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Abstract

We introduce a class of tree automata that perform tests on amemory that is updated using function
symbol application and projection. The language emptiness problem for this class of tree automata is
shown to be in DEXPTIME.
We also introduce a class of set constraints with equality tests and prove its decidability by com-

pletion techniques and a reduction to tree automata with one memory.
Finally, we show how to apply these results to cryptographic protocols. We introduce a class of

cryptographic protocols and show the decidability of secrecy for an arbitrary number of agents and
an arbitrary number of (concurrent or successive) sessions, provided that only a bounded number of
new data is generated. The hypothesis on the protocol (a restricted copying ability) is shown to be
necessary: without this hypothesis, we prove that secrecy is undecidable, even for protocols without
nonces.
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1. Introduction

Set constraintswere introduced in the 1980s and have been studied thoroughly since, with
applications to the analysis of programsof various styles (see[2] for a survey). Typically, the
problemof interest is to decide the satisfiability of a conjunction ofset expression inclusions
e ⊆ e′ in which the set expressions are built from variables and various constructions,
including, e.g.,projection. Although some set variables may occur several times in an
expression, most classes of set constraints do not make it possible to write a set expression
for a set of terms of the formf (t, t), in which one subterm occurs more than once. One
exception is the class of constraints studied in[6].
Our motivating interest is to develop classes of cryptographic protocols for which some

form of secrecy is decidable. A historical class of decidable protocols are the so-called
ping-pong protocols[15]. Although none of the protocols of[8] belongs to this class, ping-
pong protocols remain a decidable class, while most larger classes of security protocols
are undecidable[5]. One of the main restrictions in[16,15] is that messages are built
using unary symbols only. In contrast, many protocols of interest are written using a binary
encryption symbol and a pairing function.Another restriction in[16,15]is that each protocol
participant is stateless: after a message is sent, the participant does not retain any memory
of the contents of the message. This is a significant limitation since many protocols rely
on challenge-response steps, that require memory. A previous investigation of ping-pong
protocols with added state led to undecidability[19].
It is insightful to observe that Dolev and Yao’s result[16] can be proved using set con-

straints. This suggests a generalization of their approach to trees. A technical complication,
though, is that the generalization to trees is less expressive than one might expect: in the
case of unary functions only, a function and its inverse are set inverses of each other, in
the sense thatf (f−1(X)) is preciselyX. However, this is no longer true with trees: if
f−11 andf−12 are the two projections corresponding to a binary function symbolf , the set
f (f−11 (X), f−12 (X)) contains pairsf (t1, t2) which are not necessarily inX. In order to
increase the expressiveness of set constraints with binary functions, we need a “diagonal
construction”, enabling us to test for equalities between the members of sets.
In this paper, we introduce a new class of set constraints, allowing limited diagonal

constructions. This class is incomparable with the class sketched in[6]. We show that
satisfiability is decidable for this class, allowing us to generalize Dolev andYao’s result to
trees. More precisely, we define a class of cryptographic protocols whose decidability does
not assume any bound on the number of sessions (whether concurrent or not), improving
over former decision results, e.g.[3,27,24](see[12] for a survey on decidability results for
cryptographic protocols). We also allow compound keys. Protocols in the class assume a
limited copying capability for the agents. More precisely, we assume that an agent can only
blindly copy one piece of the received message in the message (s)he sends. By “blindly”
we mean here, without any type knowledge; this notion will be made precise in the paper.
Let us emphasize that this restriction is satisfied by almost all protocols that we found in
the literature.We also prove that this restriction is necessary: secrecy becomes undecidable
if we allow two blind copies.
Our class of set constraints does not capture all protocol concepts of interest. In particular,

as can be seen from the survey[8], many authentication protocols make use ofnoncesor
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time stamps, which we cannot express (more precisely, we have to assume that there is a
bounded number of nonces produced by each principal in any combination of sessions). On
the other hand, properties of protocols that are modeled using set constraints are decidable,
while nonces and timestamps typically lead to undecidability[5]. Moreover, we can express
conservative approximations of general protocols, and it is possible in principle that set
constraints with equality tests provide algorithms for determining the security of some such
protocols.
We prove the decidability of set constraints with equality tests by a reduction to an

emptiness problem for a class oftree automata with constraints. Tree automata with various
forms of constraints have been studied by several authors (see[11] for a survey). However,
the class we consider in this paper is incomparable with known decidable classes. Roughly,
we allow each state to hold one arbitrarily large memory register and restrict the use of this
memory to equality tests. Sincememory registers are updatedusing projections and function
application, this class is a generalization of pushdown word (alternating) automata. Despite
the generality of the class, there is a simple proof that the emptiness decision problem is in
DEXPTIME.
We start Section2.1by introducing Dolev andYao result and its formulation in terms of

set constraints. In Section2.2, we recall (one possible) formal semantics of cryptographic
protocols. We also prove that, even in the absence of nonces, secrecy is undecidable.
In Section3.1, we recall classical results on definite set constraints and generalize them

to set constraints with nonemptiness guards in Section3.2. The results of this last section
are used in the following sections.
InSection4,we introduce treeautomatawithonememoryandweprovesomedecidability

results, relying on definite set constraints with non-emptiness guards. This can be seen as a
stand-alone decidability result.
Next, we introduce in Section5 our class of set constraints with one equality, show-

ing how to reduce the satisfiability of these constraints to the nonemptiness decision for
tree automata with one memory. The reduction is similar to the saturation process de-
scribed in[7] for set constraints with intersection, but it is more complicated due to equality
tests.
In Section6.1we define our class of cryptographic protocols and show how to apply the

results of the previous sections to prove that secrecy is decidable for this class.
Several technical proofs, which are not interesting by themselves, are pushed to

appendices.

2. Protocol motivation

2.1. Dolev–Yao’s result

Dolev andYao[16] consider protocols in which each principal holds a single public key
(which is known to everybody) and a corresponding private key that is known to them only.
The principals are able to build messages using plain text, encryptioneX with the public
key ofX and signaturesdX appending the name of principalX. Here is a simple example
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from [16]:

Example 1(Dolev andYao[16] ).

A→ B : eB(dA(eB(s)))
Alice sends to Bob a message encrypted using
Bob’s public key consisting of a signed encrypted
text s

B → A : eA(s)
Bob acknowledges the reception by sending back
to Alice the texts, encrypted using the public key
of Alice

In this model, communication channels are insecure. This allows an intruder to intercept
messages, remember them, and replace themwith alternate (possibly forged)messages. The
intruder may decrypt a message if the corresponding key has become known to him, may
append or remove signatures, and may encrypt using any public key. The secrecy question
asks whether there is a way for an intruder to get the plain text messages that is supposed to
be kept secret betweenAlice and Bob. In the above example, the answer is yes (the protocol
is insecure). For example, Dolev andYao give the following attack: After a first session of
the protocol, the intruder,I , who overhears the messages exchanged during that session,
sends toA the messageeA(dI (eA(s))), which he can build using the reply from Bob, and
receiveseI (s) in return.
The possible use of set constraints in cryptographic protocols analysis has been suggested

in several papers, e.g.[20]. It is however interesting to see that the Dolev–Yao decidability
proof can be summarized using set constraints by lettingI be the set of messages that can
be built by the intruder (after any number of sessions). SinceI can intercept any message
of any run of the protocol, we write set constraints putting every protocol message inI . For
the example protocol above, we have

eY (dX(eY (s))) ⊆ I, eX(e
−1
Y (d−1X (e−1Y (I )))) ⊆ I

for every pair of principalsX, Y , since Bob acknowledges a messagem from Alice by
sendingeA(e

−1
B (d−1A (e−1B (m)))). Finally, for every principalX, we express the ability of

the intruder to perform operations using public information aboutX:

dX(I) ⊆ I, eX(I ) ⊆ I, d−1X (I) ⊆ I
This process translates a protocol into a collection of set constraints about the setI of
messages available to the intruder. Secrecy now becomes the question whether the set
constraints, together withs /∈ I , is satisfiable? Assuming a fixed number of principals, this
is decidable in polynomial time for set constraints arising from Dolev–Yao’s ping-pong
protocols: we can compute an automaton accepting the minimal solution of the definite set
constraint and check the membership ofs.
There are several restrictions in the Dolev–Yao approach. In particular, only a fixed

number of principals and, as mentioned above, only unary symbols may be used. A pairing
function or a binary encryption symbol, allowing to write e.g.e(k,m) instead ofek(m), i.e.
allowing to consider keys as first-class objects, would considerably increase the expressive
power. Such a model is presented below.
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2.2. A more expressive model

Westart fromamodel inspiredbyPaulson[26] anddevelopedbyMillenandRuess in[23].
However, we do not use the trace model as in[23] or [26], but a new state-transition model
similar to the MSR model proposed by Mitchell et al.[5] or those presented in[13]. Such
models are much too expressive to be decidable, thus we consider in this paper a restricted
modelwhich does not allownonce creation but on the other handweaddanarbitrary number
of function symbols. In particular, we add compound keys and hashing. If a limited number
of nonces is allowed for each pair of principals, nonce creation can be simulated beforehand,
using additional binary function symbolsN1, . . . , Nk whose arguments are agent names.
In this section, it will be shown that this restrictedmodel is still undecidable but not so far

from decidability: Sections4 and5 develop a decidable class of set constraints which will
be used as a tool to extract a decidable fragment (see Section6.1) of the model described
below.

2.2.1. Messages
They are built from a set of function symbolsF . Symbols ofF are split into several sets:

agent’s names: we assume thatF contains constants and function symbols which allow to
built agent’s names.We assume that the set of agent’s names is infinite. Furthermore, we
distinguish an infinite subset ofhonest agentsAh.

invertible symbolswhich, intuitively, correspond to constructions whose components can
be computed by an intruder. Typically, thepairing functions belong to this set of symbols
since it is assumed that an intruder can retrieve each componentu, v from a pair〈u, v〉.
Such symbols can be applied to any term.

one way symbolswhich, intuitively, correspond to constructionswhose components cannot
be computed by an intruder. Typically,hash functionsbelong to this set. Such function
symbols can be applied to any term. In addition, we assume that there are two special
function symbols with one argument:pub() andpriv(). Intuitively, pub() andpriv()
return respectively a public and a private key when they are applied to agents names.

partially invertible symbolswhich intuitively correspond to constructions whose compo-
nents can be computed by an intruder, subject to some knowledge of the intruder. More
specifically, we will consider only one such function: encryption. (This is the only rel-
evant example we can think of, but we could generalize to more symbols in this set).
For such a binary function, which takes as argument a termk (a key) and a termu and
whose application will be written{u}k, the intruder can build{u}k when he knowsu and
k and can retrieveuwhen he knows{u}k and the inverse keyk−1.A priori, the encryption
function can be applied to any pair of terms so that we are not restricted to so-called
“atomic keys”. However, we will assume that the inverse of a key is the key itself, except
for expressionspub(a) andpriv(a) which are inverse of each other.
The set agent’s names is denoted byAG, the set of invertible symbols byIF and the set

of one way symbols byOF . We getF = AG  IF OF  {{_}_}.
Orthogonally,F is split into three sets of function symbols: those which are known

publiclyPF (for instancepub(), 〈_,_〉, {_}_), those which are cannot be used by the public
UF , but only by specific agents (for instance a key construction function, which is known
to a specific server only) and finally those which can be used by an intruderAF , only with
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specific arguments. This last notion is the dual of partially invertible symbols.priv() is an
example of such a symbol, which can be used by an intruderi, with the argumenti only.
We will see later more examples. To summarize, the set of function symbols consists of

F = AG  IF OF  {{_}_} = PF  UF AF ,

wherepub() ∈ PF , priv() ∈ AF , {_}_ ∈ PF . For each partially constructible symbol in
AF , itmust be specifiedwhich of the argumentsmust be specific andwhich are unrestricted.
The only argument ofpriv() is restricted.
Moreover,weassumeafinitesetofsortscontaining inparticular thesortsAgent ,Ah,Ad,

Message such thatAhandAdare subsorts ofAgent andAgent is a subsort ofMessage ,
the sort of allmessages. In addition, the set ofmessagesof sortAh is exactlyAh and the set of
messages of sortAd is exactlyAG−Ah. Elements ofAG are constants or function symbols
returningagent’snamesof sortAgent .The functionssymbolspub(), priv(), {_}_ takemes-
sages as argument and return messages:pub(), priv(), {_}_ : Message ×Message →
Message . The type of other symbols has to be specified with the protocol.
The set of messages is the set of (ground) termsT (F) built over the above described

signature and whose sort isMessage .
As an example of an additional sort, we could considernonces. Note however that, in our

(un)decidability results, we will always assume that there is a bounded number of nonces;
it is then possible to represent them as messages of the form e.g.ni(a, b) wherea, b are
agents (in which caseni ∈ AF ∩OF and it is restricted in its first argument, meaning that
only a can generateni(a, b), for anyb).
Describing protocols and the behavior of honest participants requires variables ranging

either over messages or over agents. Variables ranging over agents are usually calledroles.
Message schemesare terms of sortMessage , built overF and possibly variables.

Example 2. We present here a protocol example (inspired by Kerberos), which will be
used as a running example through the paper.
1. A→ S : A,B
2. S → A : {〈B,K(A,B), {〈A,K(A,B)〉}shr(B)〉}shr(A)
3. A→ B : 〈{m(A,B)}K(A,B), {〈A,K(A,B)〉}shr(B)〉
4. B → A : {h(m(A,B))}K(A,B).
In words,A tells the key serverS that she wants to securely communicate withB. Then
S sends back toA a message, encrypted using a key that she shares with the server and
containing a session keyK(A,B) together with a certificatewhich can be opened byB only.
At the third step,A sends her messagem(A,B), encrypted using the keyK(A,B), together
with the certificate, which is copied blindly from message 2. Finally,B acknowledges the
reception, sending back a digesth(m(A,B)) of the previous message, encrypted using the
shared key.
We are going to see in more detail how this protocol is formally described in the model.

For the moment, let us only make precise the components of the signature.
We assume here six sorts:Nat ,Agent ,Ah,Ad,Message ,Key. The last sort is pro-

tocol specific. Introducing such a sort means that the agents are assumed to be able to see
whether a message is a key or not (we will discuss this hypothesis later on).
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There is a specific constants (the server) of sortAgent . The way other agent’s names
are built is irrelevant. We could, for instance, use natural numbers together with a label for
(dis)honest participants: 0:→ Nat , succ: Nat → Nat , ha : Nat → Ah, da : Nat →
Ad. For simplicity, in what follows, we will use the notationa1, a2, . . . for honest agents
(i.e agent of sortAh) andi1, i2, . . . for dishonest agents (i.e. the other agents). Note that the
set of agents is infinite.
Then, we useIF = {〈_,_〉, 〈_,_,_〉}. These tupling functions take arbitrary messages

as arguments and return messages.

OF = {h,m,K, shr, succ,0, ha, da}

with h : Message → Message , m : Agent × Agent → Message , K : Agent ×
Agent → Key, shr : Agent → Key.
Now, the following are public symbols:

PF = {〈_,_〉, 〈_,_,_〉, pub, {_}_, h,0, succ, da, ha}

In particular, anybody can know every agent name and every agents public key. Now,K

can only be used by the server

UF = {K}

Finally,

AF = {m, prv, shr}

where both symbols are restricted in their first argument.

2.2.2. Events and global states
There are two kinds of events:messageandstateevents. A state event is of the form

Q = S(A, n,X) whereS is taken in a finite setFs of function symbols. Typically,Fs =
{Init,Resp,Serv}. Usually, for state events of the formServ(A, n,X), A is always equal
to s the constant representing the server.A is a ground term of sortAgent , n is a natural
number that represents the step of the protocol, andX = Mem(Q) is a tuple of messages
representing the memory held by the state. Astate schemeis built in the same way, except
that the agent can be abstracted (using a role) and the messages are replaced with message
schemes.
A global stateis a set (not a multiset) of events. Thecontentof a global state is its set of

messages, written as

Cont(H)
def= H ∩Messages.

Example 3(Example2 continued). Themessagesi1 orm(i1, a2) can be built from the for-
malism described in our running example.Init(i1,1, 〈i1, a1, s〉) is a state event. Intuitively,
it represents the dishonest agenti1 ready to start a session as initiator.
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2.2.3. Inductive relations
Given a termt = f (t1, . . . , tn), parts(t) is defined inductively as follows:

• if f ∈ OF ∪AG, thenparts(t) def= {t},
• if f ∈ IF , thenparts(t)

def= {t} ∪⋃n
i=1parts(ti),

• if f = {_}_, thenparts({t1}t2}) def= {t} ∪ parts(t1).
Given a set of termsS, parts(S) is the set of parts of all terms inS.
analz(S) is the subset ofparts(S) consisting of only those subterms that are accessible

to an attacker:analz(S) is the least setS′ containingS and such that:
• if f (t1, . . . , tn) ∈ S′ andf ∈ IF , thent1, . . . , tn ∈ S′,
• if {t1}t2 ∈ S′ andt−12 ∈ S′, thent1 ∈ S′.
Conversely, an attacker may use any available function to build new messages.synth(S)

is the least set of messagesS′ containingS and such that
• If f ∈ PF andt1, . . . , tn ∈ S′, thenf (t1, . . . , tn) ∈ S′
• If f ∈ AF , f is restricted w.r.t. its argumentsj1, . . . , jk, t1, . . . , tn ∈ S′, andtj1, . . . , tjk
∈ Ad , thenf (t1, . . . , tn) ∈ S′, whereAd is the set of dishonest agents (Ad = {in | n ∈
N}).
The intruder in our model synthesizes faked messages from analyzable parts of a set

of available terms and he can iterate the process. This motivates the following definition:
fake(S) is the least setS′ containingS and such thatsynth(S′) ⊆ S′ andanalz(S′) ⊆ S′.
Note thatfake(S) is not necessarily equal tosynth(analz(S)) if we do not assume atomic
keys: for instance if an intruder knowst1, {t}〈t1,t2〉, t2, he can buildt by first constructing
〈t1, t2〉 and then decrypt the message.

Example 4(Example3 continued). Assume that (in some state), the intruder holds the
following messages:

S1= {{〈m(a1, i1), a2〉}h(K(a1,a2)), {h(K(a1, a2))}pub(i1),
{m(a1, a2)}K(a1,a2), pub(i1)}.

Thenanalz(S1) contains for instanceh(K(a1, a2)),m(a1, i1) but notm(a1, a2). fake(S1)
contains for instance{〈a2, h(K(a1, a2))〉}h(m(a1,i1)).

2.2.4. Protocols
A protocol transitiont is of the formPre(t) −→ Post(t), wherePre(t) andPost(t) are

(finite) sets of messages and states. Unlike in[13], there is not any new spell: the secrecy
policymay be specified independently as presented later. Such transitions specify a possible
global state change in a way to be explained below. A transitiont shows a state change for
one agent. Formally,Pre(t) andPost(t) contain at most one state event andPre(t) contains
one state event if and only ifPost(t) contains one state event.
A protocol is simply a set of protocol transitions, an initial global stateH0 and a secrecy

specificationS0. WhenH0 is not specified, it is assumed thatH0 = ∅. Both the protocol
transitions and the secrecy specification is infinite. They are however represented by means
of instances of a finite number of terms: typically, the protocol is given by a finite set of
rulesui → vi whereui andvi are finite sets of message schemes and state schemes. Such
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∅ −→



Init(A,1, 〈A,B, s〉),
Resp(B,1, 〈B, s〉),
Serv(s,1, s)


 (0)

{Init(A,1, 〈A,B, s〉)} −→ {Init(A,2, 〈A,B, s〉), 〈A,B〉} (1){
Serv(s,1, s)
〈A,B〉

}
−→

{
Serv(s,2, s),
{B,K(A,B), {A,K(A,B)}shr(B)}shr(A)

}
(2){

Init(A,2, 〈A,B, s〉),
{B,X, Y }shr(A)

}
−→

{
Init(A,3, 〈A,B, s,X,m(A,B)〉),
〈{m(A,B)}X, Y〉

}
(3){

Resp(B,1, 〈B, s〉),
〈{Z}X, {A,X}shr(B)〉

}
−→

{ {Resp(B,1, 〈B, s,A,Z,X〉),
{h(Z)}X}

}
(4)

Fig. 1. Rules of the protocol.

rules represent the infinite setui� → vi� where� is any substitution compatible with the
types.
The secrecy policyS0 is given by an finite union of sets of the form

{t1, . . . , tn | x1, . . . , xk ∈ Ah},
wherex1, . . . , xk are the free variables of the message schemest1, . . . , tn.
S0 represents the set of messages that the intruder should not hold.

Example 5(Example4 continued). The protocol, as described inExample2 is a bit sloppy.
We used there the standard notations, but, if we want to be more precise, we have to specify
for instance in message 3 howAlice retrieves the different components of the message she
sends. Typically in such protocols,A,B are roles, not agent’s names. The “B” in message 3
can be either the name sent in message 1 or the name passed in message 2 (It does not make
a difference in this particular example. But it does make a difference in other situations, as
shown by the attack on the Needham–Schroeder protocol[22]).
This protocol should not reveal the messagesm(a, b),K(a, b), shr(a) whena andb are

honest agents. This can be expressed by the following secrecy policyS0:

S0 = {m(a, b),K(a, b) | a, b ∈ Ah} ∪ {shr(a) | a ∈ Ah}.
Next, the protocol rules are given in Fig.1. The rule0says that, at any time, a new session

can be started (the precondition is an empty set).After applying this rule to an instancea, b,
the agentsa, b, s are ready to act as participants of a protocol session.
The rule1 corresponds to the first step of the protocol: any agenta who is ready to act

asA in the protocol can send the message〈a, b〉 to s and switch to a state in which she
remembers having completed the first step (hence the second argument is 2) and having
sent the message〈a, b〉 to s.
Rule2corresponds to the second step of the protocol: ifs is ready to serve a key and if the

message〈a, b〉 has been sent, then the server switches, generates the keyK(a, b) and sends
the expected message. Note that the variablesA,B arelocal to the rule, hence the instances
are not necessarily the same as in the previous step: an intruder can very well perform the
first step of the protocol, in which case there are two〈a, b〉, 〈a′, b′〉 in the global state and
the second instance may be used instead of the first one.
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In the rule3, theagenta, whocompleted the first stepsof theprotocol expects amessageof
the form{b, �,�}shr(a). She can check that the message is an encrypted message containing
three components and that the first component is an agent’s name, with whom she started
a session. However, she cannot check that the second component is indeedK(a, b) and,
similarly, she cannot open the third component (the ticket). Hence these two components
are left as local variables of the rules which can be instantiated in an arbitrary way, provided
thatY gets a term of sortMessage andX gets a term of sortKey. (We assume here that
a is able to recognize whether a term has typeKey or not.)
Similarly, in the last rule, the expected instance ofZ ism(a, b), but it could be any faked

message: there is no way to check this.
This formal specification of the protocol gives more precision on the abilities of each

agent. We make precise here what is expected by each participant and what is his behavior.

2.2.5. Global state transitions
Given a protocolP and a set of initial knowledgeI (of the intruder), theglobal succes-

sion relation transforms a stateH to a new stateH ′. A succession is eitherhonest, i.e. it
corresponds to an action by an agent following the protocol, or it isfakedby the intruder.
• H ′ is anhonestsuccessorofH , denotedbyhonest(P )(H,H ′), if thereexistsanapplicable
transitiont in P such thatH ′ = (H\(Pre(t) ∩ States)) ∪ Post(t).

• H ′ is a fake successor ofH , denoted byfake(I )(H,H ′), if there exists a fieldX ∈
fake(Cont(H) ∪ I ) such thatH ′ = H ∪ {X}.

In the honest case, a transitiont is applicablein H if Pre(t) ⊆ H . In the fake case, the
intruder is restricted to adding only messages that can be inferred from the content of the
current state and the initial knowledge. In either case, we writeglobal(P, I )(H,H ′). This
relation determines a logical transition system with the initial global stateH0 as its initial
state. The set of reachable states of this transition system is denoted byreachable(P, I ).

2.2.6. Secrecy policy
Given the intruder’s initial knowledgeI and a secrecy policyS0, a global stateH is

calledI, S0-secureif fake(Cont(H) ∪ I ) ∩ S0 = ∅; these states are collected in the set
secure(I, S0). Now, a protocolP is calledsecureif secure(I, S0) is an invariant of the
transition relation associated withP andS0 is the secrecy policy associated toP ; i.e. for
all I , reachable(P, I ) is a subset ofsecure(I, S0).
Remark: actually, it is sufficient to prove thatsecure(I0, S0) is an invariant forI0 the

maximal set compatible withS0:

I0 = {m | parts(m) ∩ S0 = ∅}.
This definition is slightly different from the one given in[13] but it matches more precisely
the idea of secrecy while the definition given in[13] was an over-approximation of secrecy
in order to allow inductive proofs.

2.2.7. An undecidability result
We present now an undecidability result. Let us emphasize that we do not have here the

nonce construction. Hence, the result is stronger than the undecidability result of[18].
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Theorem 6. It is undecidable whether or not a protocol P is secure.

A proof of this result has been proposed by Even and Goldreich in[19] by reducing
the Post Correspondence Problem (PCP) to secrecy. A simplified proof was proposed by
Rusinowitch. The intuitive idea is the following one: consider a finite alphabet� and an
instance of PCP:(ui, vi)1� i�n, ui, vi ∈ �∗. We construct the following protocol:

A→B : {〈0,0〉}Kab
B→A : {〈N1, N2〉}Kab

A : {〈x, y〉}Kab →B : {〈xui, yvi〉}Kab , {s}{〈xui ,xui 〉}Kab , 1� i�n.

The keyKab is a symmetric, private key betweenA anB. The last rule describesn rules
for the agentA. The left-hand side describes the message expected byA. One can show
thats remains secret if and only if there is no solution to the considered instance of PCP. A
similar protocol can be build without using composed keys.
An inconvenience to both constructions is that for each instance of PCP with no solution,

the corresponding protocol does not have one honest instance. UsingPetri nets, we construct
in [9] a reduction such that the corresponding protocol is a “real” protocol in the sense that
each rule of the protocol can be played in the given order: the first rule, then the second
and so on, i.e., there is at least an honest instance of the protocol. In addition this reduction
only uses standard cryptographic primitives, namely pairing and encryptionwith symmetric
keys and a fixed number of roles (actually only one role) and a finite number of protocol
rules. For each reduction (using PCP or Petri nets), the intruder actually may only forwards
messages and does not need to forge new ones.

3. Definite set constraints

3.1. Definite set constraints and intersection constraints

This class of set constraints has been introduced in[21] and studied by various authors
(e.g.[7]). Each constraint is a conjunction of inclusionse1 ⊆ e2 wheree1 is aset expression
ande2 is aterm set expression. Term set expressions are built out of a fixed ranked alphabet
of function symbolsF , the symbols�,⊥ and set variables. A set expression is either a
term set expression or a union of two set expressionse1 ∪ e2, or an intersection of two set
expressionse1∩ e2 or the image of set expressions by some function symbolf (e1, . . . , en)

or a projectionf−1i (e1) wheref is a function symbol andi ∈ [1..n] if n is the rank off .
Note that negation is not allowed.

Example 7. Here is a definite set constraint:

f−12 (X) ⊆ g(Y ), f (f (X, Y ) ∩X,X) ⊆ X

g(Y ) ∩ Y ⊆ X, a ⊆ Y

wherea, f, g are function symbols andX, Y are set variables.
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Set expressions denote sets of subsets of the Herbrand universeT (F); if � assigns each
variable to some subset ofT (F), then[[ ]]� is defined by

[[X]]� def= X�

[[f (e1, . . . , en)]]� def= {f (t1, . . . , tn) | ∀i ∈ [1..n], ti ∈ [[ei]]�}
[[e1 ∩ e2]]� def= [[e1]]� ∩ [[e2]]�
[[f−1i (e)]]� def= {ti | ∃t1, . . . , tn.f (t1, . . . , tn) ∈ [[e]]�}

[[�]]� def= T (F)
[[⊥]]� def= ∅

[[e1 ∪ e2]]� def= [[e1]]� ∪ [[e2]]�,

� satisfiese1 ⊆ e2 iff, [[e1]]� ⊆ [[e2]]�. This extends to conjunctions of inclusions.

Example 8(Example7 continued). The substitution� def= [X→ ∅, Y → {a}] satisfies the
set constraints described in Example7.

Following a standard translation (see e.g.[7]), the definite set constraints can be rewritten
(in polynomial time) intointersection constraintswhich are conjunction of inclusions of
one of the forms:

X ⊆ Y, f (X1, . . . , Xn) ⊆ X

X ⊆ f (Y1, . . . , Ym), f (X1, . . . , Xn) ⊆ g(Y1, . . . , Ym)

whereX,X1, . . . , Xn, Y, Y1, . . . , Ym are intersections of set variables. In other words, the
constraints can be flattened and union and projections eliminated thanks (in particular) to
the equivalence:

f−1i (X) ⊆ Y ⇔ X ∩ f (�, . . . ,�) ⊆ f (�, . . . , Y,�, . . .)

where theY is in ith position and further transformations introducing new variables.
The translation� from definite set constraints to intersection constraints may require the

introduction of new variables. Formally,� preserves the solutions:

Lemma 9. � is a solutionof thedefinite set constraintC if andonly if thereexists�′,solution
of the intersection constraint�(C), such that� is the restriction of�′ to the variables of C.

Theorem 10(Charatonik and Podelski[7] ). The satisfiability of intersection constraints
(resp. definite set constraints) is DEXPTIME-complete and each satisfiable constraint has
a least solution which is accepted by a finite tree automaton.

Moreover, the decision procedure provides effectively the finite tree automaton accepting
the least solution.
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3.2. Intersection constraints with nonemptiness guards

Now, we consider a slight extension of intersection constraints, yielding a result similar
to Theorem10. If e is a set expression, letnonempty(e) be a statement which is satisfied
by � iff [[e]]� is not empty.
We extend the formalism as follows. Aflat expressionis either an intersection of set

variables or a set expressionf (X1, . . . , Xn) whereX1, . . . , Xn are intersections of set
variables. Anintersection constraint with non-emptiness guardsis a conjunction of clauses

nonempty(e′1), . . . , nonempty(e′n)⇒ e1 ⊆ e2,
wheree′1, . . . , e′n, e1, e2 are flat expressions.
The interpretation of such constraints is the expected one. Note that, of course, they

extend intersection constraints. However, the algorithm given in[7] can be applied with
slight changes only.
In other words, enriching the intersection constraints with clauses of the above form, we

still have the same result as in Theorem10, as a corollary of[7]:

Theorem 11. The satisfiability of intersection constraints with nonemptiness guards is
DEXPTIME-completeandeachsatisfiable constraint hasa least solutionwhich iseffectively
accepted by a finite tree automaton.

Proof. If we want to be as self-contained as possible, we need to reproduce, at least partly,
the proof of[7]. In the next section, we will also rely on this proof.
First, we can assume that all expressions occurring in the guards also occur as members

of inclusions (if necessary, adde ⊆ e and flatten again).
Now, according to[7], we saturate the constraints using the inference rules given in Fig.2.
In this figure,X,X1, . . . , Xn,X

′, X′1, . . . , X′n are intersection of set variables ande, e′,
e1, e2, e

′
1, e

′
2 are any flat set expressions. If these rules are applied to intersection constraints,

we get as conclusions intersection constraints again, with the convention that expressions
f (e1, . . . , en) ∩ f (e′1, . . . , e′n) are eagerly normalized intof (e1 ∩ e′1, . . . , en ∩ e′n).
As shown in[7] the rules of Fig.2are correct and applying the inference rules saturates the

set constraint in deterministic exponential time (assuming thatreflexivity andweakening
do not introduce new variables).
For every constraint�, we let�C be the saturated set. As in[7] again, let�S be thesolved

formof �:

�S = {f (e1, . . . , en) ⊆ X ∈ �C | nonempty(f (e1, . . . , en)) ∈ �C}
whereX is a variable.

�S is essentially the definition of a tree automaton whose states are set variables. Let
� be the substitution, assigning to each variableX, the language recognized by this tree
automaton in stateX. We are going to prove that eitherfalse∈ �C or else� is the least
solution of�. The minimality of� comes from automata theory. Let us concentrate on the
fact that� is a solution of�.
The proof that� satisfies all inclusionse1 ⊆ e2 in�C is identical to[7]. Consider a clause

nonempty(e1), . . . , nonempty(en)⇒ e ⊆ e′ with n�1. If there is ani such that[[ei]]� is
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Reflexivity :
e ⊆ e

Transitivity :
e1 ⊆ e2 e2 ⊆ e3

e1 ⊆ e3
Weakening :

X1 ∩ . . . ∩Xn ⊆ Xi

Compatibility
e1 ⊆ e2 e′1 ⊆ e′2
e1 ∩ e′1 ⊆ e2 ∩ e′2

Propagation 1
nonempty(e) e ⊆ e′

nonempty(e′)

Propagation 2
nonempty(X1), . . . ,nonempty(Xn)

nonempty(f (X1, . . . , Xn))

Projection
nonempty(f (X1, . . . , Xn)) f (X1, . . . , Xn) ⊆ f (X′1, . . . , X′n)

Xi ⊆ X′i

Incompatibility
nonempty(e) e ⊆ f (X1, . . . , Xn) e ⊆ g(X′1, . . . , X′m)

If f �= g
false

Cut
nonempty(e) nonempty(e),�⇒ e′ ⊆ e′′

�⇒ e ⊆ e′

Fig. 2. Inference rules for intersection constraints.

empty, then the clause is trivially satisfied. Otherwise, we may assume that everyei is an
intersection variable since� satisfiesnonempty(f (Y1, . . . , Yn)) if and only if it satisfies
nonempty(Y1), . . . , nonempty(Yn). Then letei be the intersectionX1

i ∩. . .∩Xkii . For every
i, there is a termti which is accepted by the tree automaton in every stateX

j
i . We prove

below that, ift is accepted in all statesX1, . . . , Xn, thennonempty(X1 ∩ . . . ∩Xn) ∈ �C .
Let us assume this for themoment. Then, by the rulesCut andPropagation 2, e ⊆ e′ ∈ �C ,
which proves that� satisfiese ⊆ e′, thanks to[7].
We prove by induction on the size oft that, if t is accepted in all statesX1, . . . , Xn, then

nonempty(X1 ∩ . . . Xn) ∈ �C .
• If t is a constant, by definition of the automaton,t ⊆ Xi ∈ �C for every i. Then, by
Compatibility (appliedn− 1 times),t ⊆ X1 ∩ . . . ∩Xn ∈ �C

• If t = f (t1, . . . , tm). Bydefinitionof theautomaton, thereare inclusionsf (ei1, . . . , e
i
m) ⊆

Xi ∈ �C such that, for everyj ∈ [1..m], for everyi, tj ∈ [[eij ]]�. Now, we apply the
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induction hypothesis: for everyj , nonempty(e1j ∩ . . . ∩ enj ) ∈ �C . By Propagation 2,

nonempty(f (e11 ∩ . . . ∩ en1, . . . , e1m ∩ . . . ∩ enm)) ∈ �C . Now, byCompatibility ,

f (e11 ∩ . . . ∩ en1, . . . , e1m ∩ . . . ∩ enm)) ⊆ X1 ∩ . . . ∩Xn ∈ �C

and, byPropagation 1, we conclude thatnonempty(X1 ∩ . . . ∩Xn) ∈ �C .
To summarize: the assignment� defined by the solved form�S also satisfies the conditional
inclusions of�C , which means that�C is satisfiable wheneverfalse /∈ �C and� is then the
minimal solution of�. �

In the proof of the last result, we have seen in passing thatnonempty(X) is a logical
consequence of the constraint iff it belongs to the saturated set. It follows that:

Corollary 12. Deciding whether the minimal solution of a definite set constraint with non-
emptiness guards assigns the empty set to X is DEXPTIME-complete.

Actually, the DEXPTIME-hardness of this corollary is missing so far. But we can reduce
the non-emptiness problem of the intersection ofn tree automata (which is DEXPTIME-
complete) by translating the definitions of the automata into intersection constraints and
adding a clause

nonempty(X1 ∩ . . . ∩Xn)⇒ a ⊆ X,
whereX1, . . . , Xn are the set variables corresponding to the accepting states of then

automata, respectively,X is a new variable anda is a constant.

4. Tree automata with one memory

The idea is to enrich the expressiveness of tree automata by allowing them to carry and
test some information. For instance, a pushdown automaton will keep a stack in its memory
and check the symbols at the top of the stack. What we do here is something similar. Our
automata work on trees instead of words and may perform more general constructions and
more general tests. We will see later as an example how to express pushdown automata in
our formalism.
Informally, a tree automaton with one memory computes bottom-up on a treet by syn-

thesizing both a state (in a finite set of statesQ) and a memory, which is a tree over some
alphabet�. Each transition uses some particular function which computes the newmemory
from the memories at each direct son. Each transition may also check for equalities the
contents of the memories at each son.
Given an alphabet of function symbols�, the set of functions	 which we consider here

(and which may be used to compute on memories) is the least set of functions overT (�)
which is closed by composition and containing:
• for everyf ∈ � of arity n, the function
x1, ...xn.f (x1, . . . , xn),
• for everyn and every 1� i�n, the function
x1, . . . , xn.xi ,
• for everyf ∈ � of arity n and for every 1� i�n, the (partial) function which associates
each termf (t1, . . . , tn) with ti , which we write
f (�x).xi .
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For instance, if� contains a constant (empty stack) and unary function symbols,	 is the
set of functions which push or pop after checking the top of the stack.

Definition 13. A tree automaton with one memory is a tuple(F,�,Q,Qf ,�) whereF
is an alphabet of input function symbols,� is an alphabet of memory function symbols,Q
is a finite set of states,Qf is a subset of final states,� is a finite set of transition relations

of the formf (q1, . . . , qn)
c−→
F
q where

• f ∈ F is called thehead symbol of the rule,
• c is a subset of{1, . . . , n}2, defining an equivalence relation on{1, . . . , n}.
• F ∈ 	 such thatF takesk arguments wherek is the number of equivalence classes
w.r.t. c

• q1, . . . , qn, q ∈ Q, (q is thetargetof the rule).

A configurationof the automaton consists of a state and a term inT (�) (the memory).
Then computations work as follows: ift = f (t1, . . . , tn) and the computation ont1, . . . , tn,
respectively yields the configurationsq1, �1, . . . , qn, �n, then the automaton, readingt , may
move toq, � when there is a transition rulef (q1, . . . , qn)

c−→
F
q and for everyi = j ∈ c,

�i = �j and� = F(�i1, . . . , �ik ), wherei1, . . . , ik are any representatives of the equivalence
classes forc (the way ij is chosen in its equivalence class is not relevant). A treet is
accepted by the automaton whenever there is a computation of the automaton ont yielding
a configurationq, � with q ∈ Qf .

Example 14.Assume that the transitions of the automatonA are (other components of the
automaton are obvious from the context,� is the identity relation):

g(q)
�−−−→


x1.x1
q f (qa, qa)

1=2−−−−−→

x1.h(x1)

q

g(qa)
�−−−−−→


x1.h(x1)
q f (q, q)

1=2−−−−−→

h(x1).x1

q

a
�−→
b

qa

A computation of the automaton onf (g(f (a, a)), g(a)) is displayed in Fig.3, in which
the configurations reached at each node are displayed in a frame.

Pushdown automata (on words) perform transitionsa, q, � · � → q ′,� · � wherea is an
input symbol,q, q ′ are states and�,�, � are words over the stack alphabet (the rule pops�
and pushes�). Such a rule can be translated in the above formalism, viewing letters as unary
symbols:a(q) −−−−−→


x.��−1x
q ′. If w = a1(. . . ak(_) . . .), we use here the notationw−1(x) for

a−1k (. . . (a−11 (x))), the additional subscript 1 being implicit for each letter, which has only
one argument.
This translationdoesnotmakeuseof equality tests.Orthogonally, it is possible to simulate

tree automata with equality tests between brothers[4]. This requires some coding, because
the functionF can refer to one representative for each class only, hence we cannot keep
directly in the memory the subtree recognized so far. However, it is possible to show that
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Fig. 3. A treet and a computation ofA on t .

any language recognized by an automaton with equality tests between brothers (and, more
generally, with nonoverlapping equality tests) is also accepted by an automaton with one
memory. We do not need the projections here.
In some respect, our definition is a generalization of bothmodels: we can both use a stack

and check for equality, and keep record of deep subtrees.We avoid overlapping tests, which
yield undecidability[25,11], because we allow only one representative of each class in the
function in the body ofF .

Theorem 15. Theemptiness of the language recognized by a tree automatonwith onemem-
ory is decidable in DEXPTIME. More generally, the reachability of a given configuration
is decidable in DEXPTIME.

Proof. For everyq ∈ Q, letMq be the subset ofT (�) ofmemory contentsm such that there
is a treet and a computation of the automaton ont yielding the configuration〈q,m〉. We
prove that the setsMq are the least solutions of the definite set constraint with non-emptiness

guardsCA, consisting, for each transition rulef (q1, . . . , qn)
c−→
F
q of the inclusion

nonempty(eqi1 ), . . . , nonempty(eqik )⇒ F(eqi1
, . . . eqik

) ⊆ Xq
andeqij is the intersection for all indicesl equivalent (w.r.t.c) to ij of Xql .
CA can be assumed to be an intersection constraint with non-emptiness guards (see

Section3).
First, the assignment�0 which maps everyXq to Mq is a solution of the constraint.

Indeed, consider any clause of the above form withF = 
x1, . . . , xk.G and assume (for
simplicity) thatx1, . . . , xr do not occur inG, while xr+1, . . . , xk occur (once) inG.
If [[eqij ]]�0 �= ∅ for every ij , then it is possible to reach configurations〈q1,m1〉, . . . ,

〈qn,mn〉 such thatmj ∈ [[eqij ]]�0, i.e.mi = mj wheneveri = j ∈ c. Now, consider any
termsm′1, . . . , m′k−r , respectively inMqr+1, . . . ,Mk. There are treest1, . . . , tr , . . . , tk such
that there are computations of the automaton on this trees yielding, respectively, the con-
figurations〈q1,m1〉, . . . , 〈qr ,mr 〉, 〈qr+1,m′1〉, . . . , 〈qk,m′k−r 〉. From these configurations,
reading the inputf , the automaton can move to the configuration〈q,G(m′1, . . . , m′k−r )〉,
henceG(m′1, . . . , m′k−r ) ∈ Mq .
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Conversely, we have to prove that any solution� of the constraint is larger than�0. Let
m ∈ Mq . There is a computation of the automaton on some treet , yielding the configuration
〈q,m〉. We prove, by induction ont , thatm ∈ [[Xq ]]�.
• If t is a constant, then there must be a rulea −→

F
q andF = m ∈ T (�). By definition,

there is a constraintF ⊆ Xq . Hencem ∈ [[Xq ]]�.
• Now, let t = f (t1, . . . , tn) and letf (q1, . . . , qn)

c−→
F
q be the last rule applied in the

computation yielding〈m, q〉. Let moreover〈q1,m1〉, . . . , 〈qn,mn〉 be the configurations
corresponding to computations ont1, . . . , tn. By definition,mi = mj whenever(i, j) ∈
c andm = F(mi1, . . . , mik ). By induction hypothesis, for everyi, mi ∈ [[Xi]]� and,
because of the equality constraints,mi ∈ [[eqil ]]� if (il, i) ∈ c. It follows that� satisfies
nonempty(eqij ) for all j and, since� satisfies the clause associated with the rule, it
satisfiesF(eq11 , . . . , eqik ) ⊆ Xq . In particular,m ∈ [[Xq ]]�.

This completes the proof that the setsMq are the least solutions of the constraintCA.
Then the non-emptiness of the language recognized byA reduces to the problem of

deciding whether at least one of some designated variables gets a non-empty set in the least
solution of the constraint. This is DEXPTIME-complete, thanks to Corollary12. �

The result can be generalized to alternating tree automata with one memory keeping the
samecomplexity.Alternation here has to beunderstoodas follows:wemay replace the states
occurring in the left hand sides of the rules with arbitrary positive Boolean combinations
of states. The above proof simply works, using additional intersections and unions.

Corollary 16. The emptiness problem of alternating tree automata with one memory is
DEXPTIME-complete.

Note however that the class of automata with one memory is neither closed under inter-
section nor complement (both yield undecidable models).

5. Set constraints with equality tests

5.1. Definition of the class

5.1.1. General set constraints with equality tests
We consider now definite set constraints as in Section3, with non-emptiness constraints

and with an additional construction: function symbols can be labeled with equality tests,
which are conjunctions of equalitiesp1 = p2 between paths. The intention is to represent
sets of termst such that the subterms at positionsp1 andp2 are identical. We assume,
without loss of generality, that there is no union and no projection symbol, which, as we
have seen, is not a restriction (provided that the equality tests do not overlap projection
symbols).
We use the standard notations on terms[14]. Let us recall some of them. Apositionwill

be a string of nonnegative integers. A termt labeled withF can be seen as a mapping from
the setPos(t) of its positions toF . The subterm oft at positionp is writtent |p.
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An equality constraintc is an equivalence relation on a finite set of positionsP(c). We
assume that no strict prefix of a position inP(c) does belong toP(c) (this restriction will
be dropped in Section5.2.1). We will often write equality constraints as finite sets (or
finite conjunctions) of expressionsp1 = p2 wherep1, p2 are positions. Then, it must be
understood thatc is the least equivalence relation containing the pairs(p1, p2) on the set
of positions occurring in some of the equalities. We also say that a positionp is checked by
c whenp ∈ P(c).
A term t satisfiesc, which we writet � c , if every path inP(c) is a position oft and

moreover,t |p1 = t |p2 (the subterms oft at positionsp1 andp2 are identical).
We enrich the set expressions of Section3with the constructionf c(e1, . . . , en) wherec

is an equality constraint. These expressions are interpreted as follows:

[[f c(e1, . . . , en)]]� def= {t ∈ [[f (e1, . . . , en)]]� | t � c}
The set ofpathsin an expressione is defined as follows:

�(f c(e1, . . . , en))
def= {} ∪ 1 ·�(e1) ∪ . . . ∪ n ·�(en)

�(e1 ∩ e2) def= �(e1) ∪�(e2)

�(X) def= {}.
Let p ∈ �(e). We lete|p be the set of subexpressions at positionp:

e| def= {e}
(e1 ∩ e2)|i·p def= e1|i·p ∪ e2|i·p

(f c(e1, . . . , en))|i·p def= ei |p
X|i·p def= ∅.

Whene|p contains only one element, we confusee|p with this element and say thate|p
is the subexpression of e at p.
We will assume that, in every expressionf c(e1, . . . , en),

P(c) ⊆ �(f c(e1, . . . , en))

All other constructions are the same as in Section3. In particular, right hand sides of
inclusions should not contain constructionsf c.Whenc is empty, wemay omit it or write�.

Example 17. f 21=12(f (Z, Y ) ∩ X, g(X) ∩ Y ) ⊆ f (Y, g(X)) is an inclusion constraint.
� = {X !→ {a, b, f (a, b)};Y !→ {b, g(a), g(b), f (a, b)};Z !→ {a, b}} is a solution of the
constraint since[[f 12=21(f (Z, Y ) ∩X, g(X) ∩ Y )]]� = {f (f (a, b), g(b))}.

5.1.2. A complete deduction system
We first design a complete deduction system and show that every satisfiable set constraint

has a least solution. These results are not meant to be practical.
Let S be a set constraint as in the previous section, whose variables areVar(S) =

{X1, . . . , Xn}. Let � be the subset of
(
2T (F)

)n
of assignments� mapping every variable

Xi to a finite set.
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We may assume in this section that, in every clause

�⇒ e ⊆ e′

the expressione′ does not contain intersection symbols. This is not a restriction as a clause
�⇒ e ⊆ e′[e1 ∩ e2] is equivalent to the two clauses�⇒ e ⊆ e′[ei] for i = 1,2.
With this assumption, we can associate with each right hand side of an inclusione′ a term

te′ ∈ T (F,X ) such that every variable occurs only once inte′ ande′ is obtained fromte′ by
substituting set variables to the variables ofte′ .
We define theone step deduction relationTS on� ∪ {�} as follows:
TS(�) def= �.
If there is a clause� ⇒ e ⊆ e′ in S such that� � � and there is at ∈ [[e]]� such thatt is
not an instance ofte′ , thenTS(�) = �.
Otherwise, for each clauseC = �⇒ e ⊆ e′ in S
• If � � � �, then we let�C be the assignments mapping every set variable to the empty
set

• If � � �, then for every termt ∈ [[e]]�, and every set variableX, we let�t,C(X) be the
set of termst |p such thate′|p = X. Finally, we defineTS(�) by:

[[Xi]]TS(�) def= [[Xi]]� ⋃
C∈S,t∈[[e]]�

�t,C(Xi).

We let�∅ be the assignment mapping every set variable to the empty set and we define
�� as the least fixed point of�:

��(Xj ) =
∞⋃
i=1

T iS(�∅)(Xj )

if T iS(�∅) �= � for everyi and�� = � otherwise.

Example 18. Consider the set constraintS consisting in the single clauseC = f (a) ⊆
f (X). Thentf (X) = f (x) and[[f (a)]]�∅ = {f (a)}. The termf (a) is an instance off (x)
and�f (a),C(X) = {a}.
Then, applying the deduction step, we get[[X]]TS(�∅) = ∅ ∪ {a} = {a} andT 2

S (�∅) =
TS(�∅) : ��(X) = {X !→ {a}}.

Proposition 19. �� = � iff S is not satisfiable.
If �� �= �, it is the least solution of S.

Proof. It is similar to the standard result that the least fixed point of the direct consequence
operator of a Horn clause set is the least model of the program.
If �� �= �, then�� is contained in any solution ofS (by induction oni, T iS(�∅) is

contained in any solution ofS).
Now, if �� �= �, then�� is a solution ofS: this is a routine verification. �
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5.1.3. An undecidability result
As a consequence of undecidability results on tree automata with equality tests (see

e.g.[11]), the satisfiability of such general constraints is undecidable, because of possible
overlapping tests.

Proposition 20. The satisfiability of such general constraints(even without non-emptiness
preconditions) is undecidable.

Note that such a result is consistent with Theorem6 and the translation of security
problems into set constraints as given in Section6.1.We sketch the proof of this proposition,
because, even if the reader should already be convinced, the proof sheds some lights on the
restrictions we take later on.

Proof (sketch). We encode Turing machine computations. A configuration is represented
as a triple containing the state, the part of the tape on the left of the head (including the head
position) and the part of the tape on the right of the head. Tape contents are encoded using
unary symbols (one for each element in the tape alphabet), in such away that symbols which

are close to the head appear on the top of the terms. For instance a tape content
abaabaab

↑
is represented by the wordsb(a(a(b(a(0))))), a(a(b(0))). We use a binary tupling symbol
〈_,_,_〉 to put together the two components of the tape and the state. Now, for instance,
with each transition rule〈q, a〉 → 〈q ′, b, left〉 we associate the constraint:

f 12=2121,131=213(〈q ′, X, b(Y )〉, Z ∩ f (〈q, a(X), Y 〉,�)) ⊆ Z
X, Y being tape contents, the equality tests ensure that we keep the same remaining tape
contents when we move from one state to another.
The idea is that the least solution�0 of the constraint will assign toZ the (encoding of

the) set of computations of the Turing machine. Adding

Z ∩ f (〈qf ,�,�〉,�) ⊆ X0

for the final states and

〈q0,0,0〉 ⊆ Z
for the initial state, the emptiness of�0(X0) is equivalent to the halting problem (i.e. the
reachability of the stateqf ). �

5.1.4. Basic variables and expressions
That is why we are going to put more restrictions on the constraints. The idea is to divide

the set variables into two sets: the basic and the nonbasic variables. The basic ones corre-
spond to sets of termswhose only a fixed part can be seen. This corresponds to noninvertible
symbols in Section2.2. We do not impose any restrictions on the equality tests for such
basic variables since, intuitively, the noninvertible symbols impose a boarder in the terms
under which no test takes place, hence limiting the overlaps of equalities which yield the
undecidability result.
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For nonbasic variables, we impose a restriction, which, roughly, allows to check the
equalities using one memory only. The goal is of course to use the results of Section4.
If X is a variable of a constraintS, then letR(X) be the set of atomic constraints whose

right hand side containsX.
We introduce nowone-way function symbolsof a constraintS. This notion is of course

related to the one-way function symbols of Section2 (it is a generalization). Intuitively, a
symbol is one-way in a constraintS if, in each of its applications, there is no way to look at
the subterms. “Looking at the subterms” occur in two cases: when we apply a “projection”
(i.e. when there is an inclusion whose right member is headed with that symbol) and when
we check for equality of some subterms.

Definition 21. A function symbolg is one-wayin a set constraintS if
• it does not occur on the right of an inclusion constraint ofS

• in any expressione = f c(e1, . . . , en) occurring inS, for every� ∈ P(c) and for every
strict prefix�′ of �, e|�′ does not contain any expression headed withg.

LetOF(S) be the set of one-way function symbols inS.

Definition 22. The basic variablesof a set constraint� is the largest set of variables
occurring in� such that
• If X is basic thenR(X) only contains one-way symbols and basic variables.
• If X is basic then
◦ eitherR(X) contains only one clause and this clause has the form:�⇒ e ⊆ X where
X does not occur ine.

◦ or for every function symbolf occurring inR(X), if f occurs in someR(Y ) thenY
is basic.

Intuitively, the function symbols used recursively to construct basic variables cannot be
used for nonbasic variables.

Example 23. The following example is inspired by examples from Section2. LetNat, A,
DA, HA, M, Key, In be set variables and� consist of:

0 ⊆ Nat succ(Nat) ⊆ Nat
da(Nat) ⊆ DA ha(Nat) ⊆ HA

DA ⊆ A HA ⊆ A
K(A,A) ⊆ Key shr(A) ⊆ M

A ⊆ M Key ⊆ M
〈M,M〉 ⊆ M {M}M ⊆ M

Intruder capabilities such as

〈In, In〉 ⊆ In {In}In ⊆ In
In ∩ 〈�,�〉 ⊆ 〈In, In〉 In ∩ {�}In ⊆ {In}In

A ⊆ In shr(DA) ⊆ In
In ∩ 〈�,�,�〉 ⊆ 〈In, In, In〉
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And protocol-specific constraints such as

〈A,A〉 ⊆ In
〈〉c({〈A,Key,M〉}shr(A) ∩ In, {m(A,A)}Key,M) ⊆ In

wherec stands here for 121= 211∧ 111= 212∧ 112= 22∧ 113= 3. (We will see in
section6.1 how to translate cryptographic protocol into set constraints and, in particular,
we will develop a full example). In this example, all function symbols are one-way, except
the tupling〈_,_〉 and〈_,_,_〉 and encryption{_}_, because of the intruder’s constraints.
ThenIn andM are not basic while all other variables are basic.

Remark. Conditional inverses of the form

f (u1, . . . , un) ∈ I, u1 ∈ I, . . . uk ∈ I (k〈n)⇒ uk+i ∈ I
can always be expressed using set constraints:

f (In, . . . , In,�, . . . ,�) ∩ In ⊆ f (In, . . . , In).
The public key example is also given in Fig.10.
The notion of basicity is extended to expressions: an expressione is basicif

• e is a basic variable or
• e is an intersectione1 ∩ e2 and eithere1 or e2 is basic
• e is an expressionf (e1, . . . , en) (or f c(e1, . . . , en)) ande1, . . . , en are basic.
5.1.5. Our assumptions

Definition 24 (Basicity condition). An an equality testc in an expressionf c(e1, . . . , en)
satisfies the basicity condition(w.r.t. a set of basic variables) if

p · i · q ∼c p′
i �= j

p′�prefp∀w, p · j · w �∼c p · i · q


⇒

There are positionsp1, p2 such that
p1 ∼c p′, p2 ∼c p · j and
eithere|p1 or e|p2
contains basic expressions only

where�pref is the prefix ordering on positions.

Fig. 4. The basicity condition.
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An expressione satisfies the basicity condition(w.r.t. a set of basic variables) if for each
expressionf c(e1, ..., en), the equality testc satisfies the basicity condition.

The situation is depicted in Fig.4: one of the three terminal positions on the picture
should hold basic expressions only.

Example 25. Let us examine the last constraint which is displayed in Example23.

〈〉c({〈A,Key,M〉}shr(A) ∩ In, {m(A,A)}Key,M) ⊆ In

wherec stands for 121= 211∧ 111 = 212∧ 112 = 22 ∧ 113 = 3. At positions
121,111, there is only one subexpressionA, which is basic. At position 112, there is only
one subexpression:Key, which is also basic. Remain the positions 3,113, which do not
hold basic expressions.
In the definition,p′ can only be 3 andp ∈ {1,11}. The basicity condition reduces to

check that subexpressions at positions 12,111,113 are basic, which is the case here.

Note that, if there are only two occurrences of non-basic variables in the expression, then
the basicity condition is always satisfied.
The basicity condition looks a bit complicated, but let us give more intuition.
From tree automaton point of view, while computing on the trees bottom-up, we want to

be able to check the equalities without carrying more than one memory at each node. The
difficulty is that we need the stability under intersection of this property.
Consider for instance the following constraints:

f 12=2(X ∩ f (X, Y ), Y ) ⊆ Y

f 11=2(Y ∩ f (X, Y ),X) ⊆ X.

Only one memory is sufficient to recognize the instances of any of the two constraints.
Putting them together, however, we can derive

f 12=2(f 11=2(Y ∩ f (X, Y ),X) ∩ f (X, Y ), Y ) ⊆ Y.
Now, we need 2memories to accept the instances of the left hand side since, when reaching
X we must keep this term in the memory (it is checked for equality higher up) and we must
also keep in the memoryf (X, Y ), which is also checked for equality higher up. Note that
hereX, Y are not basic sincef is not a one-way function symbol.
Actually, a more natural, weaker, condition would be to assume that, in anyc, if p, q

are in two different equivalence classes, then they do not share any prefix. Imposing such a
condition only yields an undecidable class of constraints.
On the other hand, if we intersect a basic expression with any expression, the result is a

basic expression. Hence, the basicity condition expresses roughly that on the sides of a path
checked for equality, we only find basic expressions, freeing us from keeping additional
information when we intersect with another expression.
The basicity condition is also relevant for our application, as we will see.
The constraints satisfying the basicity condition are calledset constraints with equality

tests(ET-constraintsfor short). Let us summarize:
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Definition 26. An ET-constraintis a finite conjunction of clauses

�⇒ e ⊆ e′

in which e, e′ are set expressions built using
• Set variables.
• The constant symbol⊥.
• Intersection.
• Function symbol applicationf c(. . .) or f (. . .).
We assume:

• That right hand sides (the expressione′ above) do not make use of the constructions
f c with a nonemptyc.

• For every constructionf c(e1, . . . , en), P(c) ⊆ �(f c(e1, . . . , en)).
• The basicity condition.

ET-constraints contain properly intersection constraints since we can construct an ET-
constraint whose least solution is the set of trees� = {f (t, t) | t ∈ T (F)}. The only other
decidable set constraint formalism which allows to express� is the class defined in[6],
in which, however, equality tests are restricted to brother positions (which is not the case
here). On the other hand, we have restrictions which are not present in[6].

5.2. Saturation

Weusehere a fixed point computationmethodwhich is similar to the one in[7]: the goal is
to deduce enough consequences so that the inclusionswhose right hand side is not a variable
become redundant, hence can be discarded. Unfortunately, the first step (representation) in
[7] cannot be used in the same way here, since it does not preserve the class of constraints
we consider.
First, we prepare the saturation in Sections5.2.1–5.2.5, reducing ET-constraints to SET-

constraints. Then we design deduction rules (generalizing the rules of[7]), which preserve
SET-constraints (Lemma47), are terminating (Lemma49) and which yield to a saturated
system: the solved part of a saturated constraintS is satisfiable if and only ifS is satisfiable
(Theorem50).
The preparation steps consist in:

• normalizing theset expressions (Section5.2.1): in particular, the subexpressionat position
p of a normal expression is uniquely defined (Lemma29),

• flattening the set expressions: we only keep pathswhich checked by an equality constraint
(Section5.2.2),

• getting rideof basic variables (Section5.2.3):weshow that theconstraintS is equivalent to
finitely many instances ofS, in which basic variables are replaced by ground expressions
(Lemma39),

• simplifying again the expressions, taking advantage of the previous steps (section5.2.5).
We start with some simplifications of the constraints.
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Fig. 5. The properties 2 and 6.

5.2.1. Normalization
For every expressione, let us define two notions of size:

• |e|F is the cardinal of
⋃
p∈�(e)e|p. This is proportional to the memory size, which is

required to store the expression, regardless to the equality tests.
• |e|t is the sum, for every expressionf c(e1, . . . , en) ∈ ⋃

p∈�(e)e|p of the size ofc. The
size of an individual testc is the sum of sizes of positions checked byc.
The goal of the first transformation step (Normalization) is to reduce the expression to a

normal form.

Definition 27. An expressione is normal if the following conditions are satisfied fore:
1. All subexpressions ofe satisfy the basicity condition.
2. If f c(e1, . . . , en)∩ e′ ∈ e|p0, p ∼c q andp ·p1 ∼c q1 for a nontrivialp1, thene|p0·p·p1

is a basic expression(“For ancestor positions, the lowest one is basic”).
3. For everyp ∈ �(e), if gc(e1, . . . , en) ∩ e′ ∈ e|p, then, for everyp1 ∼c p2, the

subexpressions at positionsp1 andp2 in gc(e1, . . . , en) are identical.
4. for every equality testc occurring ine, every equivalence class ofc contains at least two

positions which do not share any nontrivial prefix.
5. For everyp ∈ �(e),e|p is either an intersectionof variablesor an intersectiongc(e1, . . . ,

en) ∩X1 ∩ . . . ∩Xm, in which case, for everyp ∈ �(e), e|p is a singleton.
6. If f c(e1, . . . , en) ∩ e′ ∈ e|p0, p · p1 ∼c q for non-emptyp, p1, gc′(e′1, . . . , e′m) ∩ e′′ ∈
e|p0·p, then eithere|p0·p·p1 is a basic expression, or else for everyp′ ∼c′ q ′, e|p0·p·p′ is
a basic expression (“For overlapping tests, the lowest one is basic”).

Conditions 1 and 2 are satisfied initially. Actually, even a property stronger than
condition 2 is initially satisfied since, so far, any two distinct positions inP(c) are in-
comparable w.r.t. the prefix ordering. We need however this weaker property to keep it
invariant.
Properties 2, 6 are illustrated in Fig.5.
The main result of this section, whose proof is quite long and technical and is given in

AppendixA is the following:
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Lemma 28. Every expression e which satisfies the basicity condition can be transformed
into a normal expressione′ such that, for every�, [[e]]� = [[e′]]�.
We also conjecture that the transformation, as described in the appendix, yields an ex-

pressione′ such that|e′|F and|e′|t are polynomially bounded by|e|t and|e|F .
As a side consequence, the subexpression at a given position is now defined in a unique

way:

Lemma 29. If e is an expression satisfying condition5, then for everyp ∈ �(e), e|p is a
singleton.

Proof. We prove thate|p is a singleton for everyp ∈ �(e) by induction one. If e is a
variable or a constant, thene|p is a singleton consisting ine itself.
Now, assuminge satisfies condition 5,e is either an intersection of variables or an

expressionf c(e1, . . . , en) ∩ X1, . . . ∩ Xn. In the first case�(e) = {} and e|p = {e}
by definition. In the latter case, ifp = i · p′, thene|p = ei |p′ ∪ X1|i·p′ . . . = ei |p′ by
definition. And, by induction hypothesis,ei |p′ is a singleton. �
So, now,we can use the terminology “the subexpression at positionp”, aswell as replace-

ment at positionp: C[e]p means either (this will be unambiguous from the context) thate

occurs at positionp in the expressionC[e]p or that we have replaced the subexpression at
positionp with e.

The normalization is extended to constraints: every expression occurring in the constraint
can be assumed normal thanks to Lemma28.

5.2.2. Abstractions
We abstract out subexpressions introducing new variables, as long as this preserves the

form of the constraints. For instance, for contextsC[ ]p, an inclusione ⊆ C[f (�e′)]p
becomesC[X]p ⊆ e, f (�e′) ⊆ X whereX is a new variable. This results in an equivalent
constraint (on the original variables) in which the inclusions aree ⊆ e′ wheree′ is either
an intersection of variablesX1 ∩ . . . ∩Xn or an expressionf (X1, . . . , Xn).
More formally, we use the following rules, assuming thatn�2 andp is not the root

position:

(A1) �⇒ f c(�e) ∩ e1 ⊆ e′ → (∃X)f c(�e) ⊆ X,�⇒ X ∩ e1 ⊆ e′,
(A2) �⇒ e ⊆ C[f (�e′)]p → (∃X)�⇒ e ⊆ C[X]p, f (�e′) ⊆ X,

X ⊆ f (�e′),
(A3) �⇒ e ⊆ C[e1 ∩ . . . ∩ en]p → (∃X)�⇒ e ⊆ C[X]p, e1 ∩ . . . ∩ en ⊆ X.

In these rules,X is a new variable: we assume that there is no capture. The following
lemma is a consequence of the definitions:

Lemma 30. Applying abstraction does terminate on any constraint S, resulting in a con-
straint S′ such that the solutions of S are the restrictions of solutions ofS′ to the free
variables of S. Moreover, if S is an ET-constraint, then so isS′ and if every expression is
normal in S, then every expression is normal inS′.
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We can also abstract out in the conditions of the inclusions. However, using such a rule
in an unrestricted way would lead to non termination of the saturation. That is why we are
going to use it only once, to simplify the original constraint and forget it afterwards:

(A4) nonempty(e),�⇒ e1 ⊆ e2
→ (∃Y )e ⊆ Y ∧ nonempty(Y ),�⇒ e1 ⊆ e2.

In this rule,e is assumed not to be a variable. It is also assumed that there is no capture
(Y is a new variable).

Lemma 31. (A4) preserves the solutions of the constraint.

Proof. AssumeS → S′ using the rule(A4). If � is a solution ofS, extending� with
Y !→ [[e]]� yields a solution ofS′.
Conversely, if�′ is a solution ofS′, then its restriction� to variables other thanY is a

solution ofS: either� � � nonempty(e),�, in which case� satisfiesnonempty(e),� ⇒
e1 ⊆ e2, or else[[e]]� is non-empty. In the latter case,[[Y ]]�′ is nonempty (because of the
constrainte ⊆ Y ) and[[e1]]� = [[e1]]�′ ⊆ [[e2]]�′ = [[e2]]�. �

Inspecting the normal forms w.r.t.(A1), (A2), (A3), (A4), together with our hypotheses,
the atomic constraints are now of the form� ⇒ e ⊆ e′ where� is a conjunction of
nonempty(X), e′ is of the formf (X1, . . . , Xn) orX1∩. . .∩Xn ande is eitherX1∩. . .∩Xn
or f c(�e).

5.2.3. Getting rid of basic variables
Next, we can get rid of basic type variables. The main idea is that we can replace each

basic variable with a suitably chosen finite set, while keeping the desirable properties. This
is described in the next lemmas.
We letB(S) be the set of basic variables ofS. We split each ET-constraint into two parts

S = SB SNB: SB is the union ofR(X) forX ∈ B(S) andSNB is the remaining constraint.
Remember that for any basic variable, either every function symbols ofR(X) occurs only

in SB (first type) orR(X) contains only one clause on the form�⇒ CX(X1, . . . , Xk) ⊆ X
whereX is distinct from theXi (second type). We first get ride of the basic variablesX of
second type by replacing them by the clauseCX(X1, . . . , Xk).

Lemma 32. Given an ET-constraint S, let

S′def=S[X !→ CX(X1, . . . , Xk)]X of second type.

ThenS′ is an ET-constraint and S is satisfiable if and only ifS′ is satisfiable.

Proof. SinceCX(X1, . . . , Xk) contains only one-way function symbols and basic variables,
CX(X1, . . . , Xk) is a basic expression thusS′ is an ET-constraint.
If � is a solution ofS′, then� extended to the basic variables of second type by�(X) =

[[CX(X1, . . . , Xk)]]� is clearly a solution ofS.
Conversely, ifS is satisfiable, thenS has a minimal solution�. By minimality of �, we

have necessarily[[X]]� = [[CX(X1, . . . , Xk)]]�. Thus� is solution ofS′. �
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From now on, we consider only ET-constraints with only basic variables of second type.
In particular, the function symbols occurring inSB do not occur inSNB.

Example 33.We consider some of the constraints presented in Example23.

SB




0 ⊆ Nat succ(Nat) ⊆ Nat
da(Nat) ⊆ DA ha(Nat) ⊆ HA

DA ⊆ A HA ⊆ A
K(A,A) ⊆ Key

SNB


 A ⊆ M Key ⊆ M
〈M,M〉 ⊆ M {M}M ⊆ M
shr(A) ⊆ M

Then there is one basic variable of second type:Key. Thus we transform our ET-constraint
following Lemma32:

SB


 0 ⊆ Nat succ(Nat) ⊆ Nat
da(Nat) ⊆ DA ha(Nat) ⊆ HA

DA ⊆ A HA ⊆ A

SNB


 A ⊆ M K(A,A) ⊆ M
〈M,M〉 ⊆ M {M}M ⊆ M
shr(A) ⊆ M

Lemma 34. SB has a least solution�m. It is possible to compute a finite tree automaton
Am, whose states are finite sets of variables inSB and such that�m(X) is the set of trees
accepted in the state{X}.

Proof. Since one-way function symbols do not occur on the right of inclusions, in any
constraint� ⇒ e ⊆ e′, e′ is an intersection of variables. ThenSB is satisfiable: assign-
ing every variable toT (OF ) is a solution. Then, by Proposition19 there is a minimal
solution�m.
We can also easily construct the minimal solution in an effective way, applying e.g. the

saturation rules of Fig.2 to this particular case: because there are only one-way functions
in SB , there is no constructionf c(. . .) here. The saturated constraint coincides here with
the solved form (since there are no function symbols on the right).
As in Section3.2, the solved form corresponds to a tree automatonAm whose states are

set variables. �

Let ≈ be any equivalence relation onT (OF ). ≈ is extended to the least congruence
relation onT (F ), which we write again≈. Then, every assignment� from the set of
variables to 2T (F ) is extended into the assignment�≈ defined by:

�≈(X)
def= {t ∈ T (F ) | ∃u ∈ T (F ), t ≈ u, u ∈ �(X)}.

in other words,� is saturated by≈.
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Lemma 35. For every equivalence relation≈ on T (OF ), if � is a solution of an ET-
constraint S, in normal form w.r.t.Norm, (A1), (A2), (A3), (A4), then�≈ is a solution
of S.

Proof. Assume� ⇒ e ⊆ e′ ∈ S. Since� only consists of formulasnonempty(X) where
X is a variable,��� if and only if �≈��.
Let t ∈ [[e]]� andu ≈ t .
We prove, by induction on the size ofe′ that

t ∈ [[e′]]� ⇒ u ∈ [[e′]]�≈ .
• If e′ is a variable, the implication follows from the congruence property of≈.
• If e′ = e1 ∩ e2, this is straightforward.
• If e′ = f (e1, . . . , en) thenf /∈ OF (by definition of one-way symbols). Fromt ∈ [[e′]],
it follows that t = f (t1, . . . , tn). Thenu = f (u1, . . . , un) with ti ≈ ui for every i,
sincef /∈ OF(S). By induction hypothesis, for everyi, ti ∈ [[ei]]�, henceui ∈ [[ei]]�≈ ,
thereforeu ∈ [[e′]]�≈ . �

Now, the idea is to construct a finite index relation≈ such that wemay interpret the basic
variables in a set of representatives modulo≈.

Lemma 36. There is a congruence≈ and an assignment�0 to the variables of S such that
�0≈ = �m and�0(X) is finite for every variable X.

Proof. We use the automaton describing�m and we consider≈ defined byt ≈ u iff t and
u are accepted in exactly the same states of the automaton. LetR be a set of representatives
for≈ such that iff (t1, . . . , tn) is inR then,t1, . . . , tn are also inR. �0 assignsR ∩ [[X]]�m
toX. �

Remark.Note that every element ofR is recognizedbyat least one stateX of theautomaton.

Example 37.We consider again the constraints presented in Example33. The automaton
Am associated withSB is the following one:

0 → qNat succ(qNat) → qNat
da(qNat) → qDA ha(qNat) → qHA

qDA → qA qHA → qA

Thus the equivalence classes are:

{succn(0)|n ∈ N}, {da(succn(0))|n ∈ N}, {ha(succn(0))|n ∈ N}
We chooseR = {0, ha(0),da(0)} and�0(Nat) = {0}, �0(HA) = {ha(0)}, �0(DA) =
{da(0)}, �0(Agent ) = {ha(0),da(0)}.

If � is an assignment of basic set variables to finite set of terms inT (OF ), then�(SNB)
is the set constraint obtained, replacing each basic variableX with

⋃
t∈�(X)t . Since basic
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variables do not occur on the right hand sides of inclusions inSNB,�(SNB) can be normalized
in anET-constraint, removing unions occurring on the left or in the conditions by duplicating
the constraints.

Example 38. In our example37, �0(SNB) is equal to:

ha(0) ⊆ M da(0) ⊆ M
K(ha(0), ha(0)) ⊆ M K(ha(0),da(0)) ⊆ M
K(da(0), ha(0)) ⊆ M K(da(0),da(0)) ⊆ M

〈M,M〉 ⊆ M {M}M ⊆ M
shr(ha(0)) ⊆ M shr(da(0)) ⊆ M

Lemma 39. Let �0 be the restriction to basic variables of the assignment defined as in
Lemma36. Let ≈ be the congruence as defined in Lemma36. Then S is satisfiable iff
�0(SNB∪ SOF) is satisfiable.

Proof. First assume thatS is satisfiable and� is a solution ofS. Thanks to Lemma35, we
can assume w.l.o.g. that� = �≈. Let us construct�′ such that�′≈ = � and�′ is a solution
of �0(SNB).
For every termt ∈ T (F ), let t ↓ be its representative for≈. We define

�′(X) = {t ↓ | t ∈ �(X)}.
Let us prove that�′ is a solution of�0(SNB). Let� ⇒ e ⊆ e′ in SNB. If �′ � � � then�′
satisfies the clause. Otherwise,��� and therefore[[e]]� ⊆ [[e′]]�. Let t ∈ [[e]]� (and hence
t ∈ [[e′]]�). We want to prove thatt ↓∈ [[e′]]�′ . By abstraction,e′ is either an intersection of
variables or an expressionf (X1, . . . , Xn). In the first case,t ∈ [[e′]]� implies, by definition
of �′, t ↓∈ [[e′]]�′ . In the second case,f /∈ OF , by definition of one-way function symbols.
Thent ∈ [[e′]]� implies thatt = f (t1, . . . , tn) andt ↓= f (t1 ↓, . . . , tn ↓). Thenti ∈ [[Xi]]�
implies, by definition of�′, thatti ↓∈ [[Xi]]�′ , hencet ∈ [[e′]]�′ .
Conversely, assume that�′ is theminimal solution of�0(SNB). We extend�′ with �0

to basic variables. Let us prove that�′≈ is a solution ofS. We first need to establish some
properties on�′:

Lemma 40. If u ∈ [[X]]�′ , thenu = u ↓.

Proof. For every termt ∈ T (F ), let t ↓ be its representative for≈. t ↓= C[t1 ↓, . . . , tn ↓]
for somecontextC, such thatt = C[t1, . . . , tn]and for every termu ≈ t ,u = C[u1, . . . , un]
with ti ≈ ui . The maximal contextC verifying the property above is called thecanonical
contextof t . Note that since theti ↓ are representatives of the minimal solution ofSB ,
then the function symbols of theti ↓ do not occur inSNB. In addition, theti are equivalent
(modulo≈) to theti ↓, thus we have also that the function symbols of theti do not occur
in SNB.
Let us first prove by induction one that:
for every�, if for every termt and every set variableX, t ∈ [[X]]� implies t = t ↓,
then for every expressione occurring in�0(SNB), t ∈ [[e]]� impliest = t ↓.
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Indeed, assume that for every termt and every set variableX, t ∈ [[X]]� impliest = t ↓
and considere occurring in�0(SNB) andu ∈ [[e]]�, u = C[u1, . . . , un] whereC is the
canonical context ofu. For everyi, let us split up bothe andC:
• either there existspi andCi�C such thatCi[ui] ∈ [[e|pi ]]� and e|pi = e′′ ∩ Y . In
particular,Ci[ui] ∈ [[Y ]]�, thus by hypothesis,Ci[ui] = Ci[ui] ↓. By construction of
the context,Ci[ui] ↓= Ci[ui ↓] thusui = ui ↓.

• or there existspi such thatui ∈ [[e|pi ]]�. Sincee = �0(e1) for somee1 occurring inSNB,
we have to consider again two cases:
◦ eitherpi is not a path ine1, i.e., there existsqi〈pi such thate1|qi = X whereX is a
basic variable ande|qi ∈ �0(X). Thusu|qi ∈ �0(X) ⊆ R andu|qi = Ci[ui]. Since
u|qi ∈ R, Ci[ui] = Ci[ui] ↓= Ci[ui ↓], thusui = ui ↓.

◦ eitherpi is a path ine1: Since the function symbols ofui do not occur inSNB and
ui ∈ [[e|pi ]]�, e1|pi is necessarily an intersection of variables:e1|pi = X1∩ . . .∩Xn.
If one of the variable, sayX1, is basic then�0(e1) ∈ �0(X) and we conclude like
above. Elseui ∈ [[X1 ∩ . . . ∩Xn]]� and we conclude by hypothesis.

We are now ready to end the proof of Lemma40by induction on the fixed point of our
deduction system: assume that for everyn′〈n, thenu ∈ [[X]]

T n
′
(�∅) impliesu = u ↓. and

let us show thatu ∈ [[X]]T n(�∅) impliesu = u ↓. Let�⇒ e ⊆ e′ ∈ �0(SNB) be the clause
which generatedu (we assume w.l.o.g. thate′ does not contain intersection symbols like in
Section5.1.2):
if e′ = X thenu ∈ [[e]]T n−1(�∅) and we conclude by induction.
if e′ = f (X1, . . . , Xn) andX = Xi then there existsv ∈ [[e]]T n−1(�∅) such thatv = f (. . . ,
u, . . .). Sincef does not occurs inR(X) for X basic variable,v can not be accepted
in any stateX where is a basic variable, thusv ↓= f (. . . , u ↓, . . .). By induction
and the property we have just demonstrated, we know thatv = v ↓ which implies
u = u ↓. �

We are now ready to prove Lemma39. �′≈ is a solution ofSB , by definition of≈ and�′.
Let us consider a clause� ⇒ e ⊆ e′, which does not belong toSB . Since� only contains
atomic formulas of the formnonempty(X), �′�� iff �′≈��. Assume that�′�� (if it is not
the case, then�′≈ trivially satisfies the clause).
By induction one, any termt ∈ [[e]]�′≈ is equivalent, modulo≈ to a termu ∈ [[e]]�′ such

thatu ∈ [[e′]]�′ . Indeed, ife is a variable, this is true by definition of≈. If e = e1 ∩ e2,
then, by induction, there existsu1 ∈ [[e1]]�′ andu2 ∈ [[e2]]�′ such thatt ≈ u1 andt ≈ u2.
By Lemma40, u1 = u1 ↓, u2 = u2 ↓, thusu1 = u2 andu1 ∈ [[e]]�′ . If e = f (e1, . . . , en)

(last case), thent = f (t1, . . . , tn), ti ∈ [[ei]]�′≈ . By induction, there existsui ≈ ti such that
ui ∈ [[ei]]�′ , thusudef=f (u1, . . . , un) ∈ [[e]]�′ andu ≈ t .
Now, eithere′ is the intersectionof the variablesXi , inwhich case thereexistsui ∈ [[Xi]]�′

for everyi such thatui ≈ t , hencet ∈ [[Xi]]�′≈ for everyi, or elsee′ = f (X1, . . . , Xn). In
the latter case,f /∈ OF and thereforet = f (t1, . . . , tn), u = f (u1, . . . , un) with ti ≈ ui
andui ∈ [[Xi]]�′ . Again, this implies thatti ∈ [[Xi]]�′≈ for everyi, hencet ∈ [[e′]]�′≈ . �

Thanks to Lemma39, and as far as satisfiability is concerned, we can now restrict our
attention to the constraint�0(SNB) in which there is no longer any basic
variable.
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From the cryptographic protocols point of view, if we assume that the set of principal
names correspond in the set constraint formalism to a basic variableN (which is the case
in all formalism we know), Lemma39 shows that, if there is an attack, then there is an
attack with a bounded number of principals. The bound is given by the cardinal of�0(N).
Again, in any description of principals that we can think of,�0(N) will contain at most two
elements. Then, the result shows that, if there is an attack, then there is an attack involving
two distinct principals only (a honest one and a dishonest one).

5.2.4. Complexity issues in eliminating the basic variables
Before going any further, let us comment on the complexity of�0(SNB)with respect toS.
First consider the computation of�m. Following Theorem11, the computation ofAm

requires deterministic exponential time in general, since it is quite easy to encode the
emptiness problem for the intersection of tree automata[28].
On the other hand, we want to point out a particular case which can be relevant to the

application to cryptographic protocols.SB often satisfies additional properties, which we
describe below.
For every basic variableX, letHead(X) be the least set of (one-way) function symbols

such that
• if f (...) ⊆ X is an inclusion ofR(X), thenf ∈ Head(X)
• if X1 ∩ . . . ∩Xn ⊆ X ∈ R(X), thenHead(X1) ∩ . . . ∩ Head(Xn) ⊆ Head(X)

Lemma 41. If for every two basic variablesX, Y , eitherX ⊆ Y ∈ SB or Y ⊆ X ∈
SB or Head(X) ∩ Head(Y ) = ∅, then it is possible to compute in polynomial time a
finite tree automaton whose states contain the basic variables and which accepts�m(X) in
state X.

Proof. We can computeHead(X) in polynomial time. Then, while saturatingSB , we
replace every intersection with either∅ or the largest variable, preventing the combinatorial
explosion. �

A second source of complexity comes from the computation of an ET-constraint out
of �0(SNB): eliminating the disjunctions may lead to an exponential blow-up in general.
However, with the same hypothesis as above, the cardinal of�0(X) is smaller or equal to the
number of inclusions of the formY ⊆ X. In particular, in our running example, only�0(A)
contains more than one element:�0(A) = {ha(0),da(0)}. In addition, if we assume that
there is no inclusion between basic variables as it was the case in our previous version[10],
then�0(X) assigns each basic variable either the empty set of a singleton set and therefore
�0(SNB) is smaller in size thanS itself.

5.2.5. Simplifying again the expressions
The goal of this section is to achieve further simplifications. In particular we show that,

after eliminating the basic variables, we can get rid of nested constructionsf c(. . .).
Thanks to Lemma39, we can now restrict our attention to the constraint�0(SNB). In such

a constraint, there is no longer any basic variable, which allows for several simplifications.
First, we can abstract one the left side of inclusions such that the inclusions aree ⊆ e′ where
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Simplification

(N8) t ∩ e1 → ⊥
If t is ground
and�(e1) �⊆ �(t)

(N9) �⇒ e[t ∩ e0]p ⊆ e′ → (∃Y ) �, nonempty(Y )⇒ e[t]p ⊆ e′,
t ∩ e0 ⊆ Y

If t is ground
and�(e0) ⊆ �(t)

(N10) f p=q∧c(�e) → f c(�e)
If f c(�e)|p = f c(�e)|q are ground

(N11) �⇒ e[f c∧p=q (�e)]p ⊆ e′ → true

If t ∈ f c∧p=q (�e)|p·p1 is ground,
u ∈ f c∧p=q (�e)|q·p1 is ground
for somep1 andt �= u

Fig. 6. Simplification rules.

e is either an intersection of variables or an expressionf c(�e) in which, at any position which
is not a strict prefix of a position checked byc, there is a variable.
Formally, we use the following rules, assuming thatn�2 andp is not the root position:

and thatp is not a strict prefix of any path checked (higher) inC:

(A4) �⇒ C[f c(�e)]p ⊆ e′ → (∃X)�⇒ C[X]p ⊆ e′, f c(�e) ⊆ X
(A5) �⇒ C[e1 ∩ . . . ∩ en]p ⊆ e′ → (∃X)�⇒ C[X]p ⊆ e′, e1 ∩ . . . ∩ en ⊆ X

In these rules,X is a new variable: we assume that there is no capture. The following
lemma is a consequence of the definitions:

Lemma 42. Applying abstraction does terminate on any constraint S, resulting in a con-
straint S′ such that the solutions of S are the restrictions of solutions ofS′ to the free
variables of S. Moreover, if S is an ET-constraint, then so isS′ and if every expression is
normal in S, then every expression is normal inS′.

In addition, in the equality tests, iff c∧p=q(�e) is an expression such that the subexpression
at positionp (or q) is basic then the expressions at positionsp, q must contain the same
ground term. This is also sufficient: the equality testp = q can then be removed if the
appropriate inclusionst ⊆ X (t is ground) are added. Formally, we use the rules displayed
in Fig. 6.

Lemma 43. The simplification rules displayed in Fig.6 are terminating. If S is an ET-
constraint in which all expressions are normal, then the resultS′ of simplifying and ab-
stracting�0(SNB) is an ET-constraint in which all expressions are normal and which is
satisfiable iff S is satisfiable. Moreover, in any expressionf c(e1, . . . , en) occurring inS′,
e1, . . . , en do not contain a constructiongc

′
(. . .).
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Proof. The correctness of the rules is a routine verification. let us only consider the rule
(N9). If � � � �, it suffices to assignT (F ) to Y and both sides are satisfied by�. If � � �
and[[e[t ∩ e0]]]� ⊆ [[e′]]�, then extending� with Y !→ [[t ∩ e0]]� we get a solution of the
right hand side:

• either[[t ∩ e0]]� = ∅ and this is straightforward,
• or else[[t ∩ e0]]� = {t}, sincet is a ground term, in which case[[e[t ∩ e0]]]� = [[e[t]]]�.
Conversely, if� is a solution of the right hand side, either[[Y ]]� is empty, which means
that t /∈ [[e0]]� and the left hand side is satisfied by� or [[Y ]]� = {t}, in which case
[[e[t ∩ e0]]]� = [[e[t]]]� ⊆ [[e′]]�.
Thanks to Lemma39, it only remains to show that all expressions are normal inS′

whenever all expressions are normal inS and that, moreover, there is no longer any nested
equality test.

For every expressionf c(�e), P(c) ⊆ �(f c(�e)). Only the case of(N9) is not trivial. The
property is ensured by the side condition.

Condition 5 is satisfied. �0 may replace variables with ground terms, hence replace ex-
pressionsgc(�e) ∩ X1 ∩ . . . Xn with gc(�e) ∩ t1 ∩ . . . ∩ tn. However, eachti is either a
variable or is ground. If at least one of them is ground, we can apply either(N8) or (N9).

Condition 3 is satisfied.There are two situations in which property 3 is not trivially pre-
served: first when, while removing disjunctions in�0(SNB), we do not keep the consis-
tency with equality tests: in an expressionf p=q∧c(�e), X has been replaced witht at a
positionp · p1, while X has been replaced withu at the positionq · p1. This case is
handled by rule(N11).
The second situation in which condition 3 may not be preserved is when we apply the
rule (N9). However, in this case, applying the rule to all identical expressions restores
condition 3.

Condition 1 is satisfied.Thanks to(N10) and(N11), we cannot havep ∼c q, e|p ground
ande|q not ground. So, a repeated application of(N10) consists in removing an equiva-
lence class, which preserves condition 1, thanks to lemma72. The rules other than(N10)

trivially preserve condition 1.

Conditions 4, 2 and 6 are satisfied.Again, the only rule to be considered is(N10) since
this is the only rule in the set whichmodifies the tests without removing them entirely.As
above, since its repeated application removes a class, properties 4, 2 and 6 are preserved.

There is no nested test.Assume that there are nested tests:f c(�e)|p = gc′(�e′) ∩ e′′.
First, if there arep1 ∼c p2 such thatp is a prefix ofp1, by properties 6 and 1, for every
p′ ∼c′ q ′, gc′(�e′)|p′ must be a basic expression, hence a ground term. Then, the rules
(N8), (N9), (N10), (N11) ensure thatc′ is empty.
On the other hand, if this is not the case and if there arep1 ∼c p2 such thatp1 shares a
non-trivial prefix withp, then, by property 1,f c(�e)|p must be a basic expression, hence
a ground term. In this last casec′ must be empty again.
Remains only the case in which, for everyp1 ∼c p2,p1 is either incomparable withp or
a prefix ofp. Then,Abstract can be applied, which contradicts the hypothesis onSNB.

�
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We use a final simplification rule, abstracting away some more expressions:

(N12)�⇒ e[X ∩ g(e′1, . . . , e′m)]p ⊆ e′ → (∃Y1, . . . , Ym)
X ∩ g(�, . . . ,�) ⊆ g(Y1, . . . , Ym)
�⇒ e[g(Y1 ∩ e′1, . . . , Ym ∩ e′m)]p ⊆ e′

If p is nonempty.
The rule assumes that there is a variable�which captures all terms (this is easy to define).
The correctness of the rule as well as the preservation of all properties is quite straight-

forward. Let us now inspect the constraints we have still to consider.

Definition 44. TheSET-constraints(simplified equality tests constraints) are a subclass of
ET-constraints in which, for every clause

nonempty(e′1), . . . , nonempty(e′m)⇒ e ⊆ e′

(resp.nonempty(e′1), . . . , nonempty(e′m)⇒ false).
1. eachofe, e′1, . . . , e′m is either an intersectionof variables or anexpressionf c(e1, . . . , en)

such thate1, . . . , en do not contain any equality tests nor expressionsX ∩ g(. . .).
2. For everyp ∈ �(e), except the root, eitherp is a strict prefix of someq ∈ P(c), or else
e|p is a (basic) ground term orp ∈ P(c) ande|p is an intersection of variables.

3. If p ∼c q, e|p = e|q .
4. e′ is either a variable or an expressionf ′(X1, . . . , Xn) whereX1, . . . , Xn are variables.

Lemma 45. The simplification rules displayed in Fig.6 are terminating. IfS is a SET-
constraint in which all expressions are normal, then the resultS′ of simplifying and ab-
stracting�0(SNB) is an ET-constraint

Proof. Let us show thatS′ verifies the four conditions of SET-constraints.
1. Assumee or one of thee′i is of the formf c(e1, . . . , en) and that one of theej contains an

equality testcj . Then, by abstracting, it must be thatc overlapscj which is not possible
sinceS′ is normalized.

2. After abstraction, ifp is not a strict prefix of someq ∈ P(c) andp is in �(e), then
p ∈ P(c) ande|p is a variable. After simplifying, ifp is not a strict prefix of some
q ∈ P(c), thene|p is either a variable or a ground term.

Conditions 3 and 4 are consequences of the definitions.�

5.2.6. Deduction rules
Now, we are ready to apply the deduction rules given in Fig.7. c ↓i is defined by

(c ∧ c′) ↓i def= c ↓i ∧c′ ↓i , (i · p = i · q) ↓i def= p = q and(j · p = q) ↓i def= � wheni �= j .
ec is the expression in which the top symbol ofe is constrained byc. (It is used only in a
context wheree must be headed with a function symbol orc = �). Finally,X denotes a
variable in these rules.

Lemma 46. The inference rules in Fig.7 are correct: the new constraint is a consequence
of the previous ones.
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Transitivity
�1⇒ e1 ⊆ X �2⇒ X ⊆ e2

�1,�2⇒ e1 ⊆ e2

Compatibility
�⇒ X ∩ e1 ⊆ e′1 �′ ⇒ e2 ⊆ X

�,�′ ⇒ e1 ∩ e2 ⊆ e′1
If bothe1 ande2 are intersections of variables

Clash
�⇒ f (�e) ⊆ g( �e′)

�⇒ false
if f �= g

Projection
�⇒ f c(e1, . . . , en) ⊆ f (e′1, . . . , e′n)

�,nonempty(f c(e1, . . . , en))⇒ e
c↓i
i

⊆ e′
i

Deduction

�1⇒ f c1
(
e11, . . . , e

1
n

)
⊆ X1

.

.

.

�k ⇒ f ck
(
ek1, . . . , e

k
n

)
⊆ Xk

�⇒ X1 ∩ . . . ∩Xk ⊆ e

∃ X1
1, . . . X

n
1, . . . , X

1
k
, . . . , Xn

k
.

�⇒ f
(
X1
1 ∩ . . . ∩X1

k
, . . . , Xn1 ∩ . . . ∩Xnk

)
⊆ e

�1⇒ f c1
(
e11, . . . , e

1
n

)
⊆ f

(
X1
1, . . . , X

1
n

)
.
.
.

�k ⇒ f ck
(
ek1, . . . , e

k
n

)
⊆ f

(
Xk1, . . . , X

k
n

)

The clause� ⇒ f (X1
1 ∩ . . . ∩ X1

k
, . . . , Xn1 ∩ . . . ∩ Xnk ) ⊆ e in the conclusion ofDeduction is marked so

that it cannot be used as a premisse ofDeduction. In addition, if�1⇒ e1 ⊆ X is a marked clause, then for
every clause�2⇒ X ⊆ e2, then clause�1,�2⇒ e1 ⊆ e2 is also a marked clause.

Fig. 7. The saturation rules.

Proof. OnlyProjectionandDeductionarenot trivially correct. Let usstartwithProjection.
We want to prove that, if� is a solution of�⇒ f c(e1, . . . , en) ⊆ f (e′1, . . . , e′n), then�

is a solution of�, nonempty(f c(e1, . . . , en))⇒ e
c↓i
i ⊆ e′i .

Assume� � �, nonempty(f c(e1, . . . , en)). Then there is anu ∈ [[f c(e1, . . . , en)]]� and
[[f c(e1, . . . , en)]]� ⊆ [[f (e′1, . . . , e′n)]]�.
Let t ∈ [[ec↓ii ]]�. We buildv as follows:v is the termu in which

• u|i is replaced witht ,
• for everyi · p ∼c j · q with i �= j , u|j ·q is replaced witht |p.
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Let us show thatv ∈ [[f c(e1, . . . , en)]]�.
• First, v ∈ [[f (e1, . . . , en)]]�: let v = f (v1, . . . , vn). vi = t ∈ [[ei]]� and we prove by
induction on|c| that, for everyi �= j , vj ∈ [[ej ]].

• If c is empty, or ifc does not contain any equationi ·p = j ·q, thenvj = uj and therefore
vj ∈ [[ej ]]�.

• If i · p ∼c j · q, by induction hypothesis,wj = vj [u|j ·q ]q ∈ [[ej ]]�. Moreover, by
property 3,ej |q = ei |p, hencet |p ∈ [[ej |q ]]�. Now, since we assumed in the condition of
the projection rule, that there is no intersection symbol along the pathj · q, vj ∈ [[ej ]]�.

• We have to prove now thatv � c:
◦ For the testsi ·p = i ·q ∈ c, v � i ·p = i ·q follows from t � p = q (sincet � c ↓ i).
◦ The testsi · p = j · q with i �= j are satisfied by construction.
◦ For the testsj1 · p = j2 · q, either there is ar such thatj1 · p ∼c i · r and we are
back to the previous case, or elseu|j1·p = v|j1·p andu|j2·q = v|j2·q , which implies
v � j1 · p = j2 · q sinceu � j1 · p = j2 · q.

Now, v ∈ [[f c(e1, . . . , en)]]� implies thatv ∈ [[f (e′1, . . . , e′n)]]�, hencet ∈ [[e′i]]�.
Now considerDeduction. The rule is actually a combination of several rules which are

all correct: for everyi, we introduce

(1) Xi ∩ f (�, . . . ,�) = f (Xi1, . . . , Xin).

Then, we may intersect both sides ofX1 ∩ . . . ∩ Xk ⊆ e with f (�, . . . ,�) and use a
compatibility. We get

�⇒ f (X1
1, . . . , X

1
n) ∩ . . . ∩ f (Xk1, . . . , Xkn) ⊆ e.

Normalizing the left hand side, we get the clause

�⇒ f (X1
1 ∩ . . . ∩X1

k , , . . . , X
n
1 ∩ . . . ∩Xnk ) ⊆ e.

Now, for everyi, from (1) and the inclusion�i ⇒ f ci (ei1, . . . , e
i
n) ⊆ Xi , intersecting again

both sides withf (�, . . . ,�), we deduce by transitivity and sincef c(. . .) ⊆ f (�, . . . ,�):

�i ⇒ f ci (ei1, . . . , e
i
n) ⊆ f (Xi1, . . . , Xin) �

Lemma 47. Every transformation rule transforms a SET-constraint into a SET-constraint.

Proof. Only the projection rule has to be considered: we need to check thate
c↓i
i satisfies the

conditions of SET-constraints, which follows from the fact thatp ∼c↓i q iff p · i ∼c q · i.
�

Now, we consider the termination problem. The main problem is to control the creation
of new variables.

Lemma 48. The number of variables created during the saturation procedure can be
bounded by|S|t × a.
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Proof. OnlyDeduction introduces new variables. It is simpler to see theDeduction rule
as a variable introduction (rule (1) in the proof of Lemma46) combined with other de-
duction rules, which preserve the semantics and do not introduce variables. As far as vari-
ables creation is concerned, we can, w.l.o.g, assume that the conclusion ofDeduction
are the clausesXi ∩ f (�, . . . ,�) ⊆ f (Xi1, . . . , X

i
n). In particular, if the rule is applied

twice with the same variableXi and the same function symbolf , we can use the same
variablesXij .

Themainproblem is that thesenewvariablesXij may trigger again the introductionof new
variables. However, if we trace the origin of such variables, we observe that introducing the
Xij is subject to the presence of a constraint�i ⇒ f ci (. . .) ⊆ Xi . Now, if later a constraint
�′i ⇒ f c

′
i (. . .) ⊆ Xij triggers the introduction of new variables again, the expression

f c
′
i (. . .) must be the projection of some expression occurring at the previous level. And

since we can only perform a bounded number of projections on a given expression, we can
bound the number of successive variables generation. Let us formalize this.
Let us associate first with each variable alevel: the variables occurring in the original

constraint have level 0, and, each time we introduce new variables with:

(1) X ∩ f (�, . . . ,�) ⊆ f (X1, . . . , Xn)

the level of every variableXi is one plus the level ofX.
Weprove, by induction on the levelmof a variableX, that, if(1) is applied toX, then there

is an expressione in the original set constraint and clauses�⇒ e′ ⊆ X′, �1⇒ X′ ⊆ X1,
…, �n+1⇒ Xn ⊆ X such thate′ is obtained by at leastm successive projections ofe (we

say thate′ is a projection ofe if e = f c(e1, . . . , en) ande′ = ec↓ii for somei).
Whenm = 0, observe that clauses� ⇒ f c(. . .) ⊆ X′ are either in the original set

constraint, or obtained by projection, or obtained byTransitivity or obtained byDe-
duction itself. In caseTransitivity has been applied, there exist another clause�′ ⇒
f c(. . .) ⊆ X′′ and a clause�′′ ⇒ X′′ ⊆ X′. Thus, by a simple induction, there exist a
clause�′ ⇒ f c(. . .) ⊆ X′′ and clauses�1 ⇒ X′′ ⊆ X1, …, �n+1 ⇒ Xn ⊆ X′ such
that�′ ⇒ f c(. . .) ⊆ X′′ has been obtained by projection or byDeduction itself. How-
ever, in the latter case, we explicitly prevented using the resulting clause as a premisse of
Deduction.
Whenm > 0, observe that the variablesXij created byDeduction appear in only one

clause on the right of an inclusion: the clause�i ⇒ f ci (ei1, . . . , e
i
n) ⊆ f (Xi1, . . . , X

i
n).

OnlyProjection, applied to this clause,mayproduceaclause inwhichXij occurson the right

of an inclusion: there exists a clause�i ⇒ eij
ci↓j ⊆ Xij such thate

i
j

ci↓j is the projection
of f ci (ei1, . . . , e

i
n). Then we apply the induction hypothesis to�i ⇒ f ci (ei1, . . . , e

i
n) ⊆ Xi

sinceXi is of levelm− 1.
Now, howmanyexpressionsf c(. . .) can bederived by projection fromagiven expression

? Note first that no projection can be applied to a ground (basic) expression since one-way
symbols do not occur on the right of inclusions. Then, by definition of expressions occurring
in a SET-constraint, the number of expressionsf c(. . .) which can be derived by projection
from an expressiongc

′
(. . .) is the number of strict prefixes of positions inP(c′). It follows

that the number of new variables is bounded by|S|t × a. �
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Lemma 49. The rules of Fig.7are terminating: a fixed point is reached after finitely many
steps(at mostO

(|S|a × 2(a+1)|S|
)
wherea is the maximal arity of a function symbol and

|S| = |S|t + |S|F is the size of the original constraint.

Proof. We are going to show that only a finite number of distinct clauses can be generated
by the rules.
As we have seen in the proof of lemma48, the number of distinct expressionsf c(. . .)

occurring on the left of an inclusion is bounded by|S|t , plus the number of timesDeduction
is applied, which is itself bounded by|S|t × a thanks to Lemma48. The other left sides
of inclusions are intersection of variables, hence there are at most 2a|S|t+|VS | such possible
left hand sides, thanks to Lemma48.
The right sides of inclusions are variables or a function symbol applied to variables,

which gives a bound ofa|S|t + |VS | + |F | × (a|S|t + |VS |)a .
Finally, we have to analyze the possible preconditions. They are conjunctions of

• nonempty(X) whereX ∈ VS ,
• nonempty(f c(e1, . . . , en))wheref c(e1, . . . , en)occurs as a leftmember of an inclusion
constraint.
Thanks to Lemma48, this gives the following bound for the number of possible distinct

preconditions:

2|VS |+|S|t .

Now, putting everything together, at most(
(a + 1)× |S|t + 2a|S|t+|VS |

)
× (a|S|t + |VS | + |F | × (a|S|t + |VS |)a)

×2|VS |++|S|t
distinct clauses can be generated. Since|S|t + |VS |� |S| anda|S|t + |VS |�a× |S|, we get
the bound O

(|S|a × 2(a+1)|S|
)
. �

If S is an ET-constraint, let solved(S) be the clauses� → a in S such that eithera is
falseor elsea is an inclusionf c(�e) ⊆ X whereX is a variable.
As in [7], the following completeness result is obtained by inspecting each clauseC ∈

S which is not in solved(S), showing that, thanks to saturatedness, the least solution of
solved(S) is a solution ofC. There are only some additional cases for nonflat constraints
e.g.f c(X ∩ g(�e), �e′) ⊆ f ( �e′′).

Theorem 50. If S is saturated, then either bothS and solved(S) are unsatisfiable or else
S has a least solution, which is the least solution of solved(S).

Proof. If solved(S) is unsatisfiable, thenS, which contains solved(S), is unsatisfiable. Now,
assume solved(S) is satisfiable and let� be its least solution. We show that� is a solution
of S.
We prove, by induction onn + size(t) that, for every clause� ⇒ e ⊆ e′ in S such that

� � �, and for everyt ∈ [[e]]T nsolved(S)(∅) (which we abbreviatet ∈ [[e]]n), t ∈ [[e′]]�.
The result will follow, by minimality of�.
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There are only three kinds of clauses� ⇒ e ⊆ e′, which are possibly inS and not in
solved(S). We study each of them (e′ is either a variable or an expressionf (X1, . . . , Xn)).
�⇒ X ⊆ g(Y1, . . . , Ym) , t ∈ [[X]]n, hence there is a clause�′ ⇒ e0 ⊆ X in solved(S)
such that� � �′ and t ∈ [[e0]]n−1. By Transitivity , there is a clause�,�′ ⇒ e0 ⊆
g(Y1, . . . , Ym) in S. Since� � �,�′ andt ∈ [[e0]]n−1, we apply the induction hypothesis
and gett ∈ [[g(Y1, . . . , Ym)]]�.

�⇒ X1 ∩ . . . ∩Xp ⊆ e Weusean induction on themultisetM(X1∩. . .∩Xp) def= {k1, . . . ,
kp} of integerski such thatt ∈ [[Xi]]ki andt /∈ [[Xi]]ki−1. The maximum ofk1, . . . , kp
is, by hypothesis, smaller or equal ton. If it is strictly smaller thann, we use directly the
induction hypothesis. If this multiset is equal to{n}, then we are back to the first case.
Hence, let us assume now that the multiset is strictly larger than{n}, which means in
particular thatp�2.

Sincet ∈ [[Xi]]ki for everyi, there are clauses�i ⇒ ei0 ⊆ Xi in solved(S) such that� � �i
and t ∈ [[ei0]]ki−1. If one of the expressionsei0 is an intersection of variables, then by
Compatibility , there is a clause�i ,�

′ ⇒ X1 ∩ . . .∩Xi−1 ∩ ei0 ∩Xi+1 ∩ . . .∩Xp ⊆ e
in S. Moreover,� � �′ andt ∈ [[X1 ∩ . . . ∩ Xi−1 ∩ ei0 ∩ Xi+1 ∩ . . . ∩ Xp]]n. Finally,
M(X1∩ . . .∩Xi−1∩ei0∩Xi+1∩ . . .∩Xp) is obtained replacingki inM(X1∩ . . . ,∩Xp)
with a multiset of strictly smaller numbers. Hence we get a strictly smaller multiset and
we may apply the induction hypothesis:t ∈ [[e]]�.

Now, if none of the expressionsei0 is an intersection of variables:t = f (t1, . . . , tn) and
ei0 = f ci (ei1, . . . , ein). If one of the clauses

�i ⇒ f (ei1, . . . , e
i
n) ⊆ Xi

is marked, then there exist a clause�′i ⇒ f (ei1, . . . , e
i
n) ⊆ X′i marked byDeductionand

clauses�1⇒ X′i ⊆ X1, …,�n+1⇒ Xn ⊆ Xi such that�i = �′i ,�1, . . . ,�n+1. Thus,
there is a clause�′i ⇒ Z1∩ . . .∩Zm ⊆ X′i which triggered the application ofDeduction.
Then, applying repeatedlytransitivity , there is a clause�i ⇒ Z1 ∩ . . . ∩ Zm ⊆ Xi . In
such a case, for everyk, eik = Z1

k ∩ . . . ∩ Zmk . Now, t ∈ [[ei0]]ki−1, hence, for everyk, j ,
tk ∈ [[Zjk ]]ki−1. It follows that, for everyj , t ∈ [[Zj ]]ki−1. Now, byCompatibility , there
is a clause�,�i ⇒ X1 ∩ . . . Z1 ∩ . . . ∩ Zm . . . ∩ Xn ⊆ e in S. And, as before, we get
an intersection of variables with a strictly smaller multiset. We conclude thanks to the
induction hypothesis.
Remains only the case where none of the clauses�i ⇒ f (ei1, . . . , e

i
n) ⊆ Xi is marked.

In this last case, we can applyDeduction. For every clause�i ⇒ f ci (ei1, . . . , e
i
n) ⊆

f (Xi1, . . . , X
i
n), � � �i andt ∈ [[f ci (ei1, . . . , ein)]]ki−1, hencetj ∈ [[Xij ]]ki for everyi, j ,

by induction hypothesis.
If t is a constant, then�⇒ t ⊆ e is a clause ofS and we can conclude.
Otherwise, ife is a variable, then

�⇒ f (X1
1 ∩ . . . ∩X1

p, . . . , X
n
1 ∩ . . . ∩Xnp) ⊆ X

is a clause of solved(S). Hencet = f (t1, . . . , tn) ∈ [[X]]n+1.
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If e is not a variable, thene must bef (Y1, . . . , Yn) and, byProjection, for everyj ,

�, nonempty(f (X1
1 ∩ . . . ∩X1

p, . . . , X
n
1 ∩ . . . ∩Xnp))⇒ X

j
1 ∩ . . . ∩Xjp ⊆ Yj

is a clause ofS. � satisfies the premisse sincet is a witness for the second part of the
precondition. Moreover, for everyj , tj ∈ [[Xj1 ∩ . . . ∩ Xjp]]n andM(Xj1 ∩ . . . ∩ Xjp)
is smaller or equal toM(X1 ∩ . . . , Xp). Then, by induction hypothesis,tj ∈ [[Yj ]]� for
everyj . Hencet ∈ [[e]]�.

�⇒ f c(e1, . . . , ep) ⊆ g(X1, . . . , Xm). If f �= g, then, byClash, the clause� ⇒ false
is in S, hence in solved(S), which contradicts� � �.
Assume nowf = g. Thent = f (t1, . . . , tn). By Projection, there is a clause

Ci
def= �, nonempty(f c(e1, . . . , ep))⇒ ec↓i ⊆ Xi

in S, for everyi. Sincet ∈ [[f c(e1, . . . , en)]]�,

� � �, nonempty(f c(e1, . . . , en)).

For everyi, ti ∈ [[ei]]n sincet ∈ [[f (e1, . . . , ep)]]n and ti � c ↓i sincet � c (and by

definition of c ↓i). Thus ti ∈ [[ec↓ii ]]n which implies ti ∈ [[Xi]]� by induction, thus
f (t1, . . . , tp) ∈ [[f (Y1, . . . , Yp)]]�. �

We are now reduced to prove that the satisfiability ofsolved(S) is decidable.

5.3. Connection with automata with one memory

Theorem 51. For every satisfiable SET-constraintS, there is an(effectively computable)
alternating automatonwith onememoryAS and an homomorphismH such thatAS accepts
t in the stateX iff H(t) ∈ [[X]]� where� is the least solution of solved(S).

Proof. The memory alphabet of the automaton is the set of function symbols used in the
constraint and the alphabetFAS is the memory alphabet with some additional symbols
allowing to check on auxiliary branches non-emptiness conditions. More precisely,
• the states ofAS consist of
◦ the variables ofS. We write themqX such states, forX a variable ofS
◦ the statesq� for every� = nonempty(e1), . . . , nonempty(em) such thatnonempty
(e1), . . . , nonempty(em), nonempty(em+1), . . . , nonempty(en) is a precondition
of a clause inS.

◦ for every expressione = f c(e1, . . . , en) and for every nonleaf positionp of such an
expression, a stateqe,p
a stateqa for every constanta ∈ F

• The memory alphabet isF
• The set of function symbolsFAS consists in an auxiliary binary symbolE and, for every
symbolf ∈ F a symbolf+1 whose arity is one plus the arity off .
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LetH be the homomorphism:

H(f (t1, . . . , tn))
def= f (H(t1), . . . , H(tn))

H(f+1(t0, t1, . . . , tn))
def= f (H(t1), . . . , H(tn))

H(E(t1, t2))
def= a

wherea is any constant inF . �(X) will be the image byH of the trees recognized in state
qX byAS .
By convention, ifp is a leaf position off c(e1, . . . , en), we letqe,p be the conjunction

qX1 ∧ . . . ∧ qXm if e|p = X1 ∩ . . . ∩Xm andqe,p = qa if e|p is the constanta.
The transition rules ofAS consist of

1. a
�−→
a
qa .

2. f (qe,1, . . . , qe,n)
�−−−−−−→


x1,...,xn.a
qf c(e1,...,en) for every literalnonempty(f c(e1, . . . , en))

occurring inS. � is the equality test̃c defined as follows: ˜i · p = j · q def= i = j and

c̃1 ∧ c2 def= c̃1 ∧ c̃2.
3. g(qe,p·1, . . . , qe,p·k)

c̃↓p−−→
F

qe,p in whiche = f c(e1, . . . , en) occurs inS, p is a nonroot

position ofe, e|p is headed withg. F = 
x1, . . . , xk.xi if p · i is a prefix of a position
in P(c). Note that if there are several such indices, Lemmas28 and43 imply that the

choice is irrelevant.c ↓ p is defined as in the projection rule:c ↓  def= c, c1 ∧ c2 ↓
i · p def= (c1 ↓ i · p) ∧ (c2 ↓ i · p), (j · p1 = k · p2) ↓ i · p def= � if either i �= j or k �= i
and(i · p1 = i · p2) ↓ i · p def= (p1 = p2) ↓ p.

4. E(qe, qe′)
�−−−−−→


x1,x2.x1
qnonempty(e),nonempty(e′) for every nonempty(e), nonempty

(e′) which is an initial sequence of a precondition of a clause ofS.

5. E(q�, qe)
�−−−−−→


x1,x2.x1
q�,nonempty(e) for every�, nonempty(e) which is an initial se-

quence of a precondition of a clause ofS.

6. f+1(q�, qe,1, . . . , qe,n)
c̃−→
F

qX for every clause� ⇒ e ⊆ X in S such thate =
f c(e1, . . . , en). F = 
xi1, . . . , xik .t wheret is the expressione in which, at eache|j ·p
such thatj · p ∈ P(c) is replaced withxij whereij = j ∈ c̃.
The following intermediate results are proved in AppendixB:

• If a term is accepted in stateq� where� is a precondition, then� � �.
• If � � �, then there is a term accepted in stateq�.
• If a termt is accepted in stateqX, thenH(t) ∈ �(X).
• If t ∈ �(X), then there existst ′ is accepted in stateqX such thatH(t ′) = t .
From these lemmas, it follows thatAS accepts the least solution� of solved(S) in the

sense thatt is accepted in the stateX iff H(t) ∈ [[X]]�. �

Remark (W). e conjecture that the minimal solution of a SET-constraint is recognized by
an alternating tree automata with one memory. However, to prove this would require more
saturation rules to get rid of nonemptiness conditions (as in Section3).
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As a consequence of Theorem51we get:

Theorem 52. The satisfiability of ET-constraints is decidable.

Proof. As a consequence of Lemmas46, 49, and Theorem50, we can assume thatS is a
solved form.
Then, consider all clauses�⇒ false in S and letS′ be the rest ofS.
S′ is satisfiable, then, thanks to Theorem51, there is an automatonAS such thatt is

accepted inqX iff H(t) ∈ [[X]]� where� is the minimal solution ofS′.
LetQf be the set of statesq� such that� ⇒ false is in S. ThenS is satisfiable iff, the

automatonAS with final statesQf does not accept any tree, which is decidable thanks to
Theorem15. �

6. Analysis of cryptographic protocols

We present here a decidable fragment of the class of protocols described in Section2.2
and we illustrate the relevance of this fragment by an example (inspired by Kerberos).

6.1. A decidable class of protocols

As we have seen in Section2, the specification of a protocol and its secrecy policy rely
not only on the rules of the protocol, but also on the signature. In particular, we must say
what are the expected types of each argument of a function symbol. This is far from being
innocent, since this corresponds to the ability of each agent to recognize different data types.
If all function symbols are assumed to take messages or agents as arguments and return
messages or agents, then the principals are assumed to distinguish only agents from other
messages. For instance, a pair of agents can be taken as a key in this case. Since many
attacks are due to type confusion[8], such a signature specification would allow to detect
many more attacks. On the other hand, if typing information is available, then deciding
secrecy is easier.
One specificity of our model is that both the signature, hence the available type infor-

mation, and the protocol itself are parameters. The defining conditions for our class will
therefore depend on both the signature and the protocol and be more restrictive when the
typing policy is more sloppy.

A rule of a protocol is of the form

{S(A, i,M),M1, . . . ,Mp} −→ {S(A, i + 1,M ′),M ′
1, . . . ,M

′
q},

whereMi are messages. As we have seen in Section2, the secrecy for general protocols of
this form is undecidable. To obtain a decidable class, we consider protocols such that, for
each rule, the variables which are shared byM1, . . . ,Mp,M

′
1, . . . ,M

′
q satisfy a “basicity

condition”. Roughly, such a condition will state that only one variable may occur several
times in different contexts without being of basic type. For instance, if we do not assume
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any special ability of agents to recognize data types, then repeated variables occurring in
different contexts must be agents names, except for possibly one such variable.
In order to express our condition, letXs be a variable for each sorts in the signature and

let Cmsg be the union of the definite set constraints

f (Xsort 1, . . . , Xsort n
) ⊆ Xsort

for every function symbolf of typesort 1× · · · × sort n → sort , and the definite set
constraints

Xsort ⊆ Xsort ′

if sort is a subsort ofsort ′. Thebasic sortsare defined as in Definition22: this is the
largest set of sorts such that
• If s is basic thenR(Xs) only contains one-way symbols and basic sorts.
• If s is basic then
◦ eitherR(Xs) contains only one clausee ⊆ Xs such thatXs does not occur ine.
◦ or every function symbol occurring inR(Xs) occurs (possibly) only inR(Xs′)where
s′ is basic.

For instance, we have seen in Example23 that, in our running example, all sorts are basic
exceptMessage . LetBmsg be the set of basic sorts.
Now, for each rule

rl = {S(A, i,M),M1, . . . ,Mp} −→ {S(A, i + 1,M ′),M ′
1, . . . ,M

′
q},

let trl
def=〈〈A,M〉,M1, . . . ,Mp, 〈A,M ′〉,M ′

1, . . . ,M
′
q〉 and for each variableY , occurring in

rl , let Srl,Y
def= {p such thattrl |p = Y }. Let crl,Y be the equality constraintp1 = . . . = p|k

for pj ∈ Srl,Y . In the particular case whereSrl,Y is a singleton,crl,Y is the empty constraint.
Finally, letcrl be the conjunction of thecrl,Y for all variablesY occurring inrl .

Example 53.We describe here thetrl andcrl corresponding to our running example (see
Fig. 1, Example5).
For the rule

∅−→


S(A,1, 〈A,B, s〉),
S(B,1, 〈B, s〉),
S(s,1, s)




we get the term and constraints:

trl 0
def= 〈〈A, 〈A,B, s〉〉, 〈B, 〈B, s〉〉, 〈s, s〉〉

crl 0
def= 11= 121 ∧ 122= 21= 221

For rule1:

{S(A,1, 〈A,B, s〉)} −→ {S(A,2, 〈A,B, s〉), 〈A,B〉}
trl 1

def= 〈〈A, 〈A,B, s〉〉, 〈A, 〈A,B, s〉〉, 〈A,B〉〉,
crl 1

def= 11= 121= 212= 221 ∧ 122= 222
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For rule2:{
S(s,1, s)
〈A,B〉

}
−→

{
S(s,2, s),
{B,K(A,B), {A,K(A,B)}shr(B)}shr(A)

}
trl 2

def= 〈〈s, s〉, 〈A,B〉, 〈s, s〉,
〈{B, k1(A,B), {A, k1(A,B)}shr(B)}shr(A)〉〉

crl 2
def= 21= 4121= 41311= 413121= 42 ∧ 22= 411= 4122

= 413122= 4132

For rule3:{
S(A,2, 〈A,B, s〉),
{B,X, Y }shr(A)

}
−→

{
S(A,3, 〈A,B, s,X,m(A,B)〉),
〈{m(A,B)}X, Y 〉

}
trl 3

def= 〈〈A, 〈A,B, s〉〉, {B,X, Y }shr(A), (5)

〈A, 〈A,B, s,X, n1(A,B)〉〉, 〈{n1(A,B)}X, Y〉〉 (6)

crl 3
def= 11= 121= 22= 31= 321= 3251= 4111∧ (7)

122= 211= 322= 3252= 4112∧ 212= 324= 412 ∧ 213= 42.

(8)

For rule4:{
S(B,1, 〈B, s〉),
〈{Z}X, {A,X}shr(B)〉

}
−→

{ {S(B,1, 〈B, s,A,Z,X〉),
{h(Z)}X}

}
trl 4

def= 〈〈B, 〈B, s〉〉, 〈{Z}X, {A,X}shr(B)〉,
〈B, 〈B, s,A,Z,X〉〉, {H(Z)}X}

crl 4
def= 11= 121= 222= 31= 321 ∧ 211= 324= 411 ∧ 212= 2212

= 325= 42

For each termt , let t̃ be the expression obtained by replacing int each variable of sorts
with Xs . Finally, leturl be the expression (with equality constraints) obtained fromt̃rl by
adding (at the top) the constraintcrl .
We are now ready to define the basicity condition.

Definition 54. A protocolP satisfies thebasicity conditionif, for each rulerl of P , url as
defined above satisfies the basicity condition w.r.t. the set of basic sorts.

We tried to give here a definition which is as general as possible, hence might be a bit
difficult to grasp. Let us give a simple sufficient condition:

Proposition 55. Aprotocol satisfies thebasicity condition if, for each rulerl of theprotocol,
one of the following holds:
• There is at most one variable occurring at least twice inrl and whose sort is not basic.
• There is a decomposition oft l intoC[t1, . . . , tn] such that every variable which is not of
sortAgent occurs in at most oneti .
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For instance, in Example53, only Y,Z have a nonbasic sort, hence the first condition
above is met by every rule.
For simplicity, we often writeA and Msg instead of, respectively,XAgent and

XMessage .

Theorem 56. If P satisfies the basicity condition, then the secrecy ofP is decidable.

In particular, our running example satisfies the basicity condition. Indeed, there are at
most two occurrences of nonbasic variables in each expressions. However, note that giving
the ability for agents to recognize messages of the formK(a, b) was not innocent: if we
replace our key variableK by a message variableX then our protocol does not remain in
our decidable class.
We prove the theorem in next section.

6.2. Proof of Theorem56

The proof of Theorem56proceeds in two steps. First, we show that every protocol can be
“translated” into Horn clauses such that amessage can be sent if and only if a corresponding
formula can be derived from the Horn clauses. Then, we show that if a protocol satisfies the
basicity condition then the corresponding Horn clauses can be expressed as ET-constraints,
thus secrecy is decidable.
Step 1:

Lemma 57. Let P be a protocol with its secrecy policyS0. Let I0 be the maximal set of
initial knowledge of the intruder(compatible with the secrecy policyS0 ofP )mentioned in
Section2. Then, there exists a setH of Horn clauses with a special predicateI such that
I (m) is derivable fromC (wherem is a message), iff there exists a reachableH such that
m ∈ H .

Proof. H is built as the union of four sets:Hmsg,HI0,HI andHP .
Hmsg corresponds to the construction of the messages with their sort:Hmsg is the union
of the clauses

Psort 1(x1) . . . Psort n
(xn)

Psort (f (x1, . . . , xn))

for every function symbolf of typesort 1 × · · · × sort n → sort , where thePsort
are new predicates. We also add toHmsg the union of the clauses

Psort (x)

Psort ′(x)

for everysort , sort ′ such thatsort is a subsort ofsort ′. Moreover, we need to distin-
guish between symmetric and public keys: every term is symmetric except the terms of the
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Initial
knowledge

I0(x)

I (x)

Analysis
I (f (x1, . . . , xn))

I (xi )

f ∈ IF , 1� i�n

I ({x1}x2) I (x2) Sym(x2)

I (x1)

I ({x1}pub(x2)) I (prv(x2))

I (x1)

I ({x1}prv(x2)) I (pub(x2))

I (x1)

Synthesis
I (x1) · · · I (xn)

I (f (x1, . . . , xn))

f ∈ PF

I (x1) · · · I (xn) PAd(xj1) . . . PAd(xjk )

I (f (x1, . . . , xn))

f ∈ AF ,
f restricted v.s.
j1, . . . , jk

Fig. 8. Horn clauses for the intruder capabilities.

form pub(t) or prv(t). Thus we add toHmsg the clauses

PMessage (x1) . . . PMessage (xn)

Sym(f (x1, . . . , xn))

for every function symbolf ,f �= pubandf �= prv. Then it is easy to prove thatPsort (m)

is derivable fromHmsg if and only ifm is a message of sortsort andSym(m) is derivable
fromHmsg if and only ifm is a symmetric term.
Then, by the following lemma (proved in AppendixC), there exists a set of Horn clauses
HI0 such thatI0(m) is derivable fromHI0 ∪Hmsg if and only ifm ∈ I0.

Lemma 58. Let t1, . . . , tn be message schemes with the free variablesx1, . . . , xk. Then,
there exists a set of Horn clausesHI0 with two predicatesI0 andP�p such thatI0(m) is
derivable fromHI0 ∪Hmsg if and only ifparts(m) ∩ {ti� |1� i�n,�(xi) ∈ Ah} = ∅.

The clauses ofHI are described Fig.8. They simulate the capabilities of the intruder.
To simulate the protocol rules, we first define the set of expressionstypes(t) generated by

a message schemet by induction ont . If t is a constant, thentypes(t) = ∅. If t is a variable
of sortsort , thentypes(t) = {Psort (t)}. If t is a term of the formf (t1, . . . , tn), then
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I (si (A,M)) I (M1) · · · I (Mp) types(A,M,M1, . . . ,Mp,M
′
1, . . . ,M

′
q )

I (si+1(A,M ′))

I (si (A,M)) I (M1) · · · I (Mp) types(A,M,M1, . . . ,Mp,M
′
1, . . . ,M

′
q )

I (M ′
i
)

For i = 1, . . . , q

Fig. 9. Horn clauses corresponding to the rule{S(A, i,M),M1, . . . ,Mp} −→ {S(A, i + 1,M ′),M ′1, . . . ,M ′q }.

types(t) = ⋃
1� i�ntypes(ti). Intuitively types(t) is the set of constraints corresponding

to the sorts of the variables oft . We sometimes writetypes(t1, t2) instead of
types(t1) ∪ types(t2).

Example 59. Let us consider the message scheme{B,K,X}K of our running example.
Then

types({B,X, Y }shr(A)) = {PAgent (B), PKey (X), PMessage (Y ), PAgent (A)}
ensures thatA andB stand for agent variables,X stands for a key variable andY for a
message variable.

ThenHP is the union, for each rule

{S(A, i,M),M1, . . . ,Mp} −→ {S(A, i + 1,M ′),M ′
1, . . . ,M

′
q}

of the protocolP , of the clauses described in Fig.9.
We prove by induction inAppendixCthatH verifies the required property, which concludes
the proof of Lemma57. �

Remark. The predicate symbols ofH are thePsort , P�p introduced by Lemma58and
three distinct predicate symbols:I, I0 andSym.

Example 60.We present here the clausesHP corresponding to our running example. For
simplicity, we factorize the rules whose premises are identical, letting them contain several
conclusions (though it must be kept in mind that these are Horn clauses).

Initialization rule:

PAgent (A) PAgent (B)

I (s1(A, 〈A,B, s〉)) I (s1(B, 〈B, s〉)), I (s1(s, s))

.
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Rule 1:

PAgent (A) PAgent (B) I (s1(A, 〈A,B, s〉))

I (s2(A, 〈A,B, s〉)) I (〈A,B〉)
.

Rule 2:

PAgent (A) PAgent (B) I (s1(s, s)) I (〈A,B〉)

I (s2(s, s)) I ({B,K(A,B), {xA,K(A,B)}shr(B)}shr(A))
.

Rule 3:

PAgent (A) PAgent (B) PKey (X) PMessage (Y )

I (s2(A, 〈A,B, s〉)) I ({B,X, Y }shr(A))

I (s3(A, 〈A,B, s,X,m(A,B)〉)) I (〈{m(A,B)}X, Y 〉)
and similarly for Rule 4.

Step 2: We can start the second part of the proof of Theorem56. We writeH�3E when
E is derivable fromH.
Let P be a protocol. Its secrecy policyS0 is defined by

S0 =
s⋃
j=1

{
t
j
1 , . . . , t

j
nj | xj1, . . . , xjkj ∈ Ak

}
,

where thetji are message schemes with free variablesx
j
1, . . . , x

j
kj
. By definition of secrecy,

P is not secure iff there exists a reachableH such thatfake(Cont(H) ∪ I0) ∩ S0 = ∅, i.e.,
iff there exists a reachableH ′ such thatCont(H ′) ∩ S0 = ∅, i.e.,
iff there exists a reachableH ′, ∃i, j , ∃ai1, . . . , aip ∈ Ah such thatt

j
i (ai1, . . . , aip ) ∈ H ′

iff, by Lemma57, ∃i, j, ∃ai1, . . . , aip ∈ Ah such thatH�3I (t
j
i (ai1, . . . , aip )).

Thus, we are left to prove that∃i, j, ∃ai1, . . . , aip ∈ Ah such thatH�3I (t
j
i (ai1, . . . ,

aip )) is decidable.
We express the setH of Horn clauses as a set constraint: the set of definite set constraint

corresponding toHmsg is the setCmsg described in Section6.1 augmented with the
inclusions:

f (Msg, . . . ,Msg) ⊆ XSym

for every function symbolf ∈ F , f �= pub, f �= prv.
The definite set constraintCI corresponding toHI is described in Fig.10. The set of definite
set constraintCI0 corresponding toHI0 is constructed similarly.
We associate with each Horn clause described in Fig.9 the following ET-constraint:

〈si(A, M̃) ∩ I, M̃1 ∩ I, . . . , M̃p ∩ I, si+1(A, M̃ ′), M̃ ′
1, . . . , M̃

′
q〉crl ⊂ I, (9)

wherecrl and ·̃ are defined in Section6.1. The union of these ET-constraint is denoted
by CP .
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Initial
knowledge

I0 ⊆ I

Analysis f (I, . . . , I ) ⊆ I f ∈ IF

{}−11 ({Msg}I∩Sym∩ I ) ⊆ I

{}−11 ({Msg}prv(pub−1(I )) ∩ I ) ⊆ I {}−11 ({Msg}pub(prv−1(I )) ∩ I ) ⊆ I

Synthesis f−1
i
(I ) ⊆ I f ∈ PF , i�arity(f )

f (�1, . . . , �n) ⊆ I
f ∈ AF ,
f restricted v.s.j1, . . . , jk
�m = XAd if ∃i, m = ji ,
�m = I otherwise.

Fig. 10. Set constraints corresponding to the intruder capabilities.

Example 61. TheHorn clause corresponding to rule 3 of our running example is expressed
by

〈s2(A, 〈A,A, s〉) ∩ I, {A,XKey ,Msg}shr(A) ∩ I,
s3(A, 〈A,A, s,XKey ,m(A,A)〉), 〈{m(A,A)}XKey ,Msg〉〉crl3 ⊆ I,

wherecrl 3 is the equality constraint described in Eq. (5), Section6.1.

Let C be the union ofCmsg, CI0, CI andCP . The set variables ofC are the variables
Xsort for each sortsort and the four additional variables:X�p, which corresponds to
P�p, I, I0 andXSym.

C is a faithful representation ofH:

Lemma 62. LetM be a collection of setsSQ for every(unary) predicate symbolQ. Then
M is a model ofH iff the substitution�M assigningXQ to SQ is a solution ofC.

Proof. LetM be a model ofH and let us show that�M satisfiesC.
The only nonobvious part of the proof is to show thatSI satisfies the set constraint defined

in Eq. (9). Let rl be a rule of the protocol, let

t ∈ 〈si(A, M̃�) ∩ SI , M̃1� ∩ SI , . . . , M̃p� ∩ SI , si+1(A, M̃ ′�), M̃ ′
1�, . . . , M̃

′
q�〉

such that t satisfies crl . t = 〈si(a,m),m1, . . . , mp, si+1(a,m′),m′1, . . . , m′q〉 and
si(a,m),m1, . . . , mp ∈ SI . Since t satisfiescrl , by applying the clause defined in
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Fig. 9, we deducesi+1(a,m′),m′1, . . . , m′q ∈ SI , thus, by applying the clause
I (m1) I (m2)

I (〈m1,m2〉)
, t is in SI ,

thusSI satisfies constraint9.
Conversely, let�M be a model ofC. The only nonobvious part of the proof is to

show thatSI satisfies the Horn clause defined in Fig.9. Let m = M�′,m = M ′�,
mi = Mi�′,m′i = M ′

i�, a = A�′ such thatsi(a,m),m1, . . . , mp ∈ SI and�′ satis-
fies the conditionscond(A,M,M1, . . . ,Mp,M

′
1, . . . ,M

′
q). Thus for every variableX of

A,M,M1, . . . ,Mp,M
′
1, . . . ,M

′
q , �

′(X) ∈ I(S
X̃
): �′ respects the type of the variables. Let

t = 〈si(a,m),m1, . . . , mp, si+1(a,m′),m′1, . . . , m′q〉, then
t ∈ 〈si(A, M̃�) ∩ SI , M̃1� ∩ SI , . . . , M̃p� ∩ SI ,

si+1(A, M̃ ′�), M̃ ′
1�, . . . , M̃

′
q�〉

and, by construction ofcrl , t satisfiescrl . Thus t is in SI . Applying the set constraint
〈〉−1i (SI ) ⊆ SI , we getsi+1(a,m′),m′1, . . . , m′q ∈ SI , thusSI satisfies the Horn clause
defined in Fig.9. �

Then

∃i, ∃ai1, . . . , aip ∈ Ah such thatH�3I (ti(ai1, . . . , aip ))

if and only if

C ⋃
i

I ∩ ti (XAh, . . . , XAh) ⊆⊥

is not satisfiable.
First, if ∃i, ∃ai1, . . . , aip ∈ Ah such thatH�3I (ti(ai1, . . . , aip )) then

C⋃
iI ∩ ti (XAh, . . . , XAh) ⊆⊥is clearly not satisfiable.

Now, assume∀i,∀ai1, . . . , aip ∈ Ah H � �3I (ti(ai1, . . . , aip )) and consider the least
HerbrandmodelM ofH. ThenM alsomodels every negative clause of the form¬I (ti(ai1,
. . . , aip )). Applying Lemma62, �M is a solution for:

C⋃
iI ∩ ti (XAh, . . . , XAh) ⊆⊥.

Assume now thatP satisfies the basicity condition as in Theorem56, then the setC as
constructed above is a set of ET-constraints. Thus

C ⋃
i

I ∩ ti (XAh, . . . , XAh) ⊆⊥

is also a set of ET-constraints.Then, thanks toTheorem52, the satisfiability of this constraint
is decidable, which completes the proof of Theorem56.
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7. Conclusion

Let us summarize the contributions of the paper (roughly in increasing order of signifi-
cance) and discuss their meaning and possible further developments.
1. The security of a protocolP is undecidable, even for a restricted class in which there

are no nonces, no compound keys and there is at least one honest instance ofP . This
is Theorem6. This shows that the source of undecidability does not come from nonces,
but from the memorization and copying facilities of the agents.

2. The satisfiability of intersection constraints with nonemptiness guards is DEXPTIME-
complete. This is Theorem11. It is a slight extension of results about set constraints.

3. We introduced the new class of tree automata with one memory and we showed that
the emptiness is DEXPTIME-complete for this class. This is Theorem15. This result is
interesting in itself. One open question is its generalization with disequality tests (and
not only equality tests between memory contents).

4. We introduced a class of set constraints with equality tests, in which the tests are not
restricted to brother positions.We showed the decidability of constraints in this class by a
reduction to tree automata with onememory. This is Theorem52. It must be emphasized
that we did not use the full power of automata with one memory here.
Interpreting Lemma39in the context of cryptographic protocols, it shows that, for basic
variables, we may restrict our attention to finitely many instances (the representatives
w.r.t. an appropriate equivalence relation). This shows in particular that we can assume
w.l.o.g. that there is a bounded number of principals (the bound is given by the index of
the equivalence relation).
One possible research direction is to investigate generalizations of this lemma, for in-
stance in the context of nonces: is there an equivalence relation (preserving the solutions)
which reduces the general case to the case of finitely many nonces ? Such a result would
not necessarily contradict the undecidability result of[18] since the protocol resulting
from the coding of that paper does not satisfy the basicness hypothesis. In other words,
as suggested by Theorem6, the key for deciding the secrecy of cryptographic protocols
might be to limit the copying facilities of the agents, not the number of sessions or nonces
they generate.

5. We showed the decidability of secrecy for a class of cryptographic protocols, without
any assumptions on the number of sessions (whether parallel or not). This is Theorem
56. This result is obtained by a reduction to set constraints with equality tests, but we
did not use the full power of such constraints.
The use of set constraints, abstracting away the order in which messages have been sent
over the network is proved to be relevant.Also, the ability of agents to recognize different
types of data appeared clearly as a simplification factor, which can be tuned so that we
fall in or out of the decidable class.We have showed the relationship between this ability
and the copying facilities of the agents: the more they are able to distinguish between
different data types, the more they are allowed to copy blindly pieces of messages,
without escaping from the decidable class.
There are still several weaknesses in our paper. First, the constraint solving technique is

too complex: we conjecture that our algorithm is in DEXPTIME, though we only showed
a doubly exponential upper bound. It is also too complicated for the applications we have
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in mind. That is mainly because we tried to be as general as possible. However, most of
the time, we do not need such general constraints. In particular, we can avoid the most
complicated step (Lemma28) simply by designing normalized constraints only.
Finally the big open question is the extension of these results to an unbounded number

of nonces.

Appendix A. Proof of Lemma 28

Lemma 28 (Every expression). e which satisfies the basicity condition can be transformed
into a normal expressione′ such that, for every�, [[e]]� = [[e′]]� and, moreover|e′|F and
|e′|t are polynomially bounded by|e|t and|e′|F .
Note first that condition 2 is initially satisfied by all expressions since we assumed that

any two expressions inP(c) are incomparable with respect to the prefix ordering.
Weare going to perform successive transformations, verifyingmore andmore conditions,

while preserving those which have already been reached. Initially, we only assume that
condition 1 is satisfied, as stated in the hypothesis of the lemma.
Step 1: The goal of this step is to ensure, in addition to properties 1 and 2 a property,

which implies condition 3.
If c is an equality test andp is a position, wewritep ·c the equality test∧q∼cr p ·q = p ·r.

In addition to condition 3, we want to ensure that in any expressiongc(. . . , ei , . . .) such
that, for somec1, i · c1 ⊆ c, if ei = f c′(�e′) ∩ e′′, thenP(c1) ⊆ �(f c

′
(�e′)).

To define our rule, we first need to introduce a new equivalence relation:

Definition 63. Given an equality testc such thatc is satisfiable, we define-c andSc to be
the least setS and equivalence relation- such that:

p ∼c q ⇒ p, q ∈ S andp - q
p ∼c′ q ⇒ p, q ∈ S andp - q
p - q ⇒ q - p
p - q, q - r ⇒ p - r
p · q ∈ S
p - p′

}
⇒

{
p′ · q ∈ S
p · q - p′ · q

Lemma 64. The fixed point for-c and Sc is reached after a finite number of steps. In
addition, there exists an order�c on the equivalence classes of-c such thatu�cu

′
implies that no position ofu is a prefix of a position ofu′.

Proof (sketch). First, if there are two nonempty positions such thatp · q - p thenc is
unsatisfiable: by induction (on the fixed point computation ofS,-), if t � c ∧ c′, then
for everyp - q, t � p = q. Since we are only considering finite terms, we cannot have
t |p = t |p·q .
Consider the DAGG whose vertices are elements ofP(c) ∪ P(c′) and (labeled) edges

p
i−→ p · i. Then, for eachp ∼ci p′, merge the two corresponding vertices. We get a
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Fig. 11.G andGf for c.

new graphGf , whose set of vertices is contained in the original set of vertices. Then, by
induction (on the fixed point computation ofS,-), S is included in the set of paths of in
Gf and ifp - q, then the path labeled byp and those labeled byq leads to the same vertex
(starting from the vertex).
As we have seen above,Gf is acyclic, thusS and- are finite, thus the fixed point forS,-
is reached after a finite number of steps. Note that the number of vertices ofGf is smaller
or equal to the number of vertices ofG (Fig. 11).
SinceGf is acyclic,Gf induces an order� on its vertices such that ifv�v′ than no

path leading to the vertexv is a prefix of a path leading to the vertexv′. Each equivalence
classu of - is included in the set of paths of one of the vertexvu of the graph. We first
order arbitrarily the equivalence classes which lead to the same vertices and then we extend
this order byu�cu

′ if vu�vu′ andvu �= vu′ . Thenu�cu
′ implies that no position ofu is

a prefix of a position ofu′. �

Example 65. Considercdef=1 = 21∧ 3 = 41∧ 2 = 31. Then, the graphsG andGf are
pictured in Fig.11and

-c= {1= 21,3= 41,2= 31,21= 311,31= 411,311= 4111}.

In addition, we define theequality testce of an expressione by induction one by:

ce1∧...∧en = ce1 ∧ . . . ∧ cen
cf c(e1,...,en) = c ∧ 1 · ce1 ∧ . . . ∧ n · cen ∧ 1= 1∧ . . . ∧ n = n

Let-ce be the equivalence relation corresponding toce andu1, . . . , un be its equivalence
classes numbered in such a way thatui�ceuj implies i�j (this is possible thanks to
Lemma64).
Then,(N1) is the successive application ofNu1, . . . , Nun where

(Nu) e→ e




⋂
p′∈u∩�(e)

e′′∈e|p′

e′′


p∈u∩�(e)
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Note. The rule(N1) is obviously terminating since it requires at most as many steps as
the number of classes modulo-ce . However, its complexity is unclear. We conjecture for
instance that|e′|F is polynomially bounded by|e|F and|e|t .

Lemma 66. (N1) preserves the semantics as well as properties1 and2.

Proof. For every equivalence classu and for everyp1, p2 ∈ u ∩ �(e), by construction,
ce � p1 = p2. Hence the rule preserves the semantics.
Now, it preserves properties 1 and 2 since it consists in repeatedly replacing an expression

e′ with the intersection ofe′ and other expressions, without changing the tests and, if an
expression is basic, then its intersection with any other expression is also basic.�

Lemma 67. If e′ is the result applying(N1) to e, then:
• ∀p ∈ Sce ∩�(e′), e′|p is a singleton.
• ∀p -ce p′, e′|p = e′|p′ .
• if e′|p = f c(e1, . . . , en) ∩ e′′, thenp · c ⊆-ce and for all1� i�n, p · i ∈ Sce .
• if p ∈ �(e′) and p〉p′ for somep′ ∈ ui whereui is minimal for �c, then e′|p ⊆⋃

q∈�(e)e|q .
• if e′|p = f c(e1, . . . , en) ∩ f c′(e′1, . . . , e′n) ∩ e′′ then for everyi = 1, .., n, ei = e′i .

Proof. We prove by induction onk that if e′ is the result of applyingNu1 . . . Nuk to e, then
for all i�k,
1. ∀p ∈ ui ∩�(e′), e′|p is a singleton.
2. ∀p, p′ ∈ ui ∩�(e′), e′|p = e′|p′ .
3. if e′|p = f c(e1, . . . , en) ∩ e′′, thenp · c ⊆-ce and for all 1� i�n, p · i ∈ Sce .
4. if p ∈ �(e′) andp〉p′ for somep′ ∈ ui ∩�(e′), i�k whereui is minimal for�c, then
e′|p ⊆ S(e), whereS(e)def=⋃

q∈�(e)e|q .
If k = 0, i.e., no rule has been applied, then 1, 2 and 4 are true. 3 is true by construction of
Sce and-ce .
Assume it is proved fork and let us prove the property fork + 1. We considere′′ the result
of e′ byNuk+1 wheree′ is the result ofe by the application ofNu1 . . . Nuk .

e′′ = e′



⋂
p′∈uk+1∩�(e′)
e′′′∈e′|p′

e′′′


p∈uk+1∩�(e′)

.

Considerq, q ′ ∈ ui ∩�(e′′), i〈k + 1.
• eitherq is incomparable with the paths ofuk+1∩�(e), thene′′|q = e′|q and, by induction
hypothesis,e|q is a singleton.

• or there existsp ∈ uk+1 ∩�(e) such thatq�p, i.e.q = p · q1, then

e′′|q = e′



⋂
p′∈uk+1∩�(e′)
e′′′|q1∈e′|p′

e′′′


p∈uk+1∩�(e′)

.
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By construction of our equivalence relation, sincep - p′ andp · q1 ∈ ui , we have
p′ · q1 ∈ ui . Thus, by induction hypothesise′|p′·q1 = e′|p·q1 and is a singleton, thus
e′′|q = e′|q .

• or there existsp ∈ uk+1 ∩�(e) such thatq〈p, which is impossible by the choice of the
order on the equivalence classes.

Conclusion: in any cases, we have thate′′|q = e′|p is a singleton ande′′|q = e′′|q ′ . Assume
p〉q for somep ∈ �(e′′) and assumeui is minimal w.r.t.�c, thene′′|q = e′|p ⊆ S(e) by
induction.
Considerq, q ′ ∈ uk+1∩�(e′′). Assumeq �∈ �(e′). Thenq is a path created by application
of Nuk+1. This means that there existsp ∈ uk+1 ∩�(e′) such thatp is a strict prefix ofq
which contradictsGf acyclic.
Thusq, q ′ are inuk+1 ∩�(e′), thus by construction

e′′|q = e′′|q ′ = ⋂
p′∈uk+1∩�(e′)
e′′′∈e′|p′

e′′′

is a singleton. Assumep〉q, i.e.p = q · p1, for somep ∈ �(e′′) and assumeui is minimal
w.r.t. �c, then for allp′ ∈ uk+1∩�(e′), we havee′|p′ = e|p′ , since by minimality ofuk+1
no rule can have been applied abovep′ for p′ ∈ uk+1 ∩�(e′). Thus

e′′|p = ⋃
p′∈uk+1∩�(e)

e′′′∈e|p′

e′′′|p1 ⊆ S(e)

It remains to prove 3: assumee′′|q = f c(e1, . . . , en) ∩ e4. Then, eitherq is incomparable
with the paths ofuk+1∩�(e′), thene′′|q = e′|q and we can apply the induction hypothesis.
Or q〈p for somep ∈ uk+1 ∩�(e′), thene′|q = f c(e′1, . . . , e′n) ∩ e4′) and 3 is ensured by
induction. Or (last case)q�p for somep ∈ uk+1∩�(e′), thenq = p · q1 and there exists
p′ ∈ uk+1∩�(e′) such thate′′|q = e′|p′·q1. Thus, by induction hypothesisp′ · c ∈-ce and
for every 1� i�n, p′ · i ∈ Sce . Now, by construction of-ce andSce , sincep -ce p′, we
havep · c ∈-ce and for every 1� i�n, p · i ∈ Sce .
Now consider the last property.ce contains the identitiesp = p for p ∈ �(e). Hence, if

f c(e1, . . . , en)∩f c′(e′1, . . . , e′n)∩ e′′ ∈ e′|p, thenei = e′i is the intersection of expressions
e|p′ such thatp · i -ce p′ (note thatei, e′i ∈ e′|p·i . �

Thanks to Lemma67, we have the required properties:

Corollary 68. If e′ is the result ofe by the application of(N1), then for every equality
test, if p ∼c q then the expressions at positionsp andq in e′ are identical. In addition, in
any expressiongc(. . . , ei , . . .) such that, for somec1, i · c1 ⊆ c, if ei = f c

′
(�e′) ∩ e′′, then

P(c1) ⊆ �(f c
′
(�e′)).

Example 69. Consider

e = f 1=21∧3=41(X, g(X), Y, g(Y )) ∩ f 2=31(X1, Z, g(Z),X2)
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e
Nu1→ e1

def=f 1=21∧3=41(X ∩X1, g(X ∩X1), Y, g(Y ))
∩f 2=31(X ∩X1, Z, g(Z),X2)

e1
Nu2→ e2

def=f 1=21∧3=41(X ∩X1, Z ∩ g(X ∩X1), Y, g(Y ))
∩f 2=31(X ∩X1, Z ∩ g(X ∩X1), g(Z ∩ g(X ∩X1)),X2)

e2
Nu3→ e3

def=f 1=21∧3=41(X ∩X1, Z ∩ g(X ∩X1), Y ∩ g(Z ∩ g(X ∩X1)),
g(Y ∩ g(Z ∩ g(X ∩X1))))

∩f 2=31(X ∩X1, Z ∩ g(X ∩X1), Y ∩ g(Z ∩ g(X ∩X1)),X2)
e3

Nu3→ e3
def=f 1=21∧3=41(X ∩X1, Z ∩ g(X ∩X1), Y ∩ g(Z ∩ g(X ∩X1)),

X2 ∩ g(Y ∩ g(Z ∩ g(X ∩X1))))
∩f 2=31(X ∩X1, Z ∩ g(X ∩X1), Y ∩ g(Z ∩ g(X ∩X1)),

X2 ∩ g(Y ∩ g(Z ∩ g(X ∩X1))))

Fig. 12. Reduction ofe by (N1).

Thence
def=1= 21∧ 3= 41∧ 2= 31 and the equivalence classes of-ce are:
u1 = {1,2 · 1,3 · 1 · 1,4 · 1 · 1 · 1}, u2 = {2,3 · 1,4 · 1 · 1}, u3 = {3.4 · 1},
u4 = {4}

The successive applications ofNu1,Nu2,Nu3 andNu4 are described in Fig.12.

Note that, now, “every expression ine|p is basic” is equivalent to “there is an expression
in e|p which is basic” since the intersection of a basic expression with any other expression
yields a basic expression. That is why, from now on, we may say, by abuse of language that
“e|p is basic” to mean either of the two above versions.
We consider, in addition to the rule(N1), the following “cleaning” rules:

(N2) f
c(e1, . . . , en) ∩ f (e′1, . . . , e′n)→ f c(e1 ∩ e′1, . . . , en ∩ e′n)

(N3) f
c(e1, . . . , en) ∩ gc′(e′1, . . . , e′m)→⊥ if f �= g.

Lemma 70. The rules(N2), (N3),applied to normal formsw.r.t.(N1),preserve the seman-
tics as well as properties1, 2, 3and the properties described in Lemma67.

Proof. First, by Lemma67, in any application of(N2), we must haveei = e′i . Then, it is
sufficient to notice thatce is unchanged by application of(N2), hence its application does
not trigger(N1) and preserves the properties of Lemma67. �

Step 2: We start with some properties of equality tests.

Lemma 71. Let j · c1 be the subset ofc2 containing all equalities whose both sides are
prefixed byj . If c2 satisfies the basicity condition ine ande satisfies condition3, thenc1
satisfies the basicity condition in every expression belonging toe|j .
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Proof. Let p · i1 · q ∼c1 p′, i1 �= i2 andp′�prefp. Thenj · p · i1 · q ∼c2 j · p′ and
j ·p′�prefj ·p. By basicity ofc2, eithere|j ·p′ is basic ore|j ·p·i2 contains basic expressions
only or elsej · p · i2 · w ∼c2 j · p′ for somew, which impliesp · i2 · w ∼c1 p′. �

Lemma 72. If c satisfies the basicity condition ine and c1 is an equivalence class ofc,
thenc \ c1 satisfies the basicity condition ine.

Proof. Letp · i1 · q ∼c\c1 p′, i1 �= i2 andp′�prefp. Thenp · i1 · q ∼c p′ and, by basicity
of c, eithere|p′ or every expression ine|p·i2 is basic or elsep · i2 · w ∼c p′for somew. In
the latter case, sincec1 is an equivalence class,p · i2 · w ∼c\c1 p′. �
Now, we use the following two transformation rules:

(N4) f
c∧j ·c1(. . . , ej , . . .)→ f c∧j ·c1

(
. . . , ej ∩ gc1

(
e1j , . . . , e

kj
j

)
, . . .

)
if ej = gc′

(
e1j , . . . , e

kj
j

)
∩ e′′ andc does not contain any test whose both sides are prefixed

by j .

(N5) f
c∧p1·c1∧...∧pn·cn(�e)→ f c(�e)

if p1 · c1∪ . . . pn · cn is a union of equivalence classes, everypi is non empty and, for every
i, there is an expressionei at positionpi in f c∧...(�e) such thatei = gc′i ( �e′i )∩ e′′i andc′i � ci .
(In words: we may remove classes which are consequences of equality tests lower in the
expression).

Lemma 73. (N4) and (N5) preserve conditions3, 1 and 2. An expression which is un-
changed by application of these two rules satisfies condition4.Moreover, the size(w.r.t.
F ) is preserved by the two rules, the size(w.r.t. t) is reduced by the second rule and, using
repeatedly the first rule in an expression e results in an expressione′ such that|e′|t � |e|2t .

Proof (sketch). By Lemmas71and72, these transformations preserve condition 1 and they
preserve trivially condition 3.
Condition 2 is also preserved since we did not merge any equality test so far.
The satisfaction of condition 4 follows from an inspection of the expressions which are

left unchanged by any application of these rules.
The preservation of|e|F follows from the definition. Ifc yields a new testc′, possibly

after repeated applications of(N4), then there is ap1 such thatc′ consists in equalities
p = q such thatp1 · p ∼c p1 · q. If we fix the size ofp1, then the sum of sizes of suchc′
is bounded by|c|. Hence the total size of the new tests is bounded by|c|2. �
Step 3: The purpose of this step is to show how to satisfy in addition condition 5, while

preserving properties 3, 1,4, 2. In what follows, integersi, j... are always assumed range
over a finite set 1..n which is consistent with the arity of function symbols.
Let e be an expressionf c( �e1)∩f c′( �e2)∩ . . .. If e is in normal formw.r.t.(Ni), i�5, then

we may assume that�e1 = �e2. Indeed, this is true of normal forms w.r.t.(N1), (N2), (N3)

thanks to Lemmas67 and 70, and such a property is trivially preserved by the rules
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Fig. 13. A representation ofQ(c0, c′) andQm(c0, c′).

(N4), (N5).Wewill however only assume inwhat follows theweaker property�(f c( �e1)) =
�(f c

′
( �e2)).

We definec . c′ (relatively toe) as follows: first, ifc ∧ c′ is unsatisfiable, we replace it
with ⊥. Otherwise, for every nontrivial equivalence classc0 for c, let

Q(c0, c
′) = {w | ∃p ∈ P(c0), p · w ∈ P(c′), e|p·w not basic}

and

Qm(c0, c
′)= {w · i | ∃w′ ∈ Q(c0, c′), w〈prefw′, ∀w′ ∈ Q(c0, c′),

×w · i � 〈prefw′}.
Intuitively,Qm(c0, c

′) is the border ofQ(c0, c′) with its maximal elements. See Fig.13.
Each timeQ(c0, c′) is empty, we letc0 = c0 and, otherwise:

c0
c′ def= ∧

p∼c0q
∧

w∈Qm(c0,c′)
p · w = q · w.

Then

cc
′ def= ∧

c0a class ofc
c0
c′ .

We define now the sequencecn as follows:c1 = c, c′1 = c′ and cn+1
def= cn

c′n and

c′n+1
def= c′ncn .

Note that ifp ·w = q ·w ∈ cc′ , thenp ·w, q ·w ∈ �(f c( �e1)) = �(f c
′
( �e2)). Moreover,

if c �= c, then|c|〉|c|. It follows that the sequencescn andc′n are ultimately stationary: let
c∞ andc′∞ be the respective limit values ofcn andc′n. We define

c . c′ def= c∞ ∧ c′∞.

Example 74. Let us considerc def= 1 = 2 andc′ def= 211= 3 ∧ 11 = 4 and assume that
every position ofc or c′ is not basic. Thenc . c′ is computed in two steps:
Step 1: Q(c, c′) = {11,1} thusQm(c, c

′) = {11}.
Q(c′1, c) = Q(c′2, c) = ∅ wherec′1 = 211= 3 andc′2 = 11= 4.
Thusc2

def= cc′ = 111= 211 andc′2
def= c′c = c′ = 211= 3∧ 11= 4.
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Step 2: Q(c2, c′2) = ∅.
Let c12

′ def= 211= 3 andc22
′ def= 11= 4, thenQ(c12

′
, c2) = ∅ andQ(c22′, c2) = {1}

thusQm(c
2
2
′
, c2) = {1}.

Thusc3
def= c2c′2 = c2 = 111= 211 andc′3

def= c′2
c2 = 211= 3∧ 111= 41.

c3
c′3 = c3, c′3

c3 = c′3, thusc . c′ def= 111= 211∧ 211= 3∧ 111= 41.

Let us analyze a bit more precisely the complexity: for every pairp ∼c.c′ q, there is a
positionr ∈ P(c) ∪ P(c′) such thatp = p1 · i andr = p1 · r1. Then, ifa is the maximal
arity of a function symbol, then

|P(c . c′)|�(|c| + |c′|)× a,
wherea is the maximal arity of a function symbol and since the number of possible choices
for p1 is bounded by|c| + |c′|. It follows that

|c . c′|�(|c| + |c′|)×M(c, c′)× a�a × (|c| + |c′|)2,
whereM(c, c′) is the maximal length of a position inP(c) ∪ P(c′).
Then we use the following transformation rule:

(N6) f
c(e1, . . . , en) ∩ f c′(e′1, . . . , e′n)→ f c.c′(e1 ∩ e′1, . . . , en ∩ e′n)

if �(f c(�e)) = �(f c
′
(�e′)).

First,P(c), P (c′) ⊆ �(f (�e)), thanks to property 3. It follows thatP(c.c′) ⊆ �(f (�e)).
The semantics is also preserved since, as long as all positionsp · i andq · i are in�(f c(�e)),
and the top symbols at positionsp andq are identical, an equality testp = q ∈ c is
equivalent to the conjunction of equality testsp · i = q · i.
Condition 3 is also trivially satisfied. Remains to verify the preservation of the other ones:

condition 4 is shown to be preserved in Lemma75, condition 1 in Lemma76, condition 2
in Lemma77.

Lemma 75. The rule preserves property4.

Proof. Actually, everyc0 andc′0 satisfy property 4. Indeed, if, in the classc0 of p (in c), q
does not share any prefix withp, then in the class ofp · w (w.r.t. c0), q · w does not share
any prefix withp · w. �

Lemma 76. The transformation preserves the basicity condition.

Proof. It suffices to show thatc∧c′ satisfies the basicity condition, wheneverc, c′ do. Then
we use an induction on the fixed point computation forc . c′.
Assumep · i · q ∼

c∧c′ p
′, p′�prefp, j �= i and, for everyw, p · j · w �∼

c∧c′ p
′. Then

p is not empty. Assume w.l.o.g thatp · i · q, p′ ∈ P(c0) wherec0 is an equivalence class
of c. (If this is not the case, exchange the roles ofc andc′). Then, by Lemma75, there is a
p′1 ∼c0 p · i · q such thatp is not a prefix ofp′1. Hence we may assume w.l.o.g. thatp is
not a prefix ofp′ (possibly after replacingp′ with somep′1).
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If p · i · q ∼c p′, then the result follows from the basicity property ofc: in such a case,
we must havec0 = c0 (since, in any case, eitherc0 = c0 or P(c0) ∩ P(c0) = ∅), hence
p · j · w ∼c p′ iff p · j · w ∼c∧c′ p′.
Let us assume now that this is not the case:c0 �= c0, p · i · q = p0 · w0 · i0 with

w0 · i0 ∈ Qm(c0, c
′) andp0 ∼c q0.

p · i · q = p0 · w0 · i0
p′ = q0 · w0 · i0
p0 ∼c q0 ∼c p′0
p′0 · p1 ∼c′ q1
e|p′0·p1 is not basic

and

{
w0〈prefp1
w0 · i0 � 〈prefp1

In addition, we may assume, thanks to property 4 again thatp0 andq0 on one hand andp′0
andq1 on the other hand do not share any nontrivial prefix.
Case 1: p〈prefp0. There is aq ′ such thatp0 = p · i · q ′. We use the basicity property of
c, considering the equivalencep · i · q ′ ∼c q0: eithere|p·j is basic ore|p0 is basic or
p ·j ·w ∼c p0 for somew. In the first two cases, we get what we want (e|p0 basic implies
ep·i·q basic). In the last case,p ·j ·w ·w0 · i0 ∼c0 p′ by construction, hence contradicting
the hypothesis∀w′.p · j · w′ �∼

c∧c′ p
′.

Case 2: p0 · w0〉prefp�prefp0. Sincew0 · i0 � 〈prefp1 andw0�prefp1, p1 = w0 · j0 · � for
somej0 �= i0 and�.Weapply now the basicity property ofc′, considering the equivalence
p′0 · w0 · j0 · � ∼c′ q1 (recall thatp′0 · p1 ∼c′ q1). Sincee|p′0·p1 is not basic, only two
cases can occur:
Case 2.1: e|p′0·w0·i0 is basicwhich impliese|p0·w0·i0 basic, hence thedesiredconclusion.
Case 2.2: p′0 ·w0 · i0 ·w ∼c′ q1 ∼c′ p′0 ·p1 for somew. Letp = p0 ·p2, w0 = p2 · i ·w1.
Thenp′0 ·p2 · i ·w1 · i0 ·w ∼c′ q1 and, sincei �= j , by the basicity ofc′, eitherep′0·p2·j
is basic ore|q1 is basic or else there is aw2 such thatp′0 · p2 · j · w2 ∼c′ q1.
In the first case,e|p0·p2·j is also basic (i.e.e|p·j is basic) and we conclude.
The second case contradicts the hypothesis thate|p′0·p1 is not basic.
In the third case,p′0 · p2 · j ·w2 ∼c′ p′0 · p1 ∼c′ p′0 ·w0 · i0. Then, by construction,

p0 ·w0 · i0 ∼c∧c′ p0 · p2 · j ·w2 = p · j ·w2, which contradicts again the hypothesis.
Case 3: p = p0 · w0, i = i0 and q is empty. p1 = w0 ·j0 ·�with j0 �= i0. If j = j0, from
e|p′0·p1 is not basic, we conclude the desired result. Otherwise,j �= j0 and we use the
basicity property ofc′, considering againp′0 ·w0 · j0 · � ∼c′ q1, j �= j0. Eithere|p′0·w0·j
is basic (in which case we also conclude) or there isw′1 p′0 · p1 ∼c′ p′0 · w0 · j · w′1.
In the latter case, we use again the basicity property onc′, consideringp′0 ·w0 ·j0 ·� ∼c′

q1, i �= j0. Eithere|p′0·w0·i0 is basic, in which case we conclude, or else there is aw′2 such
thatp′0 ·p1 ∼c′ p′0 ·w0 · i0 ·w′2. Now, let us recall that, by construction,∀w′ ∈ Q(c0, c′),
w0 · i0 � 〈prefw′. Sincew0 · i0 · w′1 ∈ Q(c0, c′), we must havew′1 empty.
e|p′0·w0·i0 is basic (in which case we conclude) or
It follows thatp′0 ·w0 · i0 ∼c′ p′0 ·w0 · j ·w′2, which contradictsp · i �∼c∧c′ p · j ·w′2.

�

Lemma 77. The transformation(N6) preserves property2.
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Proof. We prove, by induction onn that
1. for everyp · q, p ∈ P(cn) ∪ P(c′n) such thatq is not empty, eithere|p·q is a basic

expression or elsecn+1 �= cn or c′n+1 �= c′n.
2. cn andc′n (individually) satisfy property 2.
The lemma will follow.
For everyn, if p ∈ P(cn) and ifp ·q ∈ P(c′n) and ife|p·q is not basic, thenq ∈ Q(�0, c′n)

by definition (�0 is the equivalence class ofp) and, sinceq is not empty, a suffix ofq belongs
toQm(�0, c

′
n). It follows that�0

c′n �= �0 and thereforecn+1 �= cn. So, from now on we may
assume w.l.o.g that bothp andp · q are inP(cn).
In the base case,cn = c andc′n = c′ andc, c′ satisfy condition 2. Then, ifp, p ·q ∈ P(c),

e|p·q is basic.
Consider now the induction step and letp ∈ P(�0c

′
n), p · q ∈ P(�1c

′
n), q is not empty

and�0, �1 are classes ofcn.
Assume first that�0

c′n �= �0. Then, according to the definition ofcn+1, there are positions
such that:

p = p1 · w · i
w〈prefw′
p2 ∼cn p1
p2 · w′ ∈ P(c′n)
e|p2·w′ is not basic
∀w′′ ∈ Q(�0, c′n), w · i � 〈prefw′′

We consider now several cases forp · q.
Case 1: p · q ∈ P(�1c

′
n), �1

c′n = �1 ⊆ cn . Thenp1〈prefp·q andweconclude using prop-
erty 2 oncn (induction hypothesis).

Case 2: p · q ∈ P(�1), �1 �= �1 ⊆ cn . Then, by definition, there are positions such
that:

p · q = p3 · w1 · i1
w1〈prefw′1
p4 ∼cn p3
p4 · w′1 ∈ P(c′n)
e|p4·w′1 is not basic∀w′′1 ∈ Q(�1, c′n), w1 · i1 � 〈prefw′′1

In this case,p · q = p3 · w1 · i1 = p1 · w · i · q, hencep3 andp1 must be comparable
w.r.t. the prefix ordering. If they are distinct, assumepk is the largest one, then, by property
2 on cn, e|pk must be basic, hencee|p or e|p·q must be basic and we conclude. Other-
wise,p1 = p3 and�0 = �1. By hypothesis,∀w′′ ∈ Q(�0, c′n), w · i � 〈prefw′′, thusw′′ =
w · i ·q /∈ Q(�0, c′n), which can only occur whene|p1·w·i·q = e|p·q is basic, andwe conclude
again.
Assume now�0

c′n = �0. If �1
c′n = �1, we conclude by the induction hypothesis: property

2 holds oncn.
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Otherwise, there are positions such that:

p · q = p1 · w1 · i1
w1〈prefw′1
p2 ∼cn p1
p2 · w′1 ∈ P(c′n)
e|p2·w′1 is not basic∀w′′1 ∈ Q(�1, c′n), w1 · i1 � 〈prefw′′1

�0
c′n = �0 impliesp1 � 〈prefp. If p1〉prefp, fromp1 ∼cn p2, we conclude thate|p1 is basic

(hencee|p·q ), thanks to the induction hypothesis.
We are left to the casep = p1. Thenp2 ∼cn p andp2 · w′1 ∈ P(c′n) andw′1 is not

empty, hence�0
c′n �= �0, a contradiction. �

Lemma 78. Property5 is satisfied for normal forms w.r.t.(N6).

Proof. At step 1, we ensured that, for everyp ∈ �(e), e|p only contains expressions of
the formf c1(�e) ∩ . . . ∩ f cn(�e) ∩ X1 ∩ . . . ∩ Xm. The rule(N6) imposesn = 1, hence
property 5. �
In this step, we did not increase|e|F and|c.c′|�a× (|c|+ |c′|)2, hence|e′|t �a×|e|2t .
Step4: The purpose of this last step is to rearrange the equality tests so that there are no

overlapping tests except possibly for basic expressions. (More formally, we need to ensure
condition 6).
Let us show first some examples of what we want.

Example 79. e def= f 11=12=2(f 11=12=21=22(f (X,X), f (X,X)), f (X,X)). e contains
overlapping tests. We can however use first the rules(N4), (N2) and get

f 11=12=2(f 11=12=21=22(f 1=2(X,X), f 1=2(X,X)), f (X,X))

Now, it turns out that the intermediate test is a consequence of the top one and the lowest
ones, and it can be removed, yielding (after normalization w.r.t.(N2)):

f 11=12=2(f (f 1=2(X,X), f 1=2(X,X)), f 1=2(X,X))

for which there is no overlapping test.
In this example, pictured in Fig.14, we see that we do not need to change the tests but only
to reorganize them.

Example 80. Let

e = f 111=121=112=122=2(f 1=2(g(X,X, Y ), g(X,X, Y )),X),

which contains overlapping tests. Using the rule(N4) we get

f c(f 1=2(g(X,X, Y ), g(X,X, Y )) ∩ f 11=12=21=22(g1=2(X,X, Y ),
×g1=2(X,X, Y )),X)
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Fig. 14. The tests of Example79.

with c
def= 111= 121= 112= 122= 2. Using rule(N6) we get

f 111=121=112=122=2(f 11=12=21=22∧13=23(g1=2(X,X, Y ), g1=2(X,X, Y )),X)

Now, the class 11= 12= 21= 22 is a consequence of the top and low tests and it can be
removed:

f 111=121=112=122=2(f 13=23(g1=2(X,X, Y ), g1=2(X,X, Y )),X)

Finally the low tests can also be removed since they are consequences of the top one,
yielding:

f 111=121=112=122=2(f 13=23(g(X,X, Y ), g(X,X, Y )),X)

in which there is a remaining overlapping test. However, ine, Y must be basic (thanks to the
basicity condition) and thus the lower positions 13 and 23 correspond to basic expressions.
In this example, pictured in Fig.15, we need to push some tests down.

So, the idea is to first inherit the constraints thanks to rule(N4) (this has been done at
step 2), next normalize w.r.t.(N6) (this has been done at step 3) and finally remove useless
tests, which we do now.

(N7) f
c1( �e1)[gc2∧c0( �e2) ∩ e′2]p1 → f c1( �e1)[gc2( �e2) ∩ e′2]p1

If
• c0 is an equivalence class inc2 ∧ c0,
• c1 ∧ p1 · ∧

r∈�(gc2∧c0( �e2))
r �=

gc2∧c0( �e2)|r=hcr ( �er )∩e′r

r · cr�ec0,

• e = f c1( �e1)[gc2∧c0( �e2) ∩ e′2]p1,
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Fig. 15. The tests of Example80.

• �e is the consequence relation according to the following rules:
◦ reflexivity, symmetry and transitivity
◦ right compatibility:p = q�ep · r = q · r
◦ folding (w.r.t.e): if e|p = f c(�e′)∩e′′ andf has arityn, thenp ·1= q ·1∧ . . .∧p ·n =
q · n�ep = q.

◦ conjunction introduction:
c1�ec′1
c2�ec′2

}
⇒ c1 ∧ c2�ec′1 ∧ c′2.

We must be careful on how to apply this rule. Consider the following example

Example 81. e def= f 111=12=2(f 11=12=2(f 1=2(g�(X), g�(X)), g�(X)), g�(X)). This
expression is in normal form w.r.t. the previous transformations. There are two ways of
applying rule(N7): we can remove the constraint 1= 2 since 11= 12 = 2 ∧ 11 · � ∧
12 · ��1 · (1 = 2). Then the expression is in normal form forN7 and there are still some
overlapping tests. The other possibility is to apply(N7) to 11 = 12 = 2: 111= 12 =
2∧ 1 · 1 · (1 = 2) � 1 · (11= 12= 2) and there is no longer any overlapping tests in the
expression.

We assume that the previous steps have been completed and use the rule(N7) top-down.

Lemma 82. (N7) (applied top-down) is terminating, it preserves the semantics and the
properties5, 3, 1, 4, 2.

Proof. The termination is straightforward: the size of the expression is strictly decreasing
(and the resulting expressione′ satisfies|e′|F = |e|F and|e′|t � |e|t .)
The condition of the rule ensures the preservation of interpretations. Property 5 is pre-

served since we do not change the term structure of the expression. Property 3 is not
necessarily preserved by one-step application of(N7). However, ifp0 · p1 = p0 · p′1 is
checked higher up in the expression, then the expressions at positionsp1 andp′1 must
be identical (by property 3) and the rule(N7) will be applied twice to these expressions,
yielding removal ofc0 for both occurrences.
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Lemma72ensures the preservation of property 1. Also, property 4 is preserved since we
remove an equivalence class and property 2 is preserved since we remove some
tests. �

Lemma 83. Normal forms w.r.t. rule(N7) (applied top-down) satisfy condition6.

Proof. Assume that we are in the situation of property 6:e = f c(e1, . . . , en)∩e′,p1 ·p2 ∼c
q, p1, p2 are nonempty,f c(e1, . . . , en)|p1 = gc′(e′1, . . . , e′m) ∩ e′′ andp′ ∈ P(c′).
Assume that there is no positionp′2 such thatp1 · p′2 ∼c p1 · p2 andp′2 is comparable

with p′ w.r.t. �pref. Let p1 · p′2 ∼c p1 · p2 such thatp′2 is the position which shares the
longest prefix withp′ . Then we can writep′ = w · j · w′ andp′2 = w · i · w′′ with i �= j .
By condition 1 (forc), consideringp1 ·w · i ·w′′ ∼c p1 ·p2, eithere|p1·p2 is basic ore|p1·p′
is basic or∃w1, p1 · p2 ∼c p1 · w · j · w1. This last case contradicts the maximal shared
prefix hypothesis.
We are left to the case wherep′ is comparable w.r.t.�pref with some positionp′2 such

thatp1 · p′2 ∼c p1 · p2.
If p′ ∼c′ q ′ andq ′ does not share any nontrivial prefix withp′ (this is possible thanks to

property 4 onc′), then a similar property holds forq ′: we assume now thatp′ ∼c′ q ′ and
there are positionsp′2 andp′′2 such thatp1 ·p2 ∼c p1 ·p′2 ∼c p1 ·p′′2 andp′ andp′2 on one
hand andq ′ andp′′2 on the other hand are comparable w.r.t. the prefix ordering.p′2 must be
distinct fromp′′2 sincep′ andq ′ do not share any prefix.
By rules(N4), (N6), c′ = c1 . . . . . cn andc1 � p′2 = p′′2. Now, we consider a number

of cases, depending on the comparisons betweenp′, q ′, p′2, q ′2:
Case 1: p′〈prefp′2.
In this case, by definition of., e|p1·p′2 must be basic:c′ has to contain a suffix ofp′2 and
we use property 2 onc′. It follows thate|p1·p2 is basic.

Case 2: q ′〈prefp′′2 . This is similar to the first case.
Case 3: p′�prefp

′
2 andq

′�prefp
′′
2 .

Let p′ = p′2 · q ′2. By definition of ., p′ ∼c′ p′′2 · q ′2. Thenq ′ must be equal to
p′′2 · q ′2 andc � p1 · (p′ = q ′). Next, equalitiesp′ ∼c′ q ′′, in which p′ andq ′′ share
a non-trivial prefix must be consequences (w.r.t.�e) of equality tests on subexpres-
sions: this is true for normal forms w.r.t.(N4) and this is an invariant of(N6) since
c . c′�ec ∧ c′.
Then, ruleN7 can be applied (contradiction).�

Appendix B. SET-constraints and automata with one memory

We consider a satisfiable SET-constraintS and we assume thatAS is constructed as
described in Section5.3.
We can first note that ife = f c(e1, . . . , en) occurs inS and ifp is a non-root position of

e, thenc ↓ p has only one nontrivial equivalence class. This is ensured by conditions 1, 4
and 2 of normal expressions (see Definition27).
We prove by induction on the size oft that, if � is the solution ofsolved(S), then for

everyt accepted inqX,H(t) ∈ �(X).
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For the sake of simplicity, we will say shortly that “t is accepted in〈q,m〉” instead of
“there is a computation of the automaton ont yielding the configuration〈q,m〉.

Lemma 84.
• if t is accepted in〈qe,p, �〉, thenH(t) ∈ �(e|p), H(t) � c ↓ p and � = H(t)|p·p′ for
somep′ tested byc ↓ p (sinceH(t) � c ↓ p and sincec ↓ p has only one nontrivial
equivalence class, for everyp′, p′′ tested byc ↓ p, we haveH(t)|p·p′ = H(t)|p·p′′ ).

• if t is accepted in〈qe, �〉, thenH(t) ∈ �(e) and� = a.
• if t is accepted in〈qX, �〉, thenH(t) ∈ �(X) and� = H(t).
• if t is accepted in〈q�, �〉, then���.
• if t is accepted in〈qa, �〉, thent = a and� = a.

Proof (sketch). If |t | = 1, thent = b for some constant inF and the only transition leading

to b is b
�−→
b
qb.

Assume Lemma84is satisfied for everyt of size�n and considert such that|t | = n+1.
If t is accepted in〈qe,p, �〉, thent = g(t1, . . . , tk) such thatti is accepted in〈qe,p·i , �i〉. By
induction hypothesis,H(ti) ∈ �(e|p·i ), H(ti) � c ↓ p · i and� = H(ti)|p·i·p′ for somep′
tested byc ↓ p · i. H(t) = g(H(t1), . . . , H(tn)), thusH(t) ∈ �(e|p). We have also that

H(t)�c̃ ↓ p, thusH(t) � c ↓ p. Finally, � = �i for somei such thatp · i is a position
checked byc, thus� = H(t)|p·p′ for somep′ tested byc ↓ p.
The other cases are proved similarly.�
Conversely, ift ∈ �(X) where� is the minimal solution ofsolved(S), then there exists

t ′ such thatH(t) = t ′ andt ′ is accepted in stateqX.

Lemma 85.
1. if t ∈ �(X), then there existst ′ such thatH(t ′) = t andt ′ is accepted in〈qX, t ′〉.
2. if t ∈ �(e|p) andt � c ↓ p, then there existst ′ such thatH(t ′) = t andt ′ is accepted in
〈qe,p, t |p·p′ 〉 for somep′ tested byc ↓ p.

3. if t ∈ �(e), then there existst ′ such thatH(t ′) = t andt ′ is accepted in〈qe, a〉.

Proof (sketch). We prove that ifT nsolved(S)(∅) satisfies the properties of Lemma85, then

T n+1solved(S)(∅) also satisfies the properties of Lemma85. The result follows by minimality
of �.
AssumeT nsolved(S)(∅) satisfies the properties of lemma85. First, we can verify that if

T nsolved(S)(∅) � � then there existst ′ such thatt ′ is accepted in stateq�. Assume now that

T n+1solved(S)(∅) satisfies property 1, then, by well-founded induction on� (the reverse prefix

order), we show thatT n+1solved(S)(∅) satisfies properties 2 and 3.
Thus, it is sufficient to prove thatT n+1solved(S)(∅) satisfies property 1: assumet ∈ [[X]]n,

then there exists a clause� ⇒ e ⊆ X such thatT nsolved(S)(∅) � � andt ∈ [[e]]n. Applying
the induction hypothesis and the rules of the automaton, we deduce that there existst ′ such
thatH(t ′) = t andt ′ is accepted in〈qX, t ′〉. �
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Appendix C. Protocols and Horn Clauses

Let P be a protocol. We assumeHMsg,HI and HP constructed as described in
Section6.2.
We first constructHI0 such that the maximal initial knowledge of the intruderI0 is a

minimal interpretation of the predicateI0 which satisfiesHI0.

Lemma 58.Let t1, . . . , tn be message schemes with the free variablesx1, . . . , xk. Then,
there exists a set of Horn clausesHI0 such thatI0(m) is derivable fromHI0 ∪Hmsg if and
only if parts(m) ∩ {ti� |1� i�n,�(xi) ∈ Ah} = ∅.

Proof. Letp be the maximal depth of the termst1, . . . , tn. LetS = {ti� |1� i�n,�(xi) ∈
Ah}. We introduce a new predicateP�p such thatP�p accepts the terms of depth larger
or equal top. The clausesHI0 for P�p andI0 are described in Fig.16. |m|d denotes the
depth of the termm. LetH′ = HMsg∪HI0.
By construction,H′�P�p(m) if and only if the depth ofm is greater or equal top.
Let us showby induction on the number of ruleswhich havebeenapplied that ifH′�I0(m)

thenparts(m) ∩ S = ∅. Letm be a term such thatH′�I0(m) and let us consider the last
rule which has been applied:
Rule 1. parts(m) ∩ S = ∅ by definition of rule (1).
Rule 4. m = f (m1, . . . , mn) such thatf ∈ IF , H′�I0(m1), . . . , I0(mn) and there exists
i such thatH′�P�p(mi).

parts(m) = {m} ∪ ⋃
1� i�n

parts(mi).

By inductionhypothesis,parts(mi)∩S = ∅. In addition, thereexistsi such that|mi |d�p,
thus|m|d〉p which implies thatm �∈ S. Thusparts(m) ∩ S = ∅.

Rule 5. m = f (m1, . . . , mn) such thatf ∈ OF and there existsi such thatH′�P�p(mi),
thus|m|d〉p. Sinceparts(m) = {m} and|m|d〉p, we haveparts(m) ∩ S = ∅.

Rule 6. this case is similar to the previous ones.
Conversely, an induction on the depth ofm proves that ifparts(m)∩S = ∅, thenH′�I0(m).

�

We prove here Lemma57by proving the following stronger lemma.

Lemma 86. Letm be a message anda an agent, C�3I (m) iff there exists a reachableH
such that[m] ∈ H and
C�3I (si(a,m)) iff there exists a reachableH such thatS(a, i,m) ∈ H .

To prove this, we need few lemmas:

Lemma 87. If there exists a reachableH1 such thatm1 ∈ H1 wherem1 is a message and
if there exists a reachableH2 such thate2 ∈ H2 wheree2 is either a message or a state,
then there exists a reachableH such thatm1, e2 ∈ H .
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(1)
I0(m)

if |m|d �p
andparts(m) ∩ S = ∅

(2)
P�p(m)

if |m|d = p

(3)
Msg(x1) . . .Msg(xn) P�p(xi )

P�p(f (x1, . . . , xn)
1� i�n

(4)
I0(x1) . . . I0(xn) P�p(xi )

I0(f (x1, . . . , xn))

1� i�n, f ∈ IF

(5)
Msg(x1) . . .Msg(xn) P�p(xi )

I0(f (x1, . . . , xn))

1� i�n, f ∈ OF

(6)
I0(x1) Msg(x2) P�p(xi )

I0({x1}x2)
i = 1,2

Fig. 16. Horn clauses forP�p andI0.

A transitiont of a protocol is applicable inH providedPre(t) ⊆ H . Thus, ift is applicable
inH , thent is applicable inH ′, for allH ′ ⊇ H . In the sameway, ifX ∈ fake(Cont(H) ∪ I )
thenX ∈ fake(Cont(H ′) ∪ I ), for allH ′ ⊇ H .
Therefore, letH be the global state obtained fromH1 by applying all the transitions used to
obtainH2. e2 is inH andm1 is still inH since the transitions do not remove any message.

Lemma 88. Let S a set of messages such that∀m ∈ S C�3m. Then∀m ∈ fake(S),
C�3m.

Pairing, unpairing, encryption and decryption are simulated by the clauses in Fig.8.
For Lemma57, we first prove by induction onn that if C�nI (m) then there exists a

reachableH such that[m] ∈ H and ifC�nI (si(a,m)) then there exists a reachableH such
thatS(a, i,m) ∈ H .
Forn = 0, it is true,
Assume the hypothesis is verified forn, and assumeC�n+1I (m). The last deduction rule

is either one of those presented in Fig.8, in this case, by inspection of the deduction rules,
using the induction hypothesis and Lemma87, we conclude that there exists a reachableH

such that[m] ∈ H . Or the last deduction rule is one of those presented in Fig.9. Then,

C�nI (si(a,m0)),Msg(m0), I (m1),Msg(m1), . . . , I (mp),Msg(mp),
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wheremi = Mi�′, m0 = M0�′ and�′ preserves the type : if�′(xA) = t whereA is an
agent variable, thenC�nA(t), thust is an agent. By application of the induction hypothesis
and applying Lemma87, there exists a reachableH such thatm,m1, . . . , mp ∈ H . Thus,
the transition

t = {S(A�′, i,M�′),M1�′, . . . ,Mp�′} −→
{S(A�′, i + 1,M ′�′),M ′

1�
′, . . . ,M ′

q�
′}

is applicable inH . LetH ′ the global state obtained fromH by applyingt ,m is inH ′.
AssumeC�n+1I (si(a,m)). The only choice for the last deduction rule is one those pre-

sented in Fig.9. The same reasoning as above allows us to conclude that there exists a
reachableH such thatS(a, i,m) ∈ H .
Conversely, we prove by induction onn that if there exists an-reachableH such that

[m] ∈ H or S(a, i,m) ∈ H thenC�3I (m) or C�3I (si(a,m)) wheren-reachablestands for
“reachable withn global transitions”.
Forn = 0,H = H0 andH0 does not contain any message or state.
Assume the hypothesis is verified forn, and assume there exists an + 1-reachableH

such that[m] ∈ H . Thus, there exists an-reachableH1 such thatH is an honest or fake
successor ofH ′. If [m] ∈ H ′, we conclude immediately. Assume[m] �∈ H ′:
Honest successor.Let t the applicable transition such thatH = (H ′\(Pre(t) ∩ H ′) ∪
Post(t)). By application of the induction hypothesis and applying the clause described
in Fig. 9, we concludeC�3I (m).

Fake successor.If H = H ′ ∪ {m} whereH ′ is n-reachable andm ∈ fake(Cont(H) ∪ I ).
Lemma88and the induction hypothesis allows us to conclude.

References

[1] M. Abadi, A. Gordon, A calculus for cryptographic protocols: the spi calculus, Inform. Comput. 148 (1)
(1999) 1–70.

[2] A. Aiken, Introduction to set constraint-based program analysis, Sci. Comput. Program. 35 (1999) 79–111.
[3] R.Amadio,D. Lugiez,On the reachability problem in cryptographic protocols, inProc.CONCUR’00, Lecture

Notes in Computer Science, Vol. 1877, 2000.
[4] B. Bogaert, S. Tison, Equality and disequality constraints on brother terms in tree automata, in: A. Finkel

(Ed.), Porc. 9th Symp. on Theoretical Aspects of Computer Science, Cachan, France, 1992.
[5] I. Cervesato, N. Durgin, P. Lincoln, J. Mitchell, A. Scedrov, A meta-notation for protocol analysis, in: P.

Syverson (Ed.), 12th IEEE Computer Security FoundationsWorkshop, IEEE Computer Society Press, Silver
Spring, MD, 1999.

[6] W. Charatonik, L. Pacholski, Negative set constraints with equality, in: Proc. IEEE Symp. on Logic in
Computer Science, Paris, 1994, pp. 128–136.

[7] W. Charatonik, A. Podelski, Set constraints with intersection, in: Proc. IEEE Symp. on Logic in Computer
Science, Warsaw, 1997.

[8] J. Clarke, J. Jacobs, A survey of authentication protocol literature: Version 1.0, Draft paper, 1997.
[9] H. Comon, V. Cortier, Tree automata with one memory, set constraints and cryptographic protocols, Res.

Report LSV-01-13, Laboratoire Spécification and Vérification, ENS de Cachan, France, December 2001.
[10] H. Comon, V. Cortier, J. Mitchell, Tree automata with one memory, set constraints and ping-pong protocols,

in: Proc. 28th Int. Coll. Automata, Languages, and Programming (ICALP’01), Crete, Greece, July 2001.
[11] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, M. Tommasi, Tree automata

techniques and applications, available on:http://www.grappa.univ-lille3.fr/tata , 1997

http://www.grappa.univ-lille3.fr/tata


214 H. Comon, V. Cortier / Theoretical Computer Science 331 (2005) 143–214

[12] H. Comon, V. Shmatikov, Is it possible to decide whether a cryptographic protocol is secure or not?, J.
Telecomm. Inform. Tech. 4 (2002) 5–15.

[13] V. Cortier, J. Millen, Harald Ruess, Proving Secrecy is easy enough, 14th IEEE Computer Security
Foundations Workshop, Cape Breton, 2001, p. 97–108.

[14] N. Dershowitz, J. Jouannaud, Handbook of Theoretical Computer Science, Vol. B, Chap. Rewrite Systems,
Elsevier, 1990, pp. 243–320.

[15] D. Dolev, S. Even, R. Karp, On the security of ping pong protocols, Inform. Control 55 (1982) 57–68.
[16] D. Dolev,A.Yao, On the security of public key protocols, in: Proc. IEEE Symp. on Foundations of Computer

Science, 1981, p. 350–357.
[17] C. Dufourd, A. Finkel, Ph. Schnoebelen, Reset nets between decidability and undecidability, in: Proc. 25th

Int. Coll.Automata, Languages, and Programming (ICALP’98),Aalborg, Denmark, July 1998, Lecture Notes
in Computer Science, Vol. 1443, Springer, Berlin, 1998, pp. 103–115.

[18] N. Durgin, P. Lincoln, J. Mitchell, A. Scedrov, Undecidability of bounded security protocols, in: Proc.
Workshop on Formal Methods in Security Protocols, Trento, Italy, 1999.

[19] S. Even, O. Goldreich, On the security of multi-party ping-pong protocols, Tech. Report 285, Technion,
Haifa, Israel, 1983. Extended abstract appeared in IEEE Symp. Foundations of Computer Science, 1983.

[20] N. Heinze, J. Jaffar, A decision procedure for a class of set constraints, in: Proc. IEEE Symp. on Logic in
Computer Science, Philadelphia, 1990, pp. 42–51.

[21] N. Heintze, J. Tygar, A model for secure protocols and their compositions, IEEE Trans. Software Eng. 22 (1)
(1996).

[22] G. Lowe, Breaking and fixing the Needham–Schroeder public-key protocol using FDR, in: Proc. Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), T. Margaria, B. Steffen (Eds.), Lecture
Notes in Computer Science, Vol. 1055, Springer-Verlag, Berlin, 1996, pp. 147–166.

[23] J. Millen, H. Ruess, Protocol-Independent Secrecy, in: Proc. Workshop on Formal Methods in Computer
Security, Chicago, 2000.

[24] J. Millen, V. Shmatikov, Constraint solving for bounded-process cryptographic protocol analysis, in: Proc.
8th ACM Conf. on Computer and Communications Security, 2001, pp. 166–175.

[25] J. Mongy, Transformation de noyaux reconnaissables d’arbres. Forêts RATEG. Ph.D. thesis, Laboratoire
d’Informatique Fondamentale de Lille, Université des Sciences et Technologies de Lille, Villeneuve d’Ascq,
France, 1981.

[26] L. Paulson, The inductive approach to verifying cryptographic protocols, J. Comput. Security 6 (1998)
85–128.

[27] M. Rusinowitch, M. Turuani, Protocol insecurity with finite number of sessions is NP complete, in: Proc.
14th IEEE Computer Security Foundations Workshop, 2001, pp. 174–190.

[28] H. Seidl, Haskell overloading is DEXPTIME-complete, Inf. Process. Lett. 52 (1994) 57–60.


	Tree automata with one memory set constraints and cryptographic protocols62626262
	Introduction
	Protocol motivation
	Dolev--Yao's result
	A more expressive model
	Messages
	Events and global states
	Inductive relations
	Protocols
	Global state transitions
	Secrecy policy
	An undecidability result


	Definite set constraints
	Definite set constraints and intersection constraints
	Intersection constraints with nonemptiness guards

	Tree automata with one memory
	Set constraints with equality tests
	Definition of the class
	General set constraints with equality tests
	A complete deduction system
	An undecidability result
	Basic variables and expressions
	Our assumptions

	Saturation
	Normalization
	Abstractions
	Getting rid of basic variables
	Complexity issues in eliminating the basic variables
	Simplifying again the expressions
	Deduction rules

	Connection with automata with one memory

	Analysis of cryptographic protocols
	A decidable class of protocols
	Proof of Theorem 56

	Conclusion
	Proof of Lemma 28
	SET-constraints and automata with one memory
	Protocols and Horn Clauses
	References


