγ )/(m(T ) + m(Aγ )).
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The last rule (shown by Birman [9] for selfadjoint operators Ã) is based on the fact that when V ⊂ W ,

(Au, v) = (Auγ , vγ ) + (T uζ , vζ ), for u, v ∈ D( Ã). (2.10)

The rule (f) does not cover low values of m(T ), but this was overcome in [28] when A−1
γ is

compact. Here the situation was set in relation to the situation where the operators are shifted by
subtraction of a spectral parameter μ ∈ �(Aγ ) (the resolvent set), i.e., all realizations Ã are replaced
by Ã − μ. Here we define

Zμ = ker(Amax − μ), prμγ = (Aγ − μ)−1(Amax − μ), prμζ = I − prμγ , (2.11)

which gives a decomposition

D(Amax) = D(Aγ ) +̇ Zμ (2.12)

(note that D( Ã −μ) = D( Ã), D(Amax −μ) = D(Amax), D(Aγ −μ) = D(Aγ )). When μ is real we have,
in the same way as in the case we started out with, a 1–1 correspondence between operators Ã − μ

and operators T μ : Vμ → Wμ; here Vμ = prμζ D( Ã) and Wμ = prμζ D( Ã∗), and the properties (a)–(d)
have analogues for this correspondence. In particular, (d) gives a Krein-type resolvent formula when
μ ∈ �( Ã),

( Ã − μ)−1 = (Aγ − μ)−1 + iVμ

(
T μ

)−1
prWμ

;

there is much more on this in [14].
When μ < m(Aγ ), Aγ − μ has positive lower bound m(Aγ ) − μ, so also the properties (e) and (f)

have analogues in the new correspondence. In particular, (f) takes the form:

(g) If Vμ ⊂ Wμ and m(T μ) > −(m(Aγ ) − μ), then

m( Ã) − μ � m
(
T μ

)(
m(Aγ ) − μ

)
/
(
m

(
T μ

) + m(Aγ ) − μ
)
. (2.13)

(Here V ⊂ W implies Vμ ⊂ Wμ , see also Proposition 2.1 below.) Note the special case:

(h) If Vμ ⊂ Wμ and m(T μ) � 0, then m( Ã) � μ.

Hereby the question of whether Ã is lower bounded when T is so, is turned into the question of
whether m(T μ) becomes � 0 when μ → −∞.

Define

Eμ = Amax(Aγ − μ)−1 = I + μ(Aγ − μ)−1; (2.14)

it is a homeomorphism in H such that

F μ = (Amax − μ)A−1
γ = I − μA−1

γ is the inverse of Eμ. (2.15)

Moreover, Eμ maps Z homeomorphically onto Zμ (with inverse F μ). Details are given in [28, Sec-
tion 2], where the following is shown:
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Proposition 2.1. Let μ < m(Aγ ). Define the operator Gμ in Z by

Gμ = −μprZ EμiZ , (2.16)

it is a bounded selfadjoint operator in Z .
Let Ã be a closed operator in M, corresponding to T : V → W . Then Ã−μ corresponds to T μ : Vμ → Wμ ,

determined by

Vμ = EμV , Wμ = EμW , D
(
T μ

) = EμD(T ),(
T μEμv, Eμw

) = (T v, w) + (
Gμv, w

)
for v ∈ D(T ), w ∈ W . (2.17)

Note that in particular, if V ⊂ W ,

Re
(
T μEμv, Eμv

) = Re(T v, v) + (
Gμv, v

)
for v ∈ D(T ).

One then observes:

Proposition 2.2. The following statements (i) and (ii) are equivalent:

(i) For any choice of V ⊂ W and any lower bounded, closed densely defined operator T : V → W there is a
μ < m(Aγ ) such that m(T μ) � 0.

(ii) For any t � 0 there is a μ < m(Aγ ) such that m(Gμ) � t.

Proof. Let (ii) hold, and consider a lower bounded operator T : V → W ; V ⊂ W . Choose μ such that
m(Gμ) � max{−m(T ),0}. Then for v ∈ D(T ),

Re
(
T μEμv, Eμv

) = Re(T v, v) + (
Gμv, v

)
� m(T )‖v‖2 + m

(
Gμ

)‖v‖2 � 0.

This shows (i).
Conversely, let (i) hold. It holds in particular for the (selfadjoint) choices T = aI on Z with a ∈ R;

let T μ
a denote the corresponding operator on Zμ . By hypothesis there is a μ such that m(T μ

a ) � 0.
Then

0 �
(
T μ

a Eμv, Eμv
) = (av, v) + (

Gμv, v
)
, (2.18)

and hence

(
Gμv, v

)
� −a‖v‖2, for all v ∈ Z .

To see that (ii) holds for a given t � 0, we just have to take a = −t . �
Note that the proof involves the special choice T = aI on Z , corresponding to the Krein-like ex-

tension Aa , cf. (1.1), (2.8). There is a formulation in terms of those operators, that can immediately be
included:

Proposition 2.3. The two statements (i) and (ii) in Proposition 2.2 are also equivalent with the statement:

(iii) For any a ∈ R, the Krein-like extension Aa, corresponding to the choice T = aI on Z , is lower bounded.
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Proof. The proof of Proposition 2.2 shows that when (i) holds, its application to the special cases
T = aI on Z gives that m(T μ

a ) � 0 for −μ sufficiently large. By the rule (h), m(Aa) then has lower
bound � μ. Since a was arbitrary, we conclude that Aa is lower bounded for any a ∈ R; hence (iii)
holds.

Conversely, when (iii) holds, it assures by the rule (e) applied to Aa −μ, that for any a, m(T μ
a ) � 0

for −μ sufficiently large. This is used in the proof of Proposition 2.2 to conclude that m(Gμ) is then
� −a, implying (ii). �

Then [28, Thm. 2.12] showed the validity of (i)–(iii) in an important case:

Theorem 2.4. When A−1
γ is a compact operator in H, then

m
(
Gμ

) → ∞ for μ → −∞. (2.19)

Consequently, (i), (ii) and (iii) of Propositions 2.2 and 2.3 are valid; and (f) can be supplemented with

(f′) If V ⊂ W and m(T ) > −∞, then m( Ã) > −∞.

Also estimates of the type

Re(Au, u) � c‖u‖2
K − k‖u‖2

H , u ∈ D( Ã), (2.20)

were characterized in [28], when D(A1/2
γ ) ⊂ K ⊂ H .

The proof of Theorem 2.4 involves a closer study of the Krein-like realizations Aa . We return to a
further analysis of them in Section 5.

We shall now explain how the general set-up is applied to boundary value problems. Here we
focus on exterior problems since problems for bounded domains were amply treated in [25–28].

3. The implementation for exterior boundary value problems

When Ω is a smooth open subset of R
n with boundary ∂Ω = Σ , we use the standard L2-Sobolev

spaces, with the following notation: Hs(Rn) (s ∈ R) has the norm ‖v‖s = ‖F −1(〈ξ〉s F v)‖L2(Rn); here

F is the Fourier transform and 〈ξ〉 = (1 + |ξ |2) 1
2 . Next, Hs(Ω) = rΩ Hs(Rn) where rΩ restricts to Ω ,

provided with the norm ‖u‖s = inf{‖v‖s | v ∈ Hs(Rn), u = rΩ v}. Moreover, Hs
0(Ω) = {u ∈ Hs(Rn) |

supp u ⊂ Ω}; closed subspace of Hs(Rn). Spaces over the boundary, Hs(Σ), are defined by local co-
ordinates from Hs(Rn−1), s ∈ R. (There are many equally justified equivalent choices of norms there;
one can choose a particular norm when convenient.) When s > 0, there are dense continuous embed-
dings

Hs(Σ) ⊂ L2(Σ) ⊂ H−s(Σ),

and we use the customary identification of H−s(Σ) with the antidual space of Hs(Σ) (the space
of antilinear, i.e., conjugate linear, functionals), such that the duality (ϕ,ψ)−s,s coincides with the
L2(Σ)-scalar product when the elements lie there.

Detailed explanations are found in many books, e.g. [44,38,35].
In the following, Ω is primarily considered to be an exterior domain, i.e., the complement of Ω0,

where Ω0 is a nonempty smooth bounded subset of R
n . However, the explanations in the follow-

ing work equally well for interior domains and for admissible manifolds in the sense introduced in
the book [33]; this includes smooth domains in R

n that outside of a large ball have the form of a
halfspace R

n+ or a cone.
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Let A be a symmetric elliptic operator of order 2m on Ω ,

Au =
∑

|α|,|β|�m

Dα
(
aα,β(x)Dβu(x)

)
, aβ,α = aα,β, (3.1)

with complex coefficients aα,β in C∞
b (Ω); here Dα = Dα1

1 · · · Dαn
n , D j = −i∂/∂x j , and C∞

b (Ω) denotes
the space of C∞-functions that are bounded with bounded derivatives of all orders. The principal
symbol a0(x, ξ) = ∑

|α|,|β|=m aα,βξα+β is real. A is assumed to be uniformly strongly elliptic, i.e., a0

satisfies, with c1 > 0,

a0(x, ξ) � c1|ξ |2m, for x ∈ Ω, ξ ∈ R
n. (3.2)

A typical case of such an operator when m = 1 is of the form

A = −
n∑

j,k=1

∂ ja jk(x)∂k + a0(x) =
n∑

j,k=1

D ja jk(x)Dk + a0(x), (3.3)

with real coefficients satisfying a jk = akj and

∑
j,k

a jk(x)ξ jξk � c1|ξ |2, (3.4)

with c1 > 0.
We let H = L2(Ω), and as Amax and Amin we take the operators acting like A in L2(Ω) and defined

by

D(Amax) = {
u ∈ L2(Ω)

∣∣ Au ∈ L2(Ω) in the distribution sense
}
,

Amin = the closure of A|C∞
0 (Ω); (3.5)

because of the symmetry, Amax and Amin are adjoints of one another. It is well known (and is
accounted for e.g. in [36]) that the strong ellipticity and boundedness estimates imply that the graph-

norm (‖Au‖2 + ‖u‖2)
1
2 and the H2m-norm are equivalent on H2m

0 (Ω), so

D(Amin) = H2m
0 (Ω). (3.6)

Moreover, when Aγ is taken as the Dirichlet realization of A, i.e., the restriction of Amax with domain
D(Amax) ∩ Hm

0 (Ω), then

D(Aγ ) = H2m(Ω) ∩ Hm
0 (Ω); (3.7)

and Aγ coincides with the operator defined by variational theory (the Lax–Milgram lemma) applied
to the sesquilinear form with domain Hm

0 (Ω),

a(u, v) =
∑

|α|,|β|�m

(
aα,β Dβu, Dα v

)
, (3.8)

thus Aγ is selfadjoint.
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We can assume that a large enough constant has been added to A such that

a(u, u) � c0‖u‖2, for u ∈ Hm
0 (Ω); (3.9)

with c0 > 0; then c0 is also a lower bound for Amin and Aγ , and Aγ is invertible.
The set-up of Section 2 applies readily to these choices of Amin, Amax and Aγ ; the operators

Ã ∈ M are called realizations of A. We shall now recall how the correspondence between a general
Ã and an operator T : V → W is turned into a characterization of Ã by a boundary condition.

First we note that there is a Green’s formula for A, valid for u, v ∈ H2m(Ω):

(Au, v)L2(Ω) − (u, Av)L2(Ω) = (χu, γ v)L2(Σ)m − (
γ u,χ ′v

)
L2(Σ)m . (3.10)

Here, with γ ju = (�n · D) ju|Σ , �n denoting the interior normal to the boundary,

γ u = {γ0u, . . . , γm−1u}, the Dirichlet data,

νu = {γmu, . . . , γ2m−1u}, the Neumann data,

χu = AM0 M1νu + Sγ u, χ ′u = −A∗
M0 M1

νu + S ′γ u, Neumann-type data; (3.11)

where AM0 M1 is a certain skew-triangular invertible matrix of differential operators over Σ derived
from A, and S and S ′ are suitable matrices of differential operators; cf. [44,27]. In the second-order
case (3.3), one can take χ and χ ′ to be the conormal derivative νA at the boundary,

νAu =
∑

j,k

a jkn jγ0∂ku. (3.12)

Occasionally in the following, we shall use the notation of the calculus of pseudodifferential bound-
ary operators (ψdbo’s), as initiated by Boutet de Monvel [13] and developed further in e.g. [31,33];
there is also a detailed introduction in [35]. The calculus defines Poisson operators K (from Σ to
Ω), pseudodifferential trace operators T (from Ω to Σ ), singular Green operators G on Ω (including
operators of the form K T ) and truncated pseudodifferential operators on Ω , and their composition
rules, etc. Since we shall in the present paper only use final theorems on such operators, we refrain
from taking space up here with a detailed introduction.

Let us introduce the notation

Hs =
∏

0� j<m

Hs− j− 1
2 (Σ), H̃s =

∏
0� j<m

Hs−2m+ j+ 1
2 (Σ); (3.13)

here (Hs)∗ = H̃2m−s , (H̃s)∗ = H2m−s , the dualities denoted

(ϕ,ψ)Hs ∗,Hs or (ϕ,ψ){−s+ j+ 1
2 ,s− j− 1

2 },

(η, ζ )H̃s ∗,H̃s or (η, ζ ){2m−s− j− 1
2 ,s−2m+ j+ 1

2 }.

These dualities are consistent with the scalar product in L2(Σ)m when the elements lie there. Note
that in particular,

H0 = H− 1
2 (Σ), H̃0 = H− 3

2 (Σ),
(

H0)∗ = H
1
2 (Σ), when m = 1. (3.14)
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Denote Ds
A(Ω) = {u ∈ Hs(Ω) | Au ∈ L2(Ω)}, with norm (‖u‖2

s + ‖Au‖2
0)

1
2 . It is seen as in [44] that

C∞
(0)(Ω) = rΩ C∞

0 (Rn) is dense in Ds
A(Ω), and it follows from [44] that γ , ν , χ and χ ′ extend to

continuous maps:

γ : Ds
A(Ω) → Hs, ν : Ds

A(Ω) → Hs−m, χ,χ ′ : Ds
A(Ω) → H̃s, for all s ∈ R. (3.15)

(The mapping properties are shown in [44] for bounded domains, but this implies (3.15) when the
properties are applied to Ω ∩ B(0, R) for a sphere B(0, R) with R so large that Σ is contained in
the interior.) Moreover, Green’s formula continues to hold for these extensions, when u ∈ H2m(Ω),
v ∈ D(Amax):

(Au, v) − (u, Av) = (χu, γ v){ j+ 1
2 ,− j− 1

2 } − (
γ u,χ ′v

)
{2m− j− 1

2 ,−2m+ j+ 1
2 }. (3.16)

Using that Aγ is invertible, one can moreover show that the nonhomogeneous Dirichlet problem is
uniquely solvable: The mapping

Aγ =
(

A
γ

)
: Hs(Ω) →

Hs−2m(Ω)

×
Hs

(3.17)

has for s > m − 1
2 the solution operator, continuous in the opposite direction,

A−1
γ = (Rγ Kγ ); (3.18)

here Rγ is for s = 2m the inverse of the Dirichlet realization Aγ , and Kγ is the Poisson opera-
tor solving the Dirichlet problem Au = 0, γ u = ϕ . More documentation is given in [36]. Denoting
Z s

A(Ω) = {u ∈ Hs(Ω) | Au = 0} (with s-norm), we have in particular the mapping property for
s > m − 1

2 :

γ : Z s
A(Ω)

∼→ Hs, (3.19)

it extends to all s ∈ R. (The extension of the inverse mapping follows from a general rule for Poisson
operators; the direct mapping is treated as shown in [44], one may also consult the discussion in [35,
Chapter 11].)

Denote by γZ the operator acting like γ with precise domain and range

γZ : Z
∼→

∏
j<m

H− j− 1
2 (Σ) = H0; (3.20)

it has an inverse γ −1
Z and an adjoint γ ∗

Z that map as follows:

γ −1
Z : H0 ∼→ Z , γ ∗

Z : (H0)∗ ∼→ Z . (3.21)

Both operators lead to Poisson operators in the ψdbo calculus when composed with iZ ; here iZ γ
−1
Z

equals Kγ . In the case m = 1,

γZ : Z
∼→ H− 1

2 (Σ), γ −1
Z : H− 1

2 (Σ)
∼→ Z , γ ∗

Z : H
1
2 (Σ)

∼→ Z .
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For the study of general realizations Ã of A, the homeomorphism (3.20) allows us to translate
the characterization in terms of operators T : V → W in Section 2 into a characterization in terms of
operators L over the boundary.

For V , W ⊂ Z , let X = γ V , Y = γ W , with the notation for the restrictions of γ :

γV : V
∼→ X, γW : W

∼→ Y . (3.22)

The map γV : V
∼→ X has the adjoint γ ∗

V : X∗ ∼→ V . Here X∗ denotes the antidual space of X , again
with a duality coinciding with the scalar product in L2(Σ)m when applied to elements that also
belong to L2(Σ)m . The duality is written (ψ,ϕ)X∗,X . We also write (ψ,ϕ)X∗,X = (ϕ,ψ)X,X∗ . Similar
conventions are applied to Y .

When A is replaced by A − μ for μ < m(Aγ ), there is a similar notation where Z , V and W are
replaced by Zμ , Vμ , Wμ . Since γ Eμz = γ z (cf. (2.14)), we have that γ defines mappings

γVμ : Vμ
∼→ X, γWμ : Wμ

∼→ Y , (3.23)

with the same range spaces X and Y as when μ = 0.
We denote Kγ ,X = iV γ −1

V : X → V ⊂ H , it is a Poisson operator when X is a product of Sobolev
spaces.

Now a given T : V → W is carried over to a closed, densely defined operator L : X → Y ∗ by the
definition

L = (
γ −1

W

)∗
Tγ −1

V , D(L) = γV D(T ); (3.24)

it is expressed in the diagram

V
∼
γV

T

X

L

W
∼

(γ −1
W )∗

Y ∗.

(3.25)

Observe that when v ∈ D(T ) and w ∈ W are carried over to ϕ = γV v and ψ = γW w , then Lϕ =
(γ ∗

W )−1T v satisfies

(T v, w) = (Lϕ,ψ)Y ∗,Y . (3.26)

For the question of semiboundedness we note that when V ⊂ W , hence X ⊂ Y , then the function-
als in Y ∗ act on the elements of X . Then when v ∈ D(T ) ⊂ V ⊂ W , so that γV v = ϕ ∈ D(L) ⊂ X ⊂ Y ,
we may write

(T v, v) = (Lϕ,ϕ)Y ∗,Y . (3.27)

The L2-norm of v is equivalent with the H0-norm of ϕ;

‖v‖ � c1‖ϕ‖{− j− 1
2 } � c2‖v‖, ϕ = γZ v, (3.28)

for any choice of the equivalent norms (denoted ‖ϕ‖H0 or ‖ϕ‖{− j− 1
2 }) on the boundary Sobolev

spaces. (One could also fix the norm, e.g. by letting γZ be an isometry.) Then
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Re(T v, v) � c‖v‖2, v ∈ D(T ), (3.29)

holds for some c ∈ R if and only if

Re(Lϕ,ϕ)Y ∗,Y � c′‖ϕ‖2
{− j− 1

2 }, ϕ ∈ D(L), (3.30)

holds for some c′ ∈ R, and here c and c′ are simultaneously > 0 or � 0. (If we fix the norm such that
γZ is an isometry, c = c′ .)

The interpretation of the condition in (2.5) as a boundary condition has been explained in several
places, beginning with [25], so we can do it rapidly here. Define the Dirichlet-to-Neumann operator

P 0
γ ,χ = χγ −1

Z = χ Kγ : H0 → H̃0; (3.31)

it is in fact continuous from Hs to H̃s for all s ∈ R because of the mapping properties of χ and Kγ .
It is a matrix-formed pseudodifferential operator over Σ ; this was indicated as plausible in [25], and
proved in detail in [27] on the basis of the work of Seeley on the Calderón projector. It also follows
from the general ψdbo calculus. There is the analogous operator P 0

γ ,χ ′ , and when the construction is
applied to A − μ instead of A we get the operator

Pμ
γ ,χ = χγ −1

Zμ
. (3.32)

For m = 1, these operators are of order 1, continuous from Hs− 1
2 (Σ) to Hs− 3

2 (Σ) for all s, and
elliptic of order 1 when A and χ are chosen as in (3.3), (3.12). For higher m, the operators are multi-

order systems, of the form (P jk)0� j,k<m with P jk of order 2m − j −k − 1 (continuous from Hs−k− 1
2 (Σ)

to Hs−2m+ j+ 1
2 (Σ) for all s). Ellipticity is defined in relation to the multi-order. When S = 0 in (3.11),

P 0
γ ,χ is elliptic, meaning that the matrix of principal symbols σ2m− j−k−1(P jk)(x′, ξ ′) is regular for

ξ ′ �= 0. (This follows from the ellipticity of P 0
γ ,ν shown in [27], see also [35, Chapter 11].)

We now define

Γ 0 = χ − P 0
γ ,χγ , Γ ′0 = χ ′ − P 0

γ ,χ ′γ , (3.33)

also equal to χ A−1
γ Amax resp. χ ′ A−1

γ Amax; they are trace operators in the ψdbo calculus, mapping

D(Amax) (with the graph-norm) continuously into H̃2m = (H0)∗ . They vanish on Z . With these oper-
ators there holds a modified Green’s formula

(Au, v) − (u, Av) = (
Γ 0u, γ v

)
{ j+ 1

2 ,− j− 1
2 } − (

γ u,Γ ′0 v
)
{− j− 1

2 , j+ 1
2 }, (3.34)

valid for all u, v ∈ D(Amax). In particular,

(Au, w) = (
Γ 0u, γ w

)
{ j+ 1

2 ,− j− 1
2 }, when u ∈ D(Amax), w ∈ Z . (3.35)

When Ã corresponds to T : V → W and L : X → Y ∗ , we can write

(T uζ , w) = (
Tγ −1

V γ u, γ −1
W γ w

) = (Lγ u, γ w)Y ∗,Y , all u ∈ D( Ã), w ∈ W . (3.36)

The formula (Au)W = T uζ in (2.5) is then turned into
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(
Γ 0u, γ w

)
{ j+ 1

2 ,− j− 1
2 } = (Lγ u, γ w)Y ∗,Y , all w ∈ W ,

or, since γ maps W bijectively onto Y ,

(
Γ 0u,ϕ

)
{ j+ 1

2 ,− j− 1
2 } = (Lγ u,ϕ)Y ∗,Y for all ϕ ∈ Y . (3.37)

To simplify the notation, note that the injection iY : Y → H0 has as adjoint the mapping i∗Y :
(H0)∗ → Y ∗ that sends a functional ψ on H0 over into a functional i∗Y ψ on Y by:

(
i∗Y ψ,ϕ

)
Y ∗,Y = (ψ,ϕ){ j+ 1

2 ,− j− 1
2 } for all ϕ ∈ Y .

With this notation (also indicated in [28] after (5.23)), (3.37) may be rewritten as

i∗Y Γ 0u = Lγ u,

or, when we use that Γ 0 = χ − P 0
γ ,χγ ,

i∗Y χu = (
L + i∗Y P 0

γ ,χ

)
γ u. (3.38)

We have then obtained:

Theorem 3.1. For a closed operator Ã ∈ M, the following statements (i) and (ii) are equivalent:

(i) Ã corresponds to T : V → W as in Section 2.
(ii) D( Ã) consists of the functions u ∈ D(Amax) that satisfy the boundary condition

γ u ∈ D(L), i∗Y χu = (
L + i∗Y P 0

γ ,χ

)
γ u. (3.39)

Here T : V → W and L : X → Y ∗ are defined from one another as described in (3.22)–(3.25).

Note that when Y is the full space H0, iY ∗ is superfluous, and (3.39) is a Neumann-type condition

γ u ∈ D(L), χu = (
L + P 0

γ ,χ

)
γ u. (3.40)

The whole construction can be carried out with A replaced by A −μ, when μ < m(Aγ ). We define
Lμ from T μ as in (3.24)–(3.25) with T : V → W replaced by T μ : Vμ → Wμ and use of (3.23); here

Lμ = (
γ −1

Wμ

)∗
T μγ −1

Vμ
, D

(
Lμ

) = γVμ D(T ) = D(L). (3.41)

Theorem 3.1 implies:

Corollary 3.2. Let μ < m(Aγ ). For a closed operator Ã ∈ M, the following statements (i) and (ii) are equiva-
lent:

(i) Ã − μ corresponds to T μ : Vμ → Wμ as in Section 2.
(ii) D( Ã) consists of the functions u ∈ D(Amax) such that

γ u ∈ D(L), i∗Y χu = (
Lμ + i∗Y Pμ

γ ,χ

)
γ u. (3.42)
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Since the boundary conditions (3.39) and (3.42) define the same realization, we obtain moreover
the information that

(
Lμ + i∗Y Pμ

γ ,χ

)
γ u = (

L + i∗Y P 0
γ ,χ

)
γ u, for γ u ∈ D(L),

i.e.,

Lμ = L + i∗Y
(

P 0
γ ,χ − Pμ

γ ,χ

)
on D(L). (3.43)

4. The lower boundedness question

We have shown in Section 2 that the general conclusion of lower boundedness from T to Ã (hence
from L to Ã in view of (3.28)–(3.30)) hinges on whether the lower bound of Gμ takes arbitrary high
values when μ → −∞. Let us identify Gμ in terms of the operators over Σ .

Proposition 4.1. Let μ < m(Aγ ). We have that

(
Gμv, w

) = ((
P 0

γ ,χ − Pμ
γ ,χ

)
γZ v, γZ w

)
{ j+ 1

2 ,− j− 1
2 }, for v, w ∈ Z . (4.1)

In other words,

Gμ = (
γ ∗

Z

)−1(
P 0

γ ,χ − Pμ
γ ,χ

)
γ −1

Z . (4.2)

In particular, P 0
γ ,χ − Pμ

γ ,χ is continuous from H0 to (H0)∗ = H̃2m.

Proof. This is easily seen by use of the correspondence between realizations and operators over the
boundary, applied to the Krein–von Neumann extension:

For the case T = 0 with V = W = Z (defining the Krein–von Neumann extension), let us denote
the operator corresponding to A0 − μ in the μ-dependent setting by T μ

0 . Here L = 0, continuous
from H0 to (H0)∗ , and we denote the corresponding μ-dependent operator by Lμ

0 ; it is likewise
continuous from H0 to (H0)∗ . By (3.43),

Lμ
0 = P 0

γ ,χ − Pμ
γ ,χ on H0. (4.3)

This shows the asserted continuity. By (2.17),

(
Gμv, w

) = (
T μ

0 Eμv, Eμw
)
, for v, w ∈ Z . (4.4)

Then furthermore,

(
T μ

0 Eμv, Eμw
) = (

Lμ
0 γZμ Eμv, γZμ Eμw

)
{ j+ 1

2 ,− j− 1
2 } = (

Lμ
0 γZ v, γZ w

)
{ j+ 1

2 ,− j− 1
2 }

= ((
P 0

γ ,χ − Pμ
γ ,χ

)
γZ v, γZ w

)
{ j+ 1

2 ,− j− 1
2 }. (4.5)

This shows (4.1), and hence (4.2). �
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Remark 4.2. This was also observed in [14, Remark 3.2], formulated in the case m = 1, for a nonsym-
metric situation with general complex values of μ (then adjoints and primed operators enter).

An alternative proof that does not refer to the correspondence between realizations and operators
over the boundary goes as follows: Recalling that Eμ = Amax(Aγ − μ)−1 maps Z homeomorphically
onto Zμ , we have for v, w ∈ Z , ϕ = γZ v , ψ = γZ w ,

(
Gμv, w

) = −μ
(

Eμv, w
) = −μ

(
A(Aγ − μ)−1 v, w

)
= −μ

(
χ(Aγ − μ)−1 v, γZ w

)
{ j+ 1

2 ,− j− 1
2 }

= −μ
(
χ(Aγ − μ)−1 v,ψ

)
{ j+ 1

2 ,− j− 1
2 }, (4.6)

where we have used Green’s formula (3.16) and the fact that γ (Aγ − μ)−1 = 0. Now if v ∈ H2m(Ω),
we can use that −μ(Aγ − μ)−1 = I − A(Aγ − μ)−1 to write

(
Gμv, w

) = (
χ

(
I − A(Aγ − μ)−1)v,ψ

)
{ j+ 1

2 ,− j− 1
2 }

= (χ v,ψ){ j+ 1
2 ,− j− 1

2 } − (
χ A(Aγ − μ)−1 v,ψ

)
{ j+ 1

2 ,− j− 1
2 }

= (
χγ −1

Z ϕ,ψ
)
{ j+ 1

2 ,− j− 1
2 } − (

χ Eμγ −1
Z ϕ,ψ

)
{ j+ 1

2 ,− j− 1
2 }

= (
P 0

γ ,χϕ,ψ
)
{ j+ 1

2 ,− j− 1
2 } − (

χγ −1
Zμ

ϕ,ψ
)
{ j+ 1

2 ,− j− 1
2 }

= ((
P 0

γ ,χ − Pμ
γ ,χ

)
ϕ,ψ

)
{ j+ 1

2 ,− j− 1
2 }.

This shows the identity for smooth functions v in the nullspace. Since the smooth null-solutions are
dense in Z , the general statement follows by approximation.

We note in passing that since χ(Aγ − μ)−1 is the adjoint of the μ-dependent Poisson operator
K μ

γ (by Green’s formula), (4.6) also leads to the alternative formula

P 0
γ ,χ − Pμ

γ ,χ = −μ
(

Kμ
γ

)∗
Kγ . (4.7)

The question of the behavior of the lower bound of Gμ is hereby turned into the question of the
lower bound of P 0

γ ,χ − Pμ
γ ,χ , in relation to the norm on H0. Note that this difference is a multi-order

system of ψdo’s where the entries are of order 2m lower than the entries in P 0
γ ,χ .

Now this will be set in relation to a similar family of operators in a situation where the domain
Ω is replaced by a bounded set. Choose a large open ball B(0, R) containing R

n \ Ω in its interior.
Let Ω< = Ω ∩ B(0, R); its boundary Σ< consists of the two disjoint pieces Σ and Σ ′ = ∂ B(0, R).
When the whole construction is applied to A on Ω< , we get a family of matrix-formed Dirichlet-to-
Neumann operators Pμ

γ ,χ<
on Σ< = Σ ∪ Σ ′ .

Proposition 4.3. For the pseudodifferential operators Pμ
γ ,χ<

on Σ< , we have

((
P 0

γ ,χ<
− Pμ

γ ,χ<

)
ϕ,ϕ

)
{ j+ 1

2 ,− j− 1
2 } � C(μ)‖ϕ‖2

{− j− 1
2 }

for ϕ ∈ H0
< = ∏

j<m H− j− 1
2 (Σ<), with

C(μ) → ∞ for μ → −∞.
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Proof. This follows from Theorem 2.4, applied to the operator Gμ
< defined for this case. The informa-

tion on the lower bound of Gμ
< carries over to the assertion for P 0

γ ,χ<
− Pμ

γ ,χ<
, since they are related

as in Proposition 4.1; recall also (3.28)–(3.30). �
(This is of course a qualitative statement, which is independent of how the norm in H0 has been

chosen.)
Define

Q μ = P 0
γ ,χ − Pμ

γ ,χ , Q μ
1 = rΣ

(
P 0

γ ,χ<
− Pμ

γ ,χ<

)
eΣ, (4.8)

where eΣ extends distributions on Σ by 0 on Σ ′ . Since Σ and Σ ′ are disjoint closed manifolds, both
Q μ and Q μ

1 are (matrix-formed) ψdo’s on Σ , continuous from H0 to H̃2m .

Theorem 4.4. The operator norm from H0 to H̃2m of the difference

Q μ − Q μ
1 = P 0

γ ,χ − Pμ
γ ,χ − rΣ

(
P 0

γ ,χ<
− Pμ

γ ,χ<

)
eΣ (4.9)

is bounded for μ → −∞.

Proof. In this proof we use microlocal details from the pseudodifferential calculus. Introductions to
ψdo’s can be found in many textbooks, e.g. in [35, Chapters 7–8].

The use of ψdo’s on the manifold Σ is somewhat technical, because they are defined first by
Fourier transformation formulas in R

n−1 and then carried over to Σ by local coordinates; in this
process there appear a lot of remainder terms that have to be handled too. The heart of our proof lies
in the fact that the remainder terms have much better asymptotic properties than the given operators
(are “negligible”); this is an aspect of the fact that ψdo’s are pseudo-local.

When P 0
γ ,χ is constructed from A and the trace operators, the construction of its symbol takes

place in the neighborhood of each point (x′, ξ ′), x′ ∈ Σ (localized) and ξ ′ ∈ R
n−1. The same holds for

P 0
γ ,χ<

on Σ . But in the localizations at points of Σ , A, γ and χ are the same for the two operators,

and therefore the resulting complete symbols of P 0
γ ,χ and P 0

γ ,χ<
at a point of Σ must be the same,

modulo symbols of order −∞. (This uses that also the constructions in the ψdbo calculus are the
same for Ω and Ω< at points of Σ .) It follows that

P 0
γ ,χ − rΣ P 0

γ ,χ<
eΣ is of order −∞, (4.10)

i.e., the localized symbol of P 0
γ ,χ − rΣ P 0

γ ,χ<
eΣ and all its derivatives are O ((1+|ξ ′|)−N ) for all N ∈ N.

Then the operator is bounded as an operator from any m-tuple of Sobolev spaces over Σ to any other;
in particular, it is bounded as an operator from H0 to H̃2m .

Now consider the μ-dependent symbols. There is the difficulty here that the individual opera-
tors Pμ

γ ,χ and Pμ
γ ,χ<

have norms that grow with |μ| (even as operators from H0 to H̃0); this is
demonstrated by the simple example of 1 − � on a half-space (considered in [35, Chapter 9]), where

Pμ
γ ,χ has symbol −(1 + |ξ ′|2 + μ)

1
2 . We shall then use a sharper version of the device used for

P 0
γ ,χ − rΣ P 0

γ ,χ<
eΣ . Namely that the operators, being constructed out of the elliptic differential op-

erator A − μ and the differential trace operators, have μ-dependent symbols that are ψdo symbols

in the n cotangent variables (ξ ′, ηn) where ηn = |μ| 1
2 . (This is the “easy” parameter-dependent case,

said to be of regularity +∞ in [33], strongly polyhomogeneous in [37].)
Again, the local constructions of symbols of Pμ

γ ,χ and Pμ
γ ,χ<

have identical ingredients at the
points of Σ , and we now deduce that the symbols differ by a symbol in the parameter-dependent

class of order −∞, so that it is O ((1 + |ξ ′| + |μ| 1
2 )−N ) for all N ∈ N, with all its derivatives. Then the

symbol and its derivatives are also O ((1 + |ξ ′|)−N ′
(1 + |μ|)−N ′′

) for all N ′, N ′′ ∈ N. It follows that



868 G. Grubb / J. Differential Equations 252 (2012) 852–885
Pμ
γ ,χ − rΣ Pμ

γ ,χ<
eΣ is of order −∞, with norm O

((
1 + |μ|)−N)

, for any N, (4.11)

as an operator from an arbitrary m-tuple of Sobolev spaces to another. In particular, it is bounded as
an operator from H0 to H̃2m with a bound independent of μ.

The assertion on

Q μ − Q μ
1 = (

P 0
γ ,χ − rΣ P 0

γ ,χ<
eΣ

) − (
Pμ

γ ,χ − rΣ Pμ
γ ,χ<

eΣ

)
now follows by adding the two parts. �

We can then conclude:

Theorem 4.5. In the situation of exterior domains, the pseudodifferential operators Pμ
γ ,χ on Σ satisfy

((
P 0

γ ,χ − Pμ
γ ,χ

)
ϕ,ϕ

)
{ j+ 1

2 ,− j− 1
2 } � C(μ)‖ϕ‖2

{− j− 1
2 } for ϕ ∈ H0, (4.12)

for some function C(μ) satisfying

C(μ) → ∞ for μ → −∞. (4.13)

It follows that m(Gμ) → ∞ for μ → −∞, and hence:
In the correspondence described in Theorem 3.1, X ⊂ Y and L is lower bounded, if and only if Ã is lower

bounded.

Proof. Using Proposition 4.3 and Theorem 4.4 we have for ϕ ∈ H0 that

((
P 0

γ ,χ − Pμ
γ ,χ

)
ϕ,ϕ

)
{ j+ 1

2 ,− j− 1
2 } = (

Q μ
1 ϕ,ϕ

)
{ j+ 1

2 ,− j− 1
2 } − ((

Q μ
1 − Q μ

)
ϕ,ϕ

)
{ j+ 1

2 ,− j− 1
2 }

� C(μ)‖ϕ‖2
{− j− 1

2 } − C1‖ϕ‖2
{− j− 1

2 } � C ′(μ)‖ϕ‖2
{− j− 1

2 };

where C ′(μ) behaves as in (4.13). In view of (4.1) and (3.28), we conclude that m(Gμ) → ∞ for
μ → −∞. Then the statements (i) and (ii) of Proposition 2.2 are valid.

Let Ã correspond to T : V → W as in the beginning of Section 2, and to L : X → Y ∗ as in The-
orem 3.1. As noted earlier, V ⊂ W and T is lower bounded, if and only if X ⊂ Y and L is lower
bounded. We have from rule (e) that lower boundedness of Ã implies V ⊂ W and lower bounded-
ness of T . We can now complete the argument in the converse direction: When X ⊂ Y and L is lower
bounded, hence V ⊂ W and T is lower bounded, then by Proposition 2.2(i), there is a μ ∈ R such
that m(T μ) � 0, and hence by rule (h), m( Ã) � μ. �

By Proposition 2.3, we have in particular for the Krein-like extensions:

Corollary 4.6. In the exterior domain case one has for any a ∈ R that the Krein-like extension Aa defined by
(1.1) is lower bounded.

We recall that this was already known to hold for bounded domains.

Remark 4.7. The above theorem says nothing about the size of C(μ). In [28] for the interior domain
case, we conjectured that C(μ) may possibly be shown to be of the order of magnitude |μ|1/2m .
Calculations on second-order cases where A has a structure like D2

n + B2 in product coordinates
near Σ , confirm that C(μ) is of the order of magnitude |μ|1/2 then. Such calculations might solve the
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problem also for domains with unbounded boundary, provided suitable uniform ellipticity conditions
are satisfied. We may possibly return to this in detail elsewhere.

Let us end this section by some remarks on other lower boundedness estimates. It is used in the
above proofs that the boundary Σ is compact. There is a more restricted type of lower boundedness,
that can be shown to hold for Ã and L simultaneously, in uniformly elliptic situations regardless of
compactness of the boundary, namely m-coerciveness, also known as the Gårding inequality.

Consider a case where Ω is admissible in the sense of [33], as mentioned in the beginning of
Section 3. This assures that Ω is covered by a finite system of local coordinates, some of them for
bounded pieces, some of them for unbounded pieces, carried over to subsets of R

n where the part
in Ω resp. ∂Ω carries over to bounded resp. unbounded subsets of R

n+ resp. R
n−1, in a controlled

way. Detailed explanations are given in [33], including the still more general situation of admissible
manifolds. All that was described in Section 2 works in this case; let us also in addition mention the
trace mapping property

γ : Hr(Ω) → Hr continuously for r > m − 1

2
, (4.14)

and the interpolation property: When 0 < r < m, there is for any ε > 0 a positive constant c(ε) such
that

‖u‖2
r � ε‖u‖2

m + c(ε)‖u‖2
0, for u ∈ Hm(Ω). (4.15)

Theorem 4.8. Let Ω ⊂ R
n be an admissible domain, and let Ã correspond to T : V → W and L : X → Y ∗ as

in Sections 2–3. Then the following statements (with positive constants c, c′ , c′′) are equivalent:

(i) D( Ã) ⊂ Hm(Ω) and Ã satisfies the Gårding inequality

Re( Ãu, u) � c‖u‖2
m − k‖u‖2

0, for u ∈ D( Ã). (4.16)

(ii) D(T ) ⊂ Z ∩ Hm(Ω) = Zm
A (Ω), V ⊂ W , and T satisfies the Gårding inequality

Re(T z, z) � c′‖z‖2
m − k′‖z‖2

0, for z ∈ D(T ). (4.17)

(iii) D(L) ⊂ Hm, X ⊂ Y , and L satisfies the Gårding inequality

Re(Lϕ,ϕ)Y ∗,Y � c′′‖ϕ‖2
{m− j− 1

2 } − k′′‖ϕ‖2
{− j− 1

2 }. (4.18)

Proof. This is a straightforward generalization of the proof for the case of bounded domains in [26,
Prop. 2.7], to admissible domains.

Note first that the statements in (ii) and (iii) are equivalent in view of (3.27) and the homeomor-
phisms (3.19).

Next, we note that (i) implies in particular that Ã is lower bounded. Then (i) implies that V ⊂ W
and hence X = γ V ⊂ γ W = Y , in view of property (e) in Section 2. Thus (2.10) holds. When (4.16) is
valid and z ∈ D(T ), we can approximate A−1

γ T z in m-norm by a sequence of functions v j ∈ D(Amin),

since Aγ is the Friedrichs extension of Amin. Let u j = −v j + A−1
γ T z + z, then u j ∈ D( Ã) in view

of (2.8), with u j
γ = −v j + A−1

γ T z, u j
ζ = z. Clearly, u j → z in Hm(Ω) and u j

γ = −v j + Aγ T z → 0 in
Hm(Ω). We combine (2.10) with the inequality (4.16) to see that

Re
(

Au j, u j) = (
Au j

γ , u j
γ

) + Re(T z, z) � c
∥∥u j

∥∥2 − k
∥∥u j

∥∥2
.
m 0
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Here the term (Au j
γ , u j

γ ) is equivalent with ‖u j
γ ‖2

m , so it goes to 0 for j → ∞, so we conclude that

Re(T z, z) � c‖z‖2
m − k‖z‖2

0.

Thus (i) implies (ii) and hence also (iii).
Now assume that (ii) and (iii) hold. Using (2.10), we find for u ∈ D( Ã) that

Re(Au, u) = (Auγ , uγ ) + Re(T uζ , uζ )

� c‖uγ ‖2
m + c′‖uζ ‖2

m − k′‖uζ ‖2
0 � c′′‖u‖2

m − k′‖uζ ‖2
0, (4.19)

where we have again used that (Auγ , uγ ) is equivalent with ‖uγ ‖2
m . To handle the last term, note

that choosing r with m − 1
2 < r < m, we have that

k′‖uζ ‖2
0 � c1‖γ uζ ‖2

{− j− 1
2 } = c1‖γ u‖2

{− j− 1
2 } � c2‖γ u‖2

{r− j− 1
2 }

� c3‖u‖2
r � εc3‖u‖2

m + c(ε)c3‖u‖2
0, (4.20)

where we used (3.19), (4.14) and (4.15). Then (4.19) implies

Re(Au, u) �
(
c′′ − εc3

)‖u‖2
m − c(ε)c3‖u‖2

0,

which shows (i) when ε is taken sufficiently small. �
The papers [27] and [28] give a full analysis of the analytical details required to have (iii) in

cases of normal boundary conditions, for bounded domains and compact manifolds. This involves
a condition for m-coerciveness that is a special case of ellipticity of the boundary condition (the
Shapiro–Lopatinskii condition). The analysis can be extended to admissible sets with suitable precau-
tions on uniformity of estimates.

We underline that the discussion of lower bounds as in Theorem 4.5 is valid for much more
general realizations, and is not linked with ellipticity of the boundary condition. An interesting con-
sequence for questions of spectral asymptotics is that also for non-elliptic boundary conditions, lower
boundedness of L (or T ) assures that there is no eigenvalue sequence going to −∞. (For spectral
asymptotics of resolvent differences, see e.g. Birman [10], Birman and Solomyak [12], Grubb [31,36],
Malamud [46], and their references.)

Estimates with other spaces K in lieu of Hm(Ω) are also treated in our early papers.

5. Krein-like extensions and their spectral asymptotics on bounded domains

We here make a closer study of the Krein-like extensions Aa defined in (1.1), corresponding to the
choice T = aI in Z .

Proposition 5.1. The realization Aa represents the boundary condition

χu = Cγ u, with C = a
(
γ −1

Z

)∗
γ −1

Z + P 0
γ ,χ , (5.1)

in the sense that

D(Aa) = {
u ∈ D(Amax)

∣∣ χu = Cγ u
}
. (5.2)

Here (γ −1
Z )∗γ −1

Z is a pseudodifferential operator continuous from Hs to H̃s+2m, for all s ∈ R (and elliptic
as such); it is of order 2m steps lower than P 0

γ ,χ .
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Proof. We see from (3.24) that Aa corresponds to

La = a
(
γ −1

Z

)∗
γ −1

Z , D(L) = H0, (5.3)

so that Aa is defined by the boundary condition in (5.1).
To account for the properties of (γ −1

Z )∗γ −1
Z (for the interested reader), we use the ψdbo cal-

culus. Note that (γ −1
Z )∗γ −1

Z has the asserted continuity property for s = 0, is bijective, and acts
like (γ −1

Z )∗ prZ iZ γ
−1
Z . Here iZ γ

−1
Z is the Poisson operator Kγ , as noted earlier, and its adjoint

K ∗
γ = (γ −1

Z )∗ prZ is a trace operator of class 0 in the ψdbo calculus. Then, by the composition rules,

(
γ −1

Z

)∗
γ −1

Z = K ∗
γ Kγ

is a pseudodifferential operator on Σ ; and it has the asserted continuity property for all s since it has
it for s = 0. It is elliptic as an operator from Hs to H̃s+2m , because it is bijective. �
Remark 5.2. It should be noted that the boundary condition (5.1) is not elliptic (does not satisfy the
appropriate Shapiro–Lopatinskii condition). In fact, for pseudodifferential Neumann-type boundary
conditions χu = Cγ u it is known that ellipticity holds if and only if the ψdo L = C − P 0

γ ,χ is el-

liptic as an operator from Hs to H̃s . The actual L equals aK ∗
γ Kγ , which has principal symbol 0 as an

operator from Hs to H̃s , since it is of lower order.

For m = 1, C is of order 1, continuous from Hs− 1
2 (Σ) to Hs− 3

2 (Σ), and L = aK ∗
γ Kγ is of order −1,

continuous from Hs− 1
2 (Σ) to Hs+ 1

2 (Σ), for all s.

We henceforth take a ∈ R \ {0}. From (2.6) we then have

A−1
a = A−1

γ + a−1 prZ . (5.4)

(We here read prX as a mapping in H instead of as a mapping from H to X ; this will often be the
case in the following, and the meaning should be clear from the context.)

Let us assume from now on, instead of the primary hypothesis for Sections 3–4, that Ω is a
bounded smooth subset of R

n with boundary Σ ; aside from this we keep the notation. As remarked
in the beginning of Section 3, the explanations there hold also for this case (are in fact easier to
verify).

Since the embedding of D(Aγ ) = H2m(Ω) ∩ Hm
0 (Ω) into L2(Ω) is compact, the inverse A−1

γ is a
compact operator in L2(Ω), so Aγ has a discrete spectrum consisting of eigenvalues going to ∞. It is
well known (cf. e.g. Hörmander [39, Chapter 29.3]), that the counting function N(t; Aγ ), counting the
number of eigenvalues of Aγ in [0, t] with multiplicities, has the asymptotic behavior

N(t; Aγ ) − c Atn/2m = O
(
t(n−1)/2m)

for t → ∞; (5.5)

here

c A = (2π)−n
∫

x∈Ω,a0(x,ξ)<1

dx dξ. (5.6)

Equivalently, the j’th eigenvalue μ j(A−1
γ ) of A−1

γ satisfies

μ j
(

A−1
γ

) − c′
A j−2m/n = O

(
j−(2m+1)/n) for j → ∞; with c′

A = c2m/n
A . (5.7)
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(The passage between counting function estimates and eigenvalue estimates is recalled below in
Lemma 5.4 and its corollary.)

Since Z is infinite dimensional, a−1 prZ has the point a−1 as essential spectrum, so A−1
a has es-

sential spectrum consisting of the points a−1 and 0, and Aa has the essential spectrum {a}. Since
Aa is selfadjoint and not upper bounded (since it extends Amin), there must be a sequence of dis-
crete eigenvalues (with finite dimensional eigenspaces) above a going to ∞. We shall investigate this
sequence.

The Krein–von Neumann extension A0 has essential spectrum {0} and an eigenvalue sequence
going to ∞, and the question of the asymptotic behavior of that sequence was raised in Alonso and
Simon [2] and answered in Grubb [30]. The result was a rather precise estimate of the function
N+(t; A0) counting the number of eigenvalues in ]0, t]:

N+(t; A0) − c Atn/2m = O
(
t(n−θ)/2m)

for t → ∞; (5.8)

here c A is the same constant as for the Dirichlet problem and

θ = max

{
1

2
− ε,2m/(2m − n + 1)

}
. (5.9)

We note in passing that the value 1
2 − ε came from the application of an estimate announced by

Kozlov in [41], whereas his later paper [42], not available to the author when [30] was written, has
the value 1

2 , so (5.9) can immediately be replaced by

θ = max

{
1

2
,2m/(2m − n + 1)

}
. (5.10)

We show at the end of this section that the estimate can be improved even further, to θ = 1 − ε
(following up on a remark at the end of [30]). This comes after our deduction of a similar estimate
for the operators Aa , a �= 0.

The proof of (5.8) was based on a transformation of the eigenvalue equation

A0u = λu, with λ �= 0, u �= 0, (5.11)

into the problem for the 4m-order operator A2:

A2 v = λAv for v ∈ H2m
0 (Ω), (5.12)

where u and v are recovered from one another by

v = A−1
γ Au, u = 1

λ
Av. (5.13)

There were earlier eigenvalue estimates for implicit eigenvalue problems as in (5.12) (as initiated by
Pleijel [51], surveyed in Birman and Solomyak [11]) giving the principal asymptotics, and the sharper
estimates in (5.8) were obtained by turning the problem into the study of eigenvalues of the compact
operator

S0 = R1/2
� AR1/2

� , (5.14)

where R� is the solution operator for the Dirichlet problem for A2. (Further developments of the
implicit eigenvalue problem are described in [33, Chapter 4.6].)
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The study of A0 has been taken up again recently by Ashbaugh, Gesztesy, Mitrea, Shterenberg
and Teschl [6,7], also for nonsmooth domains, with much additional information. In particular they
observe that when A = −�, (5.12) is of interest as the “buckling problem” in elasticity.

Unfortunately, in the case of Aa , we do not have an equally simple reduction of the eigenvalue
problem. Let u = v + aA−1

γ z + z as in (1.1); then applications of powers of A give

Au − λu = Av + az − λ
(

v + aA−1
γ z + z

) = (A − λ)v + (
a − λ − aλA−1

γ

)
z,

A2u − λAu = A2 v − λ(Av + az) = (
A2 − λA

)
v − aλz,

A3u − λA2u = A3 v − λA2 v. (5.15)

We see from the third line that in order for u to be an eigenvector, v must be an eigenvector of a
certain implicit problem for A3. Here A3 is of order 6m, and the information v ∈ H2m

0 (Ω) does not
give enough boundary conditions to define an elliptic realization of A3. But there is a supplementing
boundary condition depending on λ:

Theorem 5.3. Let u ∈ D(Aa), with u = v +aA−1
γ z + z, v ∈ H2m

0 (Ω), z ∈ Z . Then u is a nonzero eigenfunction
for Aa with eigenvalue λ �= a if and only if v is a nonzero solution of the elliptic problem

A3 v = λA2 v, γ v = νv = 0, γ A2 v = λ2(λ − a)−1γ Av, (5.16)

and

z = Kγ (λ − a)−1γ Av. (5.17)

In particular, u, v and z are in C∞(Ω) then.

Proof. Assume that Au = λu, λ �= a. It follows from (5.15) that then A3 v = λA2 v . Since v ∈ H2m
0 (Ω),

γ v = νv = 0 (recall (3.11)). From the first line in (5.15) it is seen that

Av = λ
(

v + aA−1
γ z + z

) − az,

which implies

γ Av = (λ − a)γ z, hence γ z = (λ − a)−1γ Av. (5.18)

Moreover,

A2 v = A
(
λv + λaA−1

γ z + (λ − a)z
) = λAv + λaz,

and hence

γ A2 v = λγ Av + λaγ z = (
λ + λa(λ − a)−1)γ Av = λ2(λ − a)−1γ Av.

This shows the last boundary condition in (5.16) for v . We also see from (5.18) that z is determined
from v by z = Kγ (λ − a)−1γ Av , showing (5.17). Clearly u �= 0 implies v �= 0.

Conversely let v be a nontrivial solution of (5.16), define z by (5.17) and let u = v + aA−1
γ z + z. By

the third line of (5.15), the function f = A2u − λAu satisfies A f = 0; moreover, by the second line,
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γ f = γ
(

A2 v − λAv − aλz
) = γ A2 v − λγ Av − aλ(λ − a)−1γ Av = 0;

where we used (5.17) and the last boundary condition in (5.16). Then by the unique solvability of the
Dirichlet problem, f = 0.

Now let g = Au − λu, then Ag = f = 0, and, by the first line of (5.15),

γ g = γ (A − λ)v + γ (a − λ)z = γ Av + (a − λ)(λ − a)−1γ Av = 0,

so g = 0. This shows that Au = λu.
The problem is elliptic, since it is a perturbation by lower-order terms of the problem

A3 v = 0, γ v = νv = 0, γ A2 v = 0,

which only has the zero solution (indeed, A3 v = 0 and γ A2 v = 0 imply A2 v = 0, and then γ v =
νv = 0 implies v = 0). Then since there are 3m boundary conditions of different orders, the problem
is elliptic. In particular, the solution of (5.16) is in C∞(Ω). �

There may possibly be a strategy to find spectral asymptotics formulas for the very implicit eigen-
values λ of (5.16). But rather than pursuing this, we shall apply functional analytical methods to Aa

combined with ψdbo results, using perturbation theory for the identity (5.4).
Let us first show how the asymptotic behavior of the counting functions for positive eigenvalues

is related to the asymptotic behavior of positive eigenvalues of the inverse operator.

Lemma 5.4. Let P be a selfadjoint invertible operator whose spectrum on R+ is discrete, consisting of a nonde-
creasing sequence of positive eigenvalues λ j,+(P ) going to ∞ for j → ∞ (repeated according to multiplicities).
Let N+(t; P ) denote the number of eigenvalues in [0, t], and let μ j,+(P−1) = λ j,+(P )−1 . Let C > 0 and let
β > α > 0.

There exists c1 > 0 such that

∣∣μ j,+
(

P−1) − C j−α
∣∣ � c1 j−β for all j ∈ N, (5.19)

if and only if there exists c2 > 0 such that

∣∣N+(t; P ) − C1/αt1/α
∣∣ � c2t(1+α−β)/α for all t > 0. (5.20)

Proof. This goes as in the proof for the compact case in [29, Lemma 6.2] (a very detailed version is
given in [33, Lemma A.5]): Rewrite (5.19) as

∣∣C−1 jαμ j,+
(

P−1) − 1
∣∣ � c3 jα−β,

c3 = c1C−1. Since 1 − ε � (1 + ε)−1 � (1 − ε)−1 � 1 + 2ε for ε ∈ [0, 1
2 ], this is equivalent with the

existence of a constant c4 such that

∣∣C j−αλ j,+(P ) − 1
∣∣ � c4 jα−β,

which is rewritten, with c5 = C−1c4, as

∣∣λ j,+(P ) − C−1 jα
∣∣ � c5 j2α−β. (5.21)
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Next we note that the functions j → λ j,+(P ) and t → N+(t; P ) are essentially inverses of one
another (in the sense that N+(t; P ) is a step-function and j �→ λ j,+(P ) should be filled out at non-
integer arguments to have the reflected graph; both are monotone nondecreasing). To see how one
passes from inequalities for one of them to the other, consider e.g. the inequality

λ j,+(P ) � C−1 jα + c5 j2α−β.

Define ϕ( j) = C−1 jα + c5 j2α−β . Let t = ϕ( j) for some j ∈ N, then

N+(t; P ) � N+
(
λ j,+(P ); P

)
� j.

Now t = C−1 jα + c5 j2α−β implies t � c6 jα (since 2α − β < α) and

(Ct)1/α = (
jα + Cc5 j2α−β

)1/α = j
(
1 + Cc5 jα−β

)1/α
.

Hence

j = (Ct)1/α
(
1 + Cc5 jα−β

)−1/α � (Ct)1/α
(
1 − c7 jα−β

)
� (Ct)1/α

(
1 − c7

(
c−1

6 t
)(α−β)/α) = C1/αt1/α − c8t(1+α−β)/α;

for j so large that Cc5 jα−β � 1
2 ; here we have used the general inequality, valid for s ∈ R,

1 − cs|x| � (1 + x)s � 1 + cs|x|, for |x| � 1

2
. (5.22)

This shows that for t = ϕ( j), j sufficiently large,

N+(t; P ) � C1/αt1/α − c8t(1+α−β)/α,

giving part of the implication from (5.21) to (5.20). The other needed implications are shown in a
similar way. �

We shall mainly use the special case where α = M/n, β = (M + θ)/n for some θ > 0 and some
positive integer M , corresponding to (1 + α − β)/α = (n − θ)/M:

Corollary 5.5. Let θ > 0, C P > 0. In the setting of Lemma 5.4, there exists c1 > 0 such that

∣∣μ j,+
(

P−1) − C M/n
P j−M/n

∣∣ � c1 j−(M+θ)/n for all j ∈ N, (5.23)

if and only if there exists c2 > 0 such that

∣∣N+(t; P ) − C P tn/M
∣∣ � c2t(n−θ)/M for all t > 0. (5.24)

For the study of the eigenvalues of Aa , we note that using the orthogonal decomposition (2.1) we
can write the identity (5.4) in the form
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A−1
a = prR A−1

γ prR +prR A−1
γ prZ +prZ A−1

γ prR +prZ A−1
γ prZ +a−1 prZ

= B1 + B2 + S, with

B1 = prR A−1
γ prR ,

B2 = a−1 prZ ,

S = prR A−1
γ prZ +prZ A−1

γ prR +prZ A−1
γ prZ . (5.25)

For the part B1 + B2, where the two terms act separately in the two orthogonal subspaces R and Z ,
we see that B = B1 + B2 has the spectrum

σ(B1 + B2) = σ(B1) ∪ σ(B2), (5.26)

consisting of a sequence of positive eigenvalues μ j,+(B1) (since B1 is compact nonnegative), the
point 0 (in the essential spectrum) and an eigenvalue a−1 of infinite multiplicity. The essential spec-
trum consists of the two points 0 and a−1. Since A−1

a is a perturbation of B1 + B2 by a compact
operator S , its essential spectrum again consists of 0 and a−1. As noted earlier, Aa is unbounded
above, so it has a sequence of eigenvalues going to infinity, corresponding to a positive eigenvalue
sequence for A−1

a going to 0.
In the detailed analysis, we shall again take advantage of the calculus of pseudodifferential bound-

ary operators, using some composition rules and an important result shown in [31]. The main point
is to identify certain terms as singular Green operators, which have a better spectral behavior than the
pseudodifferential terms on Ω . We refer to [31] for details (introductions to the ψdbo calculus are
also given in [33] and [35]).

The following result was shown in [14, Prop. 3.5] in the second-order case:

Proposition 5.6. The orthogonal projection prR in H = L2(Ω) acts as

prR = AR� A = I − prZ ,

where R� is the solution operator for the Dirichlet problem for A2 . Here prZ is a singular Green operator on Ω

of order and class 0.

Proof. The proof, formulated in [14] for the nonselfadjoint second-order case with a spectral param-
eter, goes over verbatim to the 2m-order case, when γ0, γ1 are replaced by γ , ν . �

In particular, prR and prZ are continuous in Hs(Ω) for all s > − 1
2 .

It follows that all the ingredients in (5.25) are in the ψdbo calculus:

Proposition 5.7. 1◦ The operators

prR A−1
γ prZ , prZ A−1

γ prR and prZ A−1
γ prZ ,

hence also their sum S, cf. (5.25), are singular Green operators on Ω of order −2m and class 0.
2◦ For any positive integer N,

A−N
γ = prR A−N

γ prR +S1,N ,

A−N
a = B1,N + B2,N + SN , with B1,N = prR A−N

γ prR , B2,N = a−N prZ , (5.27)

where S1,N and SN are singular Green operators on Ω of order −2mN and class 0.
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Proof. 1◦ It is well known from the ψdbo calculus that A−1
γ = A(−1)

+ + Gγ , where A(−1)
+ is the trun-

cated operator r+ A(−1)e+ and Gγ is a singular Green operator on Ω of order −2m and class 0. Here
A(−1) is a pseudodifferential parametrix of A extended to R

n , r+ restricts from R
n to Ω and e+

extends by zero on R
n \ Ω . Since prZ is a singular Green operator of order and class 0 by Proposi-

tion 5.6, the compositions with prZ lead to singular Green operators of order −2m and class 0. Since
prR = I − prZ , composition with it preserves the order and the property of being a singular Green
operator of class 0.

2◦ The statement for the first line of (5.27) has already been shown for N = 1; for general N , it
follows by similar arguments applied to A−N

γ . For the second line of (5.27), we calculate:

A−N
a = (

prR A−1
γ prR +a−1 prZ +S

)N = (
prR A−1

γ prR

)N + a−N prZ +s.g.o.s

= prR A−N
γ prR +a−N prZ +s.g.o.s,

by the ψdbo rules of calculus, where the s.g.o.s stand for singular Green operators of class 0 and
order −2mN . �

A main result of [31] was the following asymptotic estimate of s-numbers of singular Green oper-
ators. When Q is a compact operator, its s-numbers are the positive eigenvalues of |Q | = (Q ∗ Q )1/2,
s j(Q ) = μ j(|Q |), arranged nonincreasingly and repeated according to multiplicity.

Theorem 5.8. When G is a singular Green operator on Ω of negative order −M and class 0, then it is compact
in L2(Ω) with s-numbers satisfying

s j(G) jM/(n−1) → c
(

g0) for j → ∞, (5.28)

where c(g0) is a nonnegative constant defined from the principal symbol g0 of G.

The remarkable feature here is that the spectral asymptotics formula involves the boundary di-
mension n − 1 rather than the interior dimension n.

An application to the operators in Proposition 5.7 gives:

Corollary 5.9. The asymptotic property

s j(G) j2mN/(n−1) → c
(

g0) for j → ∞, (5.29)

holds for the singular Green operators SN and S1,N considered in Proposition 5.7.

It is seen that A−N
a has several ingredients with different spectral asymptotics properties. There-

fore we need a theorem on how eigenvalue asymptotics formulas with remainder asymptotics are
perturbed when operators are added together.

This builds on a variant of a result of Ky Fan [18].

Lemma 5.10. If Q , B, and S are bounded selfadjoint operators whose spectra on R+ are discrete, and Q =
B + S, then one has for the positive eigenvalues μ j,+ , arranged nonincreasingly and repeated according to
multiplicity:

μ j+k−1,+(B + S) � μ j,+(B) + μk,+(S), (5.30)

for all j, k such that the eigenvalues exist.
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If S has a finite number K � 0 of positive eigenvalues, then

μ j+K ,+(B + S) � μ j,+(B), (5.31)

for all j such that the eigenvalues exist.

Proof. The l’th positive eigenvalue of Q is characterized by

μl,+(Q ) = min
u1,...,ul−1∈H

max
{
(Q u, u)

∣∣ ‖u‖ = 1, u ⊥ u1, . . . , ul−1
}
, (5.32)

as long as this expression is positive; it is reached when the u1, . . . , ul−1 are an orthogonal system
of eigenvectors for the first l − 1 positive eigenvalues. Let x1, . . . , x j−1 be an orthogonal system of
eigenvectors for the first j −1 positive eigenvalues of B , and let y1, . . . , yk−1 be an orthogonal system
of eigenvectors for the first k − 1 positive eigenvalues of S . Then since Q = B + S , we have in view of
(5.32):

μ j+k−1,+(Q ) � max
{
(Q u, u)

∣∣ ‖u‖ = 1, u ⊥ x1, . . . , x j−1, y1, . . . , yk−1
}

� max
{
(Bu, u)

∣∣ ‖u‖ = 1, u ⊥ x1, . . . , x j−1
}

+ max
{
(Su, u)

∣∣ ‖u‖ = 1, u ⊥ y1, . . . , yk−1
}

= μ j,+(B) + μk,+(S), (5.33)

showing (5.30). The last statement in case K = 0 follows from (5.32), since (Su, u) � 0 then. For K > 0
it follows from the calculation in (5.33) with k − 1 = K . �

We use this to show, as a variant of [29, Prop. 6.1]:

Proposition 5.11. Let Q , B, and S be bounded selfadjoint operators such that Q = B + S, where the spectrum
of B in R+ is discrete, with eigenvalues μ j,+(B) ↘ 0, and S is compact. Assume that, with β > α > 0, γ > α,
and a positive constant C ,

μ j,+(B) − C j−α is O
(

j−β
)

for j → ∞, (5.34)

s j(S) is O
(

j−γ
)

for j → ∞. (5.35)

Then

μ j,+(Q ) − C j−α is O
(

j−β ′)
for j → ∞, (5.36)

with

β ′ = min
{
β,γ (1 + α)/(1 + γ )

}; (5.37)

here β ′ ∈ ]α,β].

Proof. By hypothesis, B has infinitely many positive eigenvalues. If S has so too, we proceed as in
[29, Prop. 6.1]: Let d ∈]0,1[ , to be chosen later. For each l ∈ N, let k = [ld] + 1 and let j = l − [ld] in
(5.30). Then (5.34)–(5.35) imply by use of (5.22):
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μl,+(Q ) � C
(
l − [

ld
])−α + c2

(
l − [

ld
])−β + c3

([
ld

] + 1
)−γ

� Cl−α
(
1 − [

ld
]
/l

)−α + c2l−β
(
1 − [

ld
]
/l

)−β + c3l−dγ

� Cl−α + c2l−β + c4ld−α−1 + c5ld−β−1 + c3l−dγ

� Cl−α + c6l−β ′
,

where β ′ = min{β,α − d + 1, β − d + 1,dγ }. Taking d = (1 + α)/(1 + γ ), we have (5.37).
If S has a finite number K of positive eigenvalues, we have if K = 0 that

μ j,+(Q ) � μ j,+(B) � C j−α + c1 j−β, (5.38)

and if K > 0, for j � K , by (5.31),

μ j,+(Q ) − C j−α � μ j−K ,+(B) − C j−α � C( j − K )−α − C j−α + c1( j − K )−β

= C j−α
[
(1 − K/ j)−α − 1

] + c1 j−β(1 − K/ j)−β

� c2 j−α−1 + c1 j−β + c3 j−β−1 � c4 j−β ′′
, (5.39)

with β ′′ = min{α + 1, β} > β ′ , since α + 1 > γ (α + 1)/(γ + 1).
This shows the desired upper estimate. A similar lower estimate is obtained by noting that

Lemma 5.10 applied to B = Q + (−S) gives

μ j,+(Q ) � μ j+k−1,+(B) − μk,+(−S). �
If needed, one can of course use the finer estimates (5.38) or (5.39) in appropriate situations.
The results will first be used to give an eigenvalue estimate for prR A−N

γ prR :

Proposition 5.12. B1,N = prR A−N
γ prR is a nonnegative compact selfadjoint operator whose positive eigen-

values satisfy, with c′
A = c2mN/n

A , c A defined by (5.6):

μ j,+(B1,N) − c′
A j−2mN/n is O

(
j−(2mN+θN )/n) for j → ∞, (5.40)

where θN = 2mN/(2mN + n − 1).

Proof. Since prR is bounded and A−N
γ is compact, B1,N is compact. The nonnegativity follows since

A−N
γ � 0 so that

(B1,N u, u) = (
prR A−N

γ prR u, u
) = (

A−N
γ prR u,prR u

)
� 0,

for all u ∈ H . For the eigenvalue asymptotics, we use the decomposition in the first line of (5.27),
where A−N

γ has the spectral behavior inferred from (5.7):

μ j
(

A−N
γ

) − c2mN/n
A j−2mN/n = O

(
j−(2mN+1)/n) for j → ∞,

and S1,N has the spectral behavior (5.29), by Corollary 5.9. We can then apply Proposition 5.11 with

α = 2mN/n, β = (2mN + 1)/n, γ = 2mN/(n − 1). (5.41)
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Since

γ (1 + α)

1 + γ
= 2mN

n − 1

1 + 2mN/n

1 + 2mN/(n − 1)
= 2mN + 2mN/(2mN + n − 1)

n
< β = 2mN + 1

n
,

we have that

β ′ = (2mN + θN)/n with θN = 2mN/(2mN + n − 1). �
Next, we treat the full operator A−N

a . The study is the easiest to complete when a < 0.

Theorem 5.13. Consider A−N
a ; it equals B + SN with B = B1,N + B2,N and SN as in Proposition 5.7. Assume

that a < 0. Then when N is odd,

μ j,+
(

A−N
a

) − c′
A j−2mN/n is O

(
j−(2mN+θN )/n) for j → ∞, (5.42)

with θN = 2mN/(2mN + n − 1), c′
A = c2mN/n

A , c A defined in (5.6).

Proof. For B1,N we have the asymptotic eigenvalue estimate in Proposition 5.12. We add B2,N to B1,N ,
which just adjoins the negative eigenvalue a−N with infinite multiplicity. With B = B1,N + B2,N , we
now apply Proposition 5.11 to the sum A−N

a = Q = B + SN , with β = (2mN + θN )/n. This gives (5.36),
with

β ′ = min

{
β,

2mN

n − 1

1 + 2mN/n

1 + 2mN/(n − 1)

}
= β. �

The cases where a > 0, or N is even so that aN > 0, are handled by transforming the problem
into one where the eigenvalue sequence we want to describe runs outside the interval containing the
essential spectrum.

Theorem 5.14. The conclusion of Theorem 5.13 holds also when N is even and when a > 0.

Proof. It remains to treat the cases where aN > 0. Let b be a point in the interval ]0,a−N [ which is
in the resolvent set of both B and Q = B + SN . Replace B and Q by

B ′ = b2(b − B)−1 − b = bB(b − B)−1, Q ′ = b2(b − Q )−1 − b = bQ (b − Q )−1. (5.43)

Then the point a−N in the essential spectrum is moved to ba−N (b − a−N )−1 < 0, whereas the point 0
is preserved, and the sequence of positive eigenvalues μ j,+(B) decreasing to 0 in the interval ]0,b[ is
turned into the sequence of positive eigenvalues

μ j,+
(

B ′) = bμ j,+(B)
(
b − μ j,+(B)

)−1 ↘ 0. (5.44)

The operators B ′ and Q ′ are of the type treated in Lemma 5.10, their difference being the compact
operator

S ′
N = Q ′ − B ′ = b2(b − B − SN)−1 − b2(b − B)−1 = b2(b − B − SN)−1 SN(b − B)−1. (5.45)

Concerning their asymptotic eigenvalue properties, we have that (5.34) implies
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μ j,+
(

B ′) − C j−α = bμ j,+(B)
(
b − μ j,+(B)

)−1 − C j−α

= μ j,+(B) − C j−α + μ j,+(B)
[
b
(
b − μ j,+(B)

)−1 − 1
]

= μ j,+(B) − C j−α + μ j,+(B)2(b − μ j,+(B)
)−1

= O
(

j−β
) + O

(
j−2α

)
. (5.46)

This will be used with C = c′
A and exponents as in (5.40), α = 2mN/n and β = (2mN + θN )/n. Clearly

2α > β , so then

μ j,+
(

B ′) − c′
A j−2mN/n = O

(
j−(2mN+θN )/n).

Since S ′
N equals SN composed with bounded operators, the estimate (5.35) implies a similar estimate

for S ′
N . Now Proposition 5.11 can be applied, with α and β as already indicated, and γ = 2mN/(n−1),

showing that the positive eigenvalues of Q ′ have the behavior

μ j,+
(

Q ′) − c′
A j−2mN/n = O

(
j−(2mN+θN )/n) for j → ∞. (5.47)

Finally this is carried over to the desired behavior of the eigenvalue sequence μ j,+(Q ) by a calcula-
tion similar to (5.46), using that

Q = bQ ′(Q ′ + b−1)−1
. �

This has the following implications for the counting functions for eigenvalues of AN
a going to ∞:

Theorem 5.15. Let N be a positive integer, and let rN > aN . The number N+,rN (t; AN
a ) of eigenvalues of AN

a in
[rN , t] behaves asymptotically as follows:

N+,rN

(
t; AN

a

) − c Atn/2mN = O
(
t(n−θN )/2mN)

for t → ∞, (5.48)

with θN = 2mN/(2mN + n − 1), c A defined by (5.6).

Proof. When aN < 0, the spectrum of AN
a is discrete on R+ , and we can apply Corollary 5.5 directly

to (5.42), concluding (5.48) for r = 0. A replacement of 0 by some other rN > aN only shifts N+ by a
fixed finite number, and does not change the asymptotic property.

Now let aN > 0 and take an r > |a|, such that r−N is not in the spectra of A−N
a and prR A−N

γ prR .

For this r, the number N+,rN (t; AN
a ) is the number of eigenvalues of AN

a − rN in [0, t − rN ].
Observe that when we take b = r−N in the proof of Theorem 5.14, then

Q = A−N
a , Q ′ = r−N A−N

a

(
r−N − A−N

a

)−1 = (
AN

a − rN)−1
.

For Q ′ we have the asymptotic estimate (5.47). Then we can apply Corollary 5.5 to AN
a − rN and its

inverse Q ′ , concluding that

N+,rN

(
t; AN

a

) − c A
(
t − rN)n/2mN = O

((
t − rN)(n−θN )/2mN)

for t → ∞.

This implies (5.48), since (t − rN )s = ts(1 − rN/t)s = ts + O (ts−1) by (5.22). �
We can finally conclude an improved estimate for Aa itself:
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Theorem 5.16. Let r > a. The number N+,r(t; Aa) of eigenvalues of Aa in [r, t] behaves asymptotically as
follows, for any ε > 0:

N+,r(t; Aa) − c Atn/2m = O
(
t(n−1+ε)/2m)

for t → ∞, (5.49)

with c A defined in (5.6).

Proof. It suffices to consider r > |a|. Since the number of eigenvalues of Aa in [r, t] is the same as
the number of eigenvalues of AN

a in [rN , tN ], we conclude from Theorem 5.15 that

N+,r(Aa; t) − c Atn/2m = N+,rN

(
AN

a ; tN) − c A
(
tN)n/2mN = O

((
tN)(n−θN )/2mN)

= O
(
t(n−θN )/2m)

.

Here N can be taken arbitrarily large. Since θN = 1 − (n − 1)/(2mN + n − 1) → 1 for N → ∞, it can
for any ε > 0 be obtained to be > 1 − ε, which shows the statement in the theorem. �

This ends our study of eigenvalue asymptotics for Aa , a �= 0.
Actually, some of the above techniques can also be used to improve the result of [30] for A0, so

we include this here.

Theorem 5.17. For the discrete eigenvalue sequence of the Krein–von Neumann extension A0 , the number
N+(t; A0) of eigenvalues in ]0, t] satisfies, for any ε > 0,

N+(t; A0) − c Atn/2m = O
(
t(n−1+ε)/2m)

for t → ∞. (5.50)

Proof. We here use some further rules for eigenvalues and s-numbers, found e.g. in Gohberg and
Krein [22]. Denote the positive eigenvalues λ j(A0), j = 1,2, . . . . It is shown in [30] that their inverses

are the eigenvalues μ j(S0), where S0 = R1/2
� AR1/2

� as recalled in (5.14); this was used in [30] to show

the estimate (5.8). Here R
1
2
� maps L2(Ω) bijectively onto H2m

0 (Ω), and the factor A is really Amin

mapping H2m
0 (Ω) bijectively onto R = ran Amin, where one can apply R

1
2
� . They also define mappings

between the spaces intersected with higher-order Sobolev spaces.
In addition to S0 we shall study iterates of S0. For 2N ’th powers we can write

S2N
0 = (

R
1
2
� AR

1
2
�

)2N = R
1
2
� (AR�)2N−1 AR

1
2
� = BN AR� AB̌N ,

where

BN = R
1
2
� (AR�)N−1, B̌N = (R� A)N−1 R

1
2
� .

Here we recognize AR� A as the projection prR = I − prZ , cf. Proposition 5.6. Then

S2N
0 = BN(I − prZ )B̌N = BN B̌N − BN prZ B̌N . (5.51)

The first term is a compact nonnegative operator whose positive eigenvalues satisfy:

μ j(BN B̌N) = μ j(B̌N BN) = μ j
(
(R� A)N−1 R�(AR�)N−1).
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The operator (R� A)N−1 R�(AR�)N−1 is of the form A(−2N)
+ +G2N , where A(−2N)

+ is the truncation to Ω

of a parametrix A(−2N) of A2N (as used earlier in the proof of Proposition 5.7), and G2N is a singular
Green operator of order −4mN and class 0. Then by Corollary 4.5.6 of [33] we have the asymptotic
eigenvalue estimate (in view of Corollary 5.5):

μ j(BN B̌N) = μ j
(

A(−2N)
+ + G2N

) = c′
A j−4mN/n + O

(
j−(4mN+1−ε)/n) for j → ∞,

for any ε > 0, with c′
A = c4mN/n

A . (It is used here that A is a scalar differential operator, see the
discussion in [33, Rem. 4.5.5] concerning systems.)

For the second term BN prZ B̌N we use that there exists a homeomorphism

Λ2m−,+ : H2m+s(Ω)
∼→ Hs(Ω), with inverse Λ−2m−,+ , for any s ∈ R,

belonging to the ψdbo calculus, as introduced in [32] (also explained in Section 2.5 of [33]). Then

BN prZ B̌N = R
1
2
� Λ2m−,+Λ−2m−,+ (AR�)N−1 prZ (R� A)N−1Λ−2m−,+ Λ2m−,+R

1
2
�

= R
1
2
� Λ2m−,+G̃2NΛ2m−,+R

1
2
� ,

where G̃2N is a singular Green operator of order −4mN and class 0. The operators R
1
2
� Λ2m−,+ and

Λ2m−,+R
1
2
� are bounded in L2(Ω). Using Theorem 5.8 for G̃2N together with the general rule s j(EG F ) �

‖E‖s j(G)‖F‖, we find:

s j(BN prZ B̌N) � C s j(G̃2N) � C ′ j−4mN/(n−1).

Now the perturbation result Proposition 5.11 applied to the decomposition in (5.51) gives (as in
the proof of Theorem 5.13):

μ j
(

S2N
0

) − c4mN/n
A j−4mN/n = O

(
j−(4mN+θ2N )/n) for j → ∞; with c′

A = c4mN/n
A ,

with the usual θ2N = 4mN/(4mN + n − 1), and hence (as in the proof of Theorem 5.16)

N+
(
t; S−1

0

) = N+
(
t2N ; S−2N

0

) = c Atn/2m + O
(
t(n−θ2N )/2m)

, for t → ∞.

Since θ2N → 1 for N → ∞, and N can be taken arbitrarily large, the assertion of the theorem fol-
lows. �

The validity of the improved estimate (5.50) has been announced by Mikhailets in [48]; we have
recently been informed that proof details are in [49].

The spectral results in this section are formulated for a bounded domain Ω in R
n , but the methods

work for general compact manifolds with boundary, as in [33], so the results are valid for such cases
too.
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[40] A.N. Kočubeı̆, Extensions of symmetric operators and symmetric binary relations, Math. Notes (1) 17 (1975) 25–28.
[41] V.A. Kozlov, Estimation of the remainder in a formula for the asymptotic behavior of the spectrum of nonsemibounded

elliptic systems, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. (1979) 112–113.
[42] V.A. Kozlov, Remainder estimates in formulas for the asymptotic behavior of the spectrum for linear operator pencils,

Funktsional. Anal. i Prilozhen. 17 (1983) 80–81; English translation in: Funct. Anal. Appl. 17 (1983) 147–149.
[43] M.G. Krein, The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. I, Mat.

Sb. 20 (1947) 431–495 (in Russian).
[44] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1, Éditions Dunod, Paris, 1968.
[45] V.E. Lyantze, O.G. Storozh, Methods of the Theory of Unbounded Operators, Naukova Dumka, Kiev, 1983 (in Russian).
[46] M.M. Malamud, Spectral theory of elliptic operators in exterior domains, Russ. J. Math. Phys. 17 (2010) 96–125.
[47] M.M. Malamud, V.I. Mogilevskii, Kreı̆n type formula for canonical resolvents of dual pairs of linear relations, Methods Funct.

Anal. Topology (4) 8 (2002) 72–100.
[48] V.A. Mikhailets, Distribution of the eigenvalues of finite multiplicity of Neumann extensions of an elliptic operator, Differ.

Uravn. 30 (1994) 178–179; English translation in: Differential Integral Equations 30 (1994) 167–168.
[49] V.A. Mikhailets, Discrete spectrum of the extreme nonnegative extension of the positive elliptic differential operator, in:

Proceedings of the Ukrainian Mathematical Congress 2001, Section 7, Nonlinear Analysis, Kyiv, 2006, pp. 80–94 (in Russian).
[50] J. von Neumann, Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren, Math. Ann. 102 (1929) 49–131.
[51] Å. Pleijel, Certain Indefinite Differential Eigenvalue Problems – The Asymptotic Distribution of Their Eigenfunctions, Part.

Diff. Equ. and Continuum Mech., Wisconsin Press, Madison, 1961, pp. 19–37.
[52] A. Posilicano, L. Raimondi, Krein’s resolvent formula for self-adjoint extensions of symmetric second-order elliptic differen-

tial operators, J. Phys. A 42 (2009) 015204, 11 pp.
[53] V. Ryzhov, A general boundary value problem and its Weyl function, Opuscula Math. 27 (2007) 305–331.
[54] L.I. Vainerman, On extensions of closed operators in Hilbert space, Math. Notes 28 (1980) 871–875.
[55] M.I. Vishik, On general boundary value problems for elliptic differential operators, Trudy Mosc. Mat. Obsv. 1 (1952) 187–

246; English translation in: Amer. Math. Soc. Transl. (2) 24 (1963) 107–172.


	Krein-like extensions and the lower boundedness problem for elliptic operators
	1 Introduction
	1.1 Lower boundedness
	1.2 Krein-like extensions

	2 The abstract setting
	3 The implementation for exterior boundary value problems
	4 The lower boundedness question
	5 Krein-like extensions and their spectral asymptotics on bounded domains
	Acknowledgment
	References


