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Abstract

We introduce explicit parametrisations of the moduli space of convex projective structures on sur-
faces, and show that the latter moduli space is identified with the higher Teichmüller space for SL3(R)

defined in [V.V. Fock, A.B. Goncharov, Moduli spaces of local systems and higher Teichmüller theory,
math.AG/0311149]. We investigate the cluster structure of this moduli space, and define its quantum ver-
sion.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let S be an orientable compact smooth surface possibly with boundary. A projective struc-
ture on S is defined by an atlas on the interior S0 of S whose transition functions are given by
(restrictions) of projective transformations. For any projective structure on S one can associate a
developing map

ϕ : S̃0 → RP2

where S̃0 is a universal cover of S0. It is defined up to the right action of PSL3(R).
An open domain D in RP2 is convex if any line intersects D by a connected interval, possibly

empty. A projective structure on S is convex if the developing map ϕ(S̃0) is an embedding and
its image is a convex domain. Since ϕ is injective, ϕ(S̃0) is orientable. Conversely, let Δ be a
discrete subgroup of PSL3(R) such that its action on RP2 restricts to a free action on a convex
domain D. Then the quotient D/Δ is a surface with a convex projective structure. The natural
isomorphism μ from π1(S) to Δ is called the monodromy map of a projective structure and is
defined up to conjugation.

The space of convex projective structures on smooth compact surfaces without boundary was
studied by W. Goldman, S. Choi [3,12], F. Labourie [19], H.C. Kim [18], J. Loftin [21] and
implicitly N.J. Hitchin [16]. Goldman’s paper [12] discusses convex projective structures with
geodesic boundary and regular semi-simple holonomy for the boundary. Although the main ap-
plications in that paper concerned closed surfaces, the proof involved computing the deformation
space for three holed sphere. The main result stated there holds for all compact oriented surfaces
with negative Euler characteristic, with these boundary conditions. Choi later extended it to non-
orientable surfaces and discussed other cases of boundary holonomies.

On the other hand, given a split semi-simple algebraic group G with trivial center and a
surface S with non-empty boundary, we defined in [5] the higher Teichmüller space XG,S(R>0).
It comes equipped with a distinguished collection of coordinate systems, parametrised by the set
of the isotopy classes of trivalent graphs embedded to S and homotopically equivalent to S, plus
some extra data. The mapping class group acts in these coordinates in an explicit way. We have
shown in Section 10 of loc. cit. that for G = PGL2 we recover the classical Teichmüller spaces.

In this paper we investigate convex projective structures on hyperbolic surfaces with a non-
empty piecewise geodesic boundary. We introduce a distinguished collection of global coordinate
systems on the corresponding moduli space T +

3 (S). Each of them identifies it with R8χ(S). We
show that the moduli space T +

3 (S) is naturally isomorphic to the space XG,S(R>0) for G =
PGL3. We prove that the corresponding monodromy representations are discrete and regular
hyperbolic. We introduce and study the universal higher Teichmüller space T3 which contains
the moduli spaces T +

3 (S) for all surfaces S. The Thompson group T acts by its automorphisms.
We show that the universal higher Teichmüller space T3 is the set of R>0-points of certain infinite
dimensional cluster X -variety, as defined in [6]. Moreover, the Thompson group is a subgroup of
the mapping class group T3 of this cluster variety. For the spaces T +

3 (S) the situation is similar
but a bit more complicated: they have orbi-cluster structure, and the mapping class group of S

is a subgroup of the corresponding group for the cluster X -space. The cluster structure of the
classical Teichmüller space is discussed in [5,11]. We quantise (= define a non-commutative
deformation of the algebra of functions on) the above moduli spaces. The Thompson group acts
by automorphisms of the quantum universal Teichmüller space T q

3 . The space T q

3 can be viewed
as a combinatorial version of the W -algebra for SL3.
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We tried to make the exposition self-contained and as elementary as possible. Therefore this
paper can serve as an elementary introduction to [5], where the results of this paper were gen-
eralised to the case when PGL3 is replaced by an arbitrary split reductive group G with trivial
center.

2. Convex projective structures with geodesic boundary

2.1. The moduli space of framed convex projective structures with geodesic boundary on S and
its versions

A convex curve in RP2 is a curve such that any line intersects it either by a connected line
segment, or in no more then two points. If every line intersects a curve in no more then two
points, it is a strictly convex curve in RP2.

There is a natural bijective correspondence between convex curves and convex domains in
RP2. Indeed, let D be a convex domain in RP2. Then its boundary ∂D is a convex curve. Con-
versely, let K be a convex curve. Then barring the two trivial cases when K is a line or an empty
set, the complement to K is a union of two convex domains. One of them is not orientable, and
contains lines. The other is orientable, and does not contain any line. The latter is called interior
of the convex curve K , and denoted DK . If K is a line or the empty set, the convex domain DK ,
by definition, is R2, or RP2.

Given a convex domain D ⊂ RP2 we define the projectively dual domain D̂ ⊂ RP̂2 as the set
of all lines in RP2 which do not intersect D. It is a convex domain. The dual to D̂ is D.

A curve on a surface S with projective structure is called geodesic if it is a straight line segment
in any projective coordinate system. Therefore a geodesic develops into an infinite collection of
line segments. They are permuted by the monodromy group μ(π1(S)).

If the surface S has boundary the space of projective structures on S is infinite dimensional
even with the convexity requirement. For example, the set of projective structure on a disk coin-
cides with the set of convex domains in RP2 up to the action of PSL(2,R), which is obviously
infinite dimensional. Therefore we need to impose more strict boundary conditions to ensure
more finite dimensional moduli space. We require the developing map to be extendable to the
boundary and the image of every boundary component to be either a segment of a line or a point.
The second case is called degenerate and the boundary is called cuspidal. We say that a boundary
component of a surface with a projective structure is geodesic if it the projective structure falls
into one of these two cases.

A framing of a projective structure with geodesic boundary is an orientation of all non-
degenerate boundary components.

Definition 2.1. T +
3 (S) is the moduli space of framed convex real projective structures on an

oriented surface S with geodesic boundary considered up to the action of the group Diff0(S) of
diffeomorphisms isotopic to the identity.

(The index 3 in T +
3 (S) indicates the group PSL(3,R) and + stands for framing).

The space T +
3 (S) is a 2s : 1 cover of the space T3(S) of non-framed convex real projective

structures on S with geodesic boundary, where s is the number of the holes, ramified over the
surfaces which have at least one cuspidal boundary component. On the other hand, the orientation
of S provides orientations of the boundary components. Thus there is a canonical embedding
T +(S) ↪→ T3(S) as a subspace with corners.
3
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The spaces T +
3 (S) enjoys the following structures and properties:

1. There is an embedding i :T +
2 (S) ↪→ T +

3 (S), where T +
2 (S) is the classical Teichmüller space

parametrising complex structures on S0 modulo the action of Diff0(S), with chosen orien-
tation of non-degenerate boundary components. Indeed, due to the Poincaré uniformisation
theorem any Riemann surface can be represented as a quotient of the hyperbolic plane by a
discrete group. Consider the Klein model of the hyperbolic plane in the interior of a conic in
RP 2. The geodesics are straight lines in this model. The quotient inherits the real projective
structure. The orientations of the boundary components are inherited trivially.

2. The map μ from T +
3 (S) to the space R3(S) of homomorphisms π1(S) → PSL3(R) consid-

ered up to a conjugation. The space R3(S) possesses a Poisson structure [7,12,13]. Since μ

is a local diffeomorphism, it induces a Poisson structure on T +
3 (S).

3. The involution σ :T +
3 (S) → T +

3 (S), defined by the property that the convex domain cor-
responding to the point σx, where x ∈ T +

3 (S), is projectively dual to the convex domain
corresponding to x. The representation μ(σ(x)) is defined by composing μ(x) with the
outer automorphism g → (gt )−1 of the group PSL3(R). The map σ preserves the Poisson
structure.

4. The action of the mapping class group ΓS := Diff(S)/Diff0(S) on T +
3 (S). It also preserves

the Poisson structure.

Before we proceed any further, let us introduce a toy model of the moduli space T +
3 (S), which

does not only contains the main features of the latter, but also plays a key role in its study.

2.2. The moduli spaces of pairs of convex polygons, one inscribed into the other

Let Pn
3 be the space of pairs of convex n-gons in RP2, one inscribed into the other, and

considered up to the action of PSL3(R).
One can think of this space as of a kind of discrete approximation to the space of parametrised

closed convex curves in RP2. Indeed, fix a set R of n points on the standard circle S1. Then for
any convex curve γ :S1 → RP2 one can associate the convex polygon with vertices γ (R) and
the polygon with edges tangent to γ at γ (R).

This space has a natural Poisson structure, and there are analogs of the maps μ, σ , i and the
mapping class group action.

Namely, let F3 be the space of flags in R3, or, equivalently the space of pairs (A,a), where
a ⊂ RP2 is a line, and A ∈ a is a point. There exists a natural map μ :Pn

3 → Fn
3 /PSL3(R)

which is the analog of the map μ for T3(S). Its image is a connected component in the space of
collections of flags in general position.

The explicit formulae given below provide a definition of the Poisson structure in this case.
The projective duality interchanges the inscribed and circumscribed polygons. It acts as an

involution σ of Pn
3 .

Let Pn
2 be the configuration space of n ordered points on the oriented real projective line, such

that the induced cyclic order is compatible with the chosen orientation of RP1. Then there is a
canonical embedding i :Pn

2 ↪→Pn
3 , which identifies Pn

2 with the space of polygons inscribed into
a conic. Indeed, for each such a polygon we assign the circumscribed polygon given by tangents
to the conic at the vertices of the original polygon. The set of stable points of σ is precisely the
image of i.
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The role of the mapping class group is played by the cyclic group shifting simultaneously
the vertices of the two polygons. Namely, we assume that the vertices of the two polygons are
ordered, so that the induced cyclic orders are compatible with the natural orientations of the
polygons. One may assume in addition that the first vertex of the inscribed polygon is inside of
the first side of the circumscribed one. The generator of the cyclic group shifts cyclically the
order by one.

One can unify these two moduli spaces by considering the moduli space T3(Ŝ ) of framed
convex projective structures on surfaces with geodesic boundary, equipped with a finite (possible
empty) collection of marked points on the boundary, see Section 2.7.

Our goal is to introduce a set of global coordinates on T +
3 (S), describe its natural Poisson

structure in terms of these parametrisation and give explicit formulae for the maps i,μ,σ and the
action of the mapping class group. Before addressing this problem, let us first solve this problem
for the toy model Pn

3 since it contains most of the tools used for the problem in question.

2.3. Parameterisations of the spaces Pn
3

Cut the inscribed polygons into triangles and mark two distinct points on every edge of the
triangulation except the edges of the polygon. Mark also one point inside each triangle.

Theorem 2.2. There exists a canonical bijective correspondence between the space Pn
3 and as-

signments of positive real numbers to the marked points.

Proof. It is constructive: We are going to describe how to construct numbers from a pair of
polygons and visa versa.

A small remark about notations. We denote points (respectively lines) by uppercase (respec-
tively lowercase) letters. A triangle on RP2 is determined neither by vertices nor by sides, since
there exists four triangles for any generic triple of vertices or sides. If the triangle is shown on a
figure, it is clear which one corresponds to the vertices since only one of the four fits entirely into
the drawing. If we want to indicate a triangle which does not fit, we add in braces a point which
belongs to the interior of the triangle. For example, the points A,B and C on Fig. 1 are vertices
of the triangles ABC, ABC{a ∩ c}, ABC{a ∩ b} and ABC{b ∩ c}.

Another convention concerns the cross-ratio. We assume that the cross-ratio of four points
x1, x2, x3, x4 on a line is the value at x4 of a projective coordinate taking value ∞ at x1, −1 at
x2, and 0 at x3. So we employ the formula (x1−x2)(x3−x4)

(x1−x4)(x2−x3)
for the cross-ratio. Observe that the

lines passing through a point form a projective line. So the cross-ratio of an ordered quadruple
of lines passing through a point is defined.

Let us first consider the case of P3
3 . It is the space of pairs of triangles abc and ABC (Fig. 1),

where the second is inscribed into the first and considered up to projective transformations. This
space is one dimensional and its invariant X is just the cross-ratio of the quadruple of lines
a,AB,A(b∩c),AC. Such invariant is called the triple ratio [14, Section 3] and is defined for any
generic triple of flags in RP2 and can be also defined as follows. Let R3 be the three dimensional
real vector space whose projectivisation is RP2. Choose linear functionals fa,fb, fc ∈ (R3)∗
defining the lines a, b, c. Choose non-zero vectors Ã, B̃, C̃ projecting onto the points A,B,C.
Then

X := fa(B̃)fb(C̃)fc(Ã)˜ ˜ ˜ .

fa(C)fb(A)fc(B)
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Fig. 1. P3
3 .

It is obviously independent on the choices involved in the definition, and manifestly Z/3Z-in-
variant.

The third definition of the triple ratio is borrowed from [15, Section 4.2]. Every point (respec-
tively line) of RP2 corresponds to a line (respectively plane) in V3, and we shall denote them by
the same letters. The line C belongs to the plane c and defines a linear map C : c ∩ a → c ∩ b: it
is the graph of this map. Similarly there are linear maps A :a ∩ b → a ∩ c and B :b ∩ c → b ∩ a.
The composition of these three linear maps is the multiplication by the invariant X.

Elaborating the third definition using a Euclidean structure, we come to the fourth definition,
making connection to the classical Ceva and Menelaus theorems:

X := ±|A(a ∩ b)||B(b ∩ c)||C(c ∩ a)|
|A(a ∩ c)||B(b ∩ a)||C(c ∩ b)| ,

where the distances are measured with respect to any Euclidean structure on R2 = RP2 − RP1

containing the triangles and the sign is positive if the triangles are inscribed on into another and
minus otherwise. The Ceva theorem claims that the lines A(b ∩ c), B(c ∩ a) and C(a ∩ b) are
concurrent (pass through one point) if and only if X = 1. The Menelaus theorem claims that the
points A,B and C are concurrent (belong to a line) if and only if X = −1.

In particular this definition implies

Lemma 2.3. X is positive if and only if ABC is inscribed into (a ∩ b)(b ∩ c)(c ∩ a).

Now consider the next case: P4
3 . It is the space of pairs of quadrilaterals abcd and ABCD,

where the second is inscribed into the first, considered up to projective transformations. The
space of such configurations has dimension four. Two parameters of a configuration are given by
the triple ratio X of the triangles ABC inscribed into abc and the triple ratio Y of ACD inscribed
into acd{B} (Fig. 2). Another two parameters are given by the cross-ratios of quadruples of lines
a,AB,AC,AD and c,CD,CA,CB , denoted by Z and W , respectively. Assign the coordinates
X,Y,Z and W to the marked points as shown on Fig. 2.

Lemma 2.4. The convex quadrangle ABCD is inscribed into the convex quadrangle abcd if and
only if X,Y,Z,W are positive.

Proof. Indeed, Lemma 2.3 implies that X,Y > 0. Observe that the cross-ratio of four points on
RP1 is positive if and only if the cyclic order of the points is compatible with the one provided
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Fig. 2. P4
3 .

by their location on RP1, i.e. with one of the two orientations of RP1. This immediately implies
that Z,W > 0. On the other hand, given X > 0 we have, by Lemma 2.3, a unique projective
equivalence class of a triangle ABC inscribed into a triangle abc. We use the coordinates Z,W

to define the lines AD and CD, and the positivity of Z and W guarantees that these lines intersect
in a point D located inside of the triangle abc, that is in the same connected component as the
triangle ABC. Finally, Y is used to define the line d , and positivity of Y just means that it does
not intersect the interior of the quadrangle ABCD. The lemma is proved. �

Now let us consider the space Pn
3 for an arbitrary n > 2. A point of this space is represented

by a polygon A1 . . .An inscribed into a1 . . . an. Cut the polygon A1 . . .An into triangles. Each
triangle AiAjAk of the triangulation is inscribed into aiaj ak , and we can assign their triple ratio
to the marked point inside of AiAjAk . Moreover, for any pair of adjacent triangles AiAjAk

and AjAkAl forming a quadrilateral AiAjAkAl inscribed into the quadrilateral aiaj akal one
can also compute a pair of cross-ratios and assign it to two points on the diagonal AjAk . The
cross-ratio of the lines passing through Aj is associated to the point closer to the point Aj .

The converse construction is straightforward. For every triangle of the triangulation one can
construct a pair of triangles using the number in the center as a parameter and using Lemma 2.3.
Then we assemble them together using numbers on edges as gluing parameters and Lemma 2.4.
The theorem is proved. �

Now let us proceed to convex projective structures on surfaces.

2.4. A set of global coordinates on T +
3 (S)

Let S be a Riemann surface of genus g with s boundary components. Assume, that s � 1 and
moreover s � 3 if g = 0. Shrink all boundary components to points. Then the surface S can be cut
into triangles with vertices at the shrunk boundary components. We call it an ideal triangulation
of S. Let us put two distinct marked points to each edge of the triangulation and one marked
point to the center of every triangle.
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Theorem 2.5. Given an ideal triangulation T of S, there exists a canonical isomorphism

ϕT :T3(S)
∼−→ R

{marked points}
>0 .

Proof. It is quite similar to the proof for Pn
3 . Let us first construct a surface starting from a

collection of positive real numbers on the triangulation. Consider the universal cover S̃ of the
surface and lift the triangulation together with the marked points and numbers from S to it.
According to Theorem 2.2 to any finite polygon composed of the triangles of the arising infinite
triangulated polygon we can associate a pair of polygons in RP2. Let U be the union of all
inscribed polygons corresponding to such finite sub-polygons. Observe that it coincides with the
intersection of all circumscribed polygons, and therefore is convex. The group π1(S) acts on S̃

and hence on U by projective transformations. The desired projective surface is U/π1(S).
Now let us describe the inverse map, i.e. construct the numbers out of a given framed con-

vex projective structure and a given triangulation. Take a triangle and send it to RP2 using a
developing map ϕ. The vertices of the triangle correspond to boundary components. For a given
boundary component Ci of S the choice of the developing map ϕ and the framing allows to
assign a canonical flag (A,a) on RP2 invariant under the action of the monodromy operator
around Ci . Indeed, if the boundary component Ci is non-degenerate, we take the line containing
the interval ϕ(Ci) for a, and one of the endpoints on this interval for A. The choice between the
two endpoints is given by the framing, so that the interval is oriented out from the point A. If the
boundary component is degenerate the point A is just the image of Ci under ϕ. The line a is the
projectivisation of the two dimensional subspace where the monodromy operator μ(Ci) acts by
a unipotent transformation.

Assigning the flags to all three vertices of the triangle one gets a point of P3
3 . The corre-

sponding coordinate is associated to the central marked point of the original triangle. Similarly,
taking two adjacent triangles of the triangulation one obtains the numbers for the marked points
on edges.

These two constructions are evidently mutually inverse to each other. The theorem is
proved. �
2.5. Properties of the constructed coordinates for both P3

3 and T3(S)

1. It turns out that the Poisson brackets between the coordinates are very simple, namely

{Xi,Xj } = 2εijXiXj , (1)

where εij is a skew-symmetric integral valued function. To define the function εij consider the
graph with vertices in marked points and oriented edges connecting them as shown on Fig. 3.

Fig. 3. Poisson structure tensor.
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Fig. 4. Construction of the monodromy group.

(We have shown edges connecting marked points belonging to one triangle only. Points of other
triangles are connected by arrows in the same way. Points connected by edges without arrows
are not taken into account.) Then

εij = (number of arrows from i to j) − (number of arrows from j to i).

The proof of this formula amounts to a long computation. However it is an easy exercise to
verify that this bracket does not depend on the triangulation, and therefore can be taken just as a
definition. For Pn

3 it is the only natural way to define the Poisson structure known to us.

2. Once we have positive numbers assigned to marked points, the construction of the corre-
sponding projective surface is explicit. In particular one can compute the monodromy group of
the corresponding projective structure or, in other words, the image of the map μ. To describe the
answer we use the following picture. Starting from the triangulation, construct a graph embedded
into the surface by drawing small edges transversal to each side of the triangles and inside each
triangle connect the ends of edges pairwise by three more edges, as shown on Fig. 4. Orient the
edges of the triangles in counterclockwise direction and the other edges in the arbitrary way. Let

T (X) =
⎛
⎝ 0 0 1

0 −1 −1
X 1 + X 1

⎞
⎠ and E(Z,W) =

⎛
⎝ 0 0 Z−1

0 −1 0
W 0 0

⎞
⎠ .

Assign the matrix T (X) to the edges of each triangle with X assigned to its center. And assign the
matrix E(Z,W) to the edge connecting two triangles, where W (respectively Z) is the number
to the left (respectively right) from this edge (Fig. 4). Then for any closed path on the graph one
can assign an element of PSL3(R) by multiplying the group elements (or their inverses if the path
goes along the edge against its orientation) assigned to edges the path passes along. The image
of the fundamental group of the graph is just the desired monodromy group.

The proof of this statement is also constructive. Once we have a configuration of flags from
P3

3 with triple ratio X, one can define a projective coordinate system on RP2. Namely, take the
one where the point b ∩ c has coordinates [0 : 1 : 0]t , the point A has coordinates [1 : −1 : 1]t ,
C—[1 : 0 : 0]t and B—[0 : 0 : 1]t (Fig. 1). The line a has coordinates [1 : 1 + X : X]. The cyclic
permutation of the flags induces the coordinate change given by the matrix T (X). Similarly if we
have a quadruple of flags F1F2F3F4 with two cross-ratios Z and W , then the coordinate system
related to the triple F2F4F1 is obtained from the coordinate system related to the triple F4F2F3
by the coordinate change E(Z,W).
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Fig. 5. Involution σ .

Fig. 6. Flip.

3. The involution σ acts in a very simple way, where Z′ = W(1+Y)
Y (1+X)

and W ′ = Z(1+X)
X(1+Y)

: See
Fig. 5.

In particular a point of T3(S) is stable under σ if the two coordinates on each edge coincide,
and the coordinates in the center of each triangle are equal to one. Taking into account that the
set of σ -stable points is just the ordinary Teichmüller space, one obtains its parametrisation.
Actually it coincides with the one described in [4].

4. Each triangulation of S provides its own coordinate system and in general the transition
from one such system to another one is given by complicated rational maps. However any change
of triangulation may be decomposed into a sequence of elementary changes—the so called flips.
A flip removes an edge of the triangulation and inserts another one into the arising quadrilateral
as shown on Fig. 6. This figure shows also how the numbers at the marked points change under
the flip. Observe that these formulae allow in particular to pass from one triangulation to the
same one, but moved by a nontrivial element of the mapping class group of S, and thus give
explicit formulae for the mapping class group action.

Here

A′ = A(1 + Z), D′ = D
W

1 + W
, E′ = E(1 + W), H ′ = H

Z

1 + Z
,

B ′ = B
1 + Z + ZX + ZXW

, C′ = C
(1 + W)XZ

,

(1 + Z) 1 + Z + ZX + ZXW
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F ′ = F
1 + W + WY + WYZ

(1 + W)
, G′ = G

(1 + Z)YW

1 + W + WY + WYZ
,

X′ = 1 + Z

XZ(1 + W)
, Y ′ = 1 + W

YW(1 + Z)
,

Z′ = X
1 + W + WY + WYZ

1 + Z + ZX + ZXW
, W ′ = Y

1 + Z + ZX + ZXW

1 + W + WY + WYZ
.

The formulae can be derived directly, or more simply as in Section 11 in [5]. We will return to
discussion of the structure of these formulas below.

2.6. Convex projective structures on surfaces with piecewise geodesic boundary

A convex projective structure on a surface has piecewise geodesic boundary if a neighborhood
of every boundary point is projectively isomorphic to a neighborhood of a boundary point of a
half plane or a vertex of an angle. In the latter case it makes sense to consider a line passing
through the vertex “outside” of the surface, see the punctured lines on Fig. 7.

Let us introduce framed convex projective structure with piecewise geodesic boundary. Let
Ŝ be a pair consisting of an oriented surface S with the boundary ∂S, and a finite (possibly
empty) collection of distinguished points {x1, . . . , xk} on the boundary. We define the punctured
boundary of Ŝ by

∂Ŝ := ∂S − {x1, . . . , xk}.

So the connected components of ∂Ŝ are either circles or arcs.

Definition 2.6. A framed convex projective structure with piecewise geodesic boundary on Ŝ is
a convex projective structure on S with the following data at the boundary:

(i) Each connected component of the punctured boundary ∂Ŝ is a geodesic interval. Moreover,
at each point xi we choose a line passing through xi outside of S, as on Fig. 7.

(ii) If a boundary component does not contain distinguished points, we choose its orientation.

The space T3(Ŝ ) parametrises framed convex projective structures with piecewise geodesic
boundary on Ŝ.

Remark. Sometimes it is useful to employ a different definition of the framing. Namely, instead
of choosing lines through the distinguished points xi we choose a point pi inside of each of the

Fig. 7. Framed piecewise geodesic boundary of a convex projective structure on S.
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geodesic segments bounded by the distinguished points. T3(Ŝ ) is the moduli space of each of
these two structures on S. Indeed, the equivalence between the two definitions is seen as follows.
Consider the convex hull of the points pi . We get a surface S′ inscribed into S, with the induced
convex projective structure. Conversely, given S′ we reconstruct S by taking the circumscribed
surface.

The convexity implies that each boundary component develops into a convex infinite polygon
connecting two points in RP2, stabilised by the monodromy around the component. Moreover,
at each vertex of this polygon there is a line segment located outside of S̃.

Both spaces T3(S) and Pn
3 are particular cases of the moduli space T3(Ŝ ). Indeed, T3(S) is

obtained when the set {p1, . . . , pk} is empty, and we get Pn
3 when S is a disc: In this case S is

a convex polygon, serving as the inscribed polygon, and the circumscribed polygon is given by
the chosen lines.

To introduce the coordinates let us shrink the boundary components without marked points
into punctures, and take a triangulation T of S with vertices at the distinguished points on the
boundary and at the shred boundary components. We call it ideal triangulation. The interior
of each side of such a triangulation is either inside of S, or at the boundary. We assign the
coordinates to the centers of the triangles and pairs of marked points on the internal sides of the
triangulations. Namely, going to the universal cover S̃ of S, we get a triangulation T̃ there. Then,
by the very definition, for every vertex p̃ of the triangulation T̃ there is a flag given at p̃. We use
these flags just as above.

The space T3(Ŝ ) has the same features 1–4 as T3(S). The only thing deserving a comment
is construction of a canonical embedding i :T2(Ŝ ) ↪→ T3(Ŝ ). We define the Teichmüller space
T2(Ŝ ) as the space of pairs (a complete hyperbolic metrics on S, a distinguished collection of
points {x1, . . . , xk} located at the absolute of S). A point of the absolute of S can be thought of as
a π1(S)-orbit on the absolute of the hyperbolic plane which is at the infinity of an end of S. Thus
going to the universal cover of S in the Klein model we get a finite collection of distinguished
points at every arc of the absolute corresponding to an end of S. It remains to make, in a π1(S)-
equivariant way, finite geodesic polygons with vertices at these points, and add the tangent lines
to the absolute at the vertices of these polygons. Taking the quotient by the action of π1(S) we
get a framed convex projective structure on S with piecewise geodesic boundary.

2.7. Comparing the moduli space of local systems and of convex projective structures

Let F be a set. Recall that an F -local system on a topological space X is a locally trivial
bundle F on X, with fibers isomorphic to F and locally constant transition functions. If X is a
manifold, this is the same thing as a bundle with a flat connection on X. If F is a group, we also
assume that it acts on the right on F , and the fibers are principal homogeneous H -spaces. If G

is an algebraic group, a G-local system on a variety X is an algebraic variety such that for a field
K the set of its K-valued points is a G(K)-local system on X(K).

Let G := PGL3 and let B be the corresponding flag variety. The set of its real points of was
denoted by F3 above. For a G-local system L on S let LB := L ×G B be the associated local
system of flags. Recall (Section 2 of [5]) that a framed G-local system on Ŝ is a pair (L, β)

consisting of a G-local system on S and a flat section β of the restriction of LB to the punctured
boundary ∂Ŝ. The corresponding moduli space is denoted by XG,Ŝ .

Let us shrink all holes on S without distinguished points to punctures. An ideal triangulation
T of Ŝ is a triangulation of S with vertices either at punctures or at the boundary components,
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so that each connected component of ∂Ŝ hosts exactly one vertex of the triangulation. Repeating
the construction of Sections 2.4–2.5 we get a set of coordinate systems on XG,Ŝ parametrised by
ideal triangulations of Ŝ. Precisely, given ideal triangulations T there is an open embedding

ϕT : G{internal edges of T }
m ↪→XG,Ŝ .

Here Gm stays for the multiplicative group understood as an algebraic group. So the set of its
complex points is C∗. The natural coordinate on Gm provides a rational coordinate function
on the moduli space XG,Ŝ . Thus the map ϕT provides a (rational) coordinate system on the
moduli space. The transition functions between the two coordinate systems corresponding to
triangulations related by a flip are given by the formulas written in the very end of Section 2.6.
Since these formulas are subtraction free, the real locus of XG,Ŝ contains a well-defined subset

XG,Ŝ(R>0) := ϕT

(
R

{internal edgesof T }
>0

)
↪→XG,Ŝ(R).

Theorem 2.7. There is a canonical identification XPGL3,Ŝ
(R>0) = T3(Ŝ ).

In other words, T3(Ŝ ) is the subset of the real locus of the moduli space XPGL3,Ŝ
consisting

of the points which have positive real coordinates in the coordinate system corresponding to one
(and hence any) ideal triangulation of Ŝ.

Proof. We will assume that T3(Ŝ ) parametrises the structures described in Remark after Def-
inition 2.6. (If we adopt Definition 2.6, the distinguished points will play different roles in the
definition of these moduli spaces.) Let us define a canonical embedding

T3
(
Ŝ

) → XG,Ŝ(R>0).

The local system Lp corresponding to a point p ∈ T3(Ŝ ) is the one corresponding to the rep-
resentation μ(p). Intrinsically, it is the local system of projective frames on S. Let us define a
framing on it. Let Ci be a boundary component of S. If it does not contain the distinguished
points, the corresponding component of the framing is provided by the flag (a,A) defined in the
proof of Theorem 2.5. If Ci contains distinguished points, we use the flag (p,L) where p is the
chosen point on the boundary geodesic interval L. The restriction of the canonical coordinates
on the moduli space XPGL3,Ŝ

to the space of convex projective structures gives, by the very de-
finition, the coordinates on the latter space defined above. Now the proof follows immediately
from the results of Sections 2.3–2.5. The theorem is proved. �
2.8. Laurent positivity properties of the monodromy representations

Consider the universal PGL3-local system on the space S × XPGL3,S . Its fiber over S × p is
isomorphic to the local system corresponding to the point p of the moduli space XPGL3,S . Our
next goal is to study its monodromy representation.

Let FS be the field of rational functions on the moduli space XPGL3,S . The monodromy of the
universal local system around a loop on S is a conjugacy class in PGL3(FS).

Recall that, given an ideal triangulation T of S, we defined canonical coordinates {XT
i } on

XPSL3,S corresponding to T . Given a coordinate system {Xi}, a positive rational function in {Xi}
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is a function which can be presented as a ratio of two polynomials in {Xi} with positive integral
coefficients. For instance 1 − x + x2 is a positive rational function since it is equal to (1 +
x3)/(1 + x). A matrix is totally positive if all its minors are non-zero positive rational functions
in {XT

i }. Similarly we define upper/lower triangular totally positive matrices: Any minor, which
is not identically zero for generic matrix in question, is a positive rational functions.

Theorem 2.8. Let T be an ideal triangulation of S. Then monodromy of the universal PGL3-
local system on S ×XPGL3,S around any non-boundary loop on S is conjugate in PGL3(FS) to a
totally positive matrix in the canonical coordinates assigned to T .

The monodromy around a boundary component is conjugated to an upper/lower triangular
totally positive matrix.

Proof. Recall the trivalent graph Γ ′
T on Fig. 4, defined starting from an ideal triangulation T

of S. Let us call its edges forming the little triangles by t-edges, and the edges dual to the edges
of the triangulation T by e-edges. The matrices T (∗) and E(∗) assigned to the t- and e-edges
of this graph provide an explicit construction of the universal local system. Indeed, since T (X)3

is the identity in PGL3, we get a universal local system on the dual graph to T . This graph is
homotopy equivalent to S.

Given a loop on S, we shrink it to a loop on Γ ′
T . We may assume that this loop contains no

consecutive t-edges: Indeed, a composition of two t-edges is a t-edge. Thus we may choose an
initial vertex on the loop so that the edges have the pattern et . . . etet. Therefore the monodromy
is computed as a product of matrices of type ET or ET −1. Observe that

E(Z,W)T (X) =
⎛
⎝ Z−1X Z−1(1 + X) Z−1

0 1 1
0 0 W−1

⎞
⎠ and (2)

E(Z,W)T (X)−1 =
⎛
⎝ Z−1 0 0

1 1 0
W W(1 + X−1) WX−1

⎞
⎠ . (3)

These matrices are upper/lower triangular totally positive integral Laurent matrices in the coor-
dinates X,Y,Z,W . A loop on S contains matrices of just one kind if and only if it is the loop
around a boundary component. Therefore the monodromy around any non-boundary loop is ob-
tained as a product of both lower and upper triangular matrices. It remains to use the following
fact: If Mi is either lower or upper triangular totally positive matrix, and there are both upper and
lower triangular matrices among M1, . . . ,Mk , then the product M1 . . .Mk is a totally positive
matrix (cf. [10]). The theorem is proved. �

We say that the monodromy of a PGL3(R)-local system is regular hyperbolic if the mon-
odromy around a non-boundary loop has distinct real eigenvalues, and the monodromy around a
boundary component is conjugated to a real totally positive upper triangular matrix.

Corollary 2.9. The monodromy of a convex projective structure with geodesic boundary on S is
faithful and regular hyperbolic.
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Proof. Follows immediately from Theorem 2.8 and the Gantmacher–Krein theorem [10] (see
Chapter 2, Theorem 6 there) claiming that the eigenvalues of a totally positive matrix are distinct
real numbers. The corollary is proved.1 �
Remark. Both Theorem 2.8 and Corollary 2.9 can be generalised to the case when G is an
arbitrary split reductive group with trivial center, see [5]. When the boundary of S is empty and
G = PSLm(R), a statement similar to Corollary 2.9 was proved in [20].

A Laurent polynomial in {XT
i } is positive integral if its coefficients are positive integers.

A rational function on the moduli space XPGL3,S is called a good positive Laurent polynomial if
it is a positive integral Laurent polynomial in every canonical coordinate system on XPGL3,S .

Corollary 2.10. The trace of the nth power of the monodromy of the universal PGL3-local system
on S around any loop on S is a good positive Laurent polynomial on XPGL3,S .

Proof. A product of matrices with positive integral Laurent coefficients is again a matrix of this
type. So the corollary follows from the explicit construction of the universal PGL3-local system
given in the proof of Theorem 2.8, and formulas (2), (3). �

A good positive Laurent polynomial on XPGL3,S is indecomposable if it cannot be presented
as a sum of two non-zero good positive Laurent polynomials on XPGL3,S .

Conjecture 2.11. The trace of the nth power of the monodromy of the universal PGL3-local
system on S around any loop on S is indecomposable.

3. The universal PSL3(RRR)-Teichmüller space

In this section, using the positive configuration of flags, we introduce the universal Teich-
müller space T3 for PSL3(R). We show that the Thompson group acts by its automorphisms,
preserving a natural Poisson structure on it. We show that T3 is closely related to the space of
convex curves in RP2. The universal Teichmüller space considered by Bers and Penner [22,23]
embeds to the PSL3(R)-Teichmüller space.

3.1. The universal higher Teichmüller space

We leave to the reader to formalise a definition of a finite cyclic set. As a hint we want to
mention that a subset of an oriented circle inherits a cyclic structure.

Definition 3.1.

(i) A set C is cyclically ordered if any finite subset of C is cyclically ordered, and any inclusion
of finite subsets preserves the cyclic order.

1 As was pointed out by the referee, an alternative proof of Corollary 2.9 follows from the results of [12] for surfaces
without boundary by doubling along the geodesic boundary.
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(ii) A map β from a cyclically ordered set C to the flag variety F3 is positive if it maps every
cyclically ordered quadruple (a, b, c, d) to a positive quadruple of flags (β(a),β(b),β(c),

β(d)).

A positive map is necessarily injective. So, abusing terminology, we define positive subset
C ⊂ F3 as the image of a positive map, keeping in mind a cyclic structure on C.

The set of positive n-tuples of flags in F3 is invariant under the operation of reversing the
cyclic order to the opposite one. So it has not only cyclic, but also dihedral symmetry.

Consider a cyclic order on P1(Q) provided by the embedding P1(Q) ↪→ P1(R).

Definition 3.2. The universal higher Teichmüller space T3 is the quotient of the space of positive
maps β : P1(Q) → F3 by the action of the group PSL3(R).

Canonical coordinates on T3. Let us choose three distinct points on P1(Q), called 0,1,∞.
Recall the Farey triangulation, understood as a triangulation of the hyperbolic disc with a distin-
guished oriented edge. Then we have canonical identifications

P1(Q) = Q ∪ ∞ = {vertices of the Farey triangulation}. (4)

The distinguished oriented edge goes from 0 to ∞. Consider the infinite set

I3 := {pairs of points on each edge of the Farey triangulation}
∪ {

(centers of the) triangles of the Farey triangulation
}
.

A point of T3 gives rise to a positive map

{vertices of the Farey triangulation} → F3

considered up to the action of PGL3(R). We assign to every triple of flags at the vertices of a
Farey triangle their triple ratio, and to every quadruple of flags at the vertices of a Farey quadri-
lateral the related two cross-ratios, pictured at the diagonal. We get a canonical map

ϕ3 :T3 → R
I3
>0. (5)

Theorem 3.3. The map (5) is an isomorphism.

Proof. It is completely similar to the one of Theorem 2.2, and thus is omitted. �
The right-hand side in (5) has a natural quadratic Poisson structure given by the formula (1).

Using the isomorphism ϕ3, we transform it to a Poisson structure on T3.
Here is another way to produce points of T3.

3.2. Convex curves on RP2 and positive curves in the flag variety F3

Let K be a continuous closed convex curve in RP2. Then for every point p ∈ K there is a non-
empty set of lines intersecting K at p and such that K is on one side of it. We call them osculating
lines at p, see Fig. 8. A regular convex curve in RP2 is a continuous convex curve which has
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Fig. 8. Osculating lines to a convex curve.

exactly one osculating line at each point. Assigning to a point p of a regular convex curve K the
unique osculating line at p we get the osculating curve K̃ in the flag variety F3. It is continuous.
Moreover, thanks to the results of Section 2.3, it is positive, i.e. the map K → K̃ ⊂ F3 is positive.
It follows that K is a C1-smooth convex curve in RP2, and the osculating curve K̃ is given by
the flags (p,TpK) where p runs through K . It turns out that this construction gives all positive
continuous curves in the flag variety F3. Recall the double bundle

RP2 p←− F3
p̂−→ RP̂2,

where RP̂2 is the set of lines in RP2. A subset of RP2 is strictly convex if no line contains its
three distinct points. (Warning: A strictly convex curve is a strictly convex subset, but a convex
domain is never a strictly convex subset.)

Proposition 3.4.

(i) If C a positive subset of F3, then p(C) and p̂(C) are convex.
(ii) If C is a continuous positive curve in F3, then p(C) is a regular convex curve. This gives

rise to a bijective correspondence

continuous positive curves in F3 ⇔ regular convex curves in RP2. (6)

Proof. (i) Follows immediately from the results of Section 2.3.
(ii) p(C) is continuous and, by (i), convex. It comes equipped with a continuous family of

osculating lines. It follows from this that p(C) is regular. This gives the arrow ⇒ in (6). The
osculating curve provide the opposite arrow. Since a convex curve cannot have two different
continuous families of osculating lines, we got a bijection. The proposition is proved. �

So identifying P 1(Q) with a subset of a regular convex curve K respecting the cyclic orders
we produce a point of T3.

The Thompson group T. It is the group of all piecewise PSL2(Z)-projective automorphisms
of P1(Q). By definition, for every g ∈ T there exists a decomposition of P1(Q) into a union of
finite number of segments, which may intersect only at the ends, so that the restriction of g to
each segment is given by an element of PSL2(Z). The Thompson group acts on T3 in an obvious
way. Here is another way to look at it. The Thompson group contains the following elements,
called flips: Given an edge E of a triangulation T with a distinguished oriented edge, we do a flip
at E (as on Fig. 6), obtaining a new triangulation T ′ with a distinguished oriented edge. Observe
that the sets of ends of the trivalent trees dual to the triangulations T and T ′ are identified. On
the other hand, there exists unique isomorphism of the plane trees T and T ′ which identifies
their distinguished oriented edges. It provides a map of the ends of these trees, and hence an
automorphism of P 1(Q), which is easily seen to be piecewise linear. The Thompson group is
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generated by flips [17]. So the formulas in the end of Section 2.5 allow to write the action of the
Thompson group explicitly in our coordinates.

Proposition 3.5. The action of the Thompson group preserves the Poisson bracket on T3.

Proof. Each flip preserves the Poisson bracket. The proposition follows. �
Let H be the hyperbolic plane. For a torsion free subgroup Δ ⊂ PSL2(Z), set SΔ := H/Δ.

Proposition 3.6. The Teichmüller space T3(SΔ) is embedded into the universal Teichmüller space
T3 as the subspace of Δ-invariants:

T3(SΔ) = (T3)
Δ. (7)

This isomorphism respects the Poisson brackets.

Proof. The surface SΔ has a natural triangulation TΔ, the image of the Farey triangulation under
the projection πΔ :H → SΔ. So according to Theorem 2.2 the left-hand side in (7) is identified
with the positive valued functions on I3/Δ, that is with Δ-invariant positive valued functions
on I3. It remains to use Theorem 3.3. The claim about the Poisson structures follows from the
very definitions. The proposition is proved. �
Remark 1. The mapping class group of SΔ is not embedded into the Thompson group, unless
we want to replace the latter by a bigger group. Indeed, a flip at an edge E on the surface SΔ

should correspond to the infinite composition of flips at the edges of the Farey triangulations
projected onto E. Nevertheless the Thompson group plays the role of the mapping class group
for the universal Teichmüller space.

Remark 2. The analogy between the mapping class groups of surfaces and the Thompson group
can be made precise as follows. In Chapter 2 of [6] we defined the notion of a cluster X -space
(we recall it in Section 4.3), and the mapping class group of a cluster X -space, acting by au-
tomorphisms of the cluster X -space. The classical and the universal Teichmüller spaces can be
obtained as the spaces of R>0-points of certain cluster X -spaces, which were defined in [5]. The
corresponding mapping class groups are the classical mapping class groups, and the Thompson
group, see Sections 2.9 and 2.14 in [6] for more details.

Remark 3 (The universal Teichmüller space and the SL3 Gelfand–Dikii Poisson brackets). The
functional space of osculating curves to smooth curves has a natural Poisson structure, the SL3
Gelfand–Dikii bracket. One can show that its restriction to the subspace provided by the regular
convex curves is compatible with our Poisson bracket.

4. The quantum PGL3-Teichmüller spaces

In this section we introduce the quantum universal PGL3-Teichmüller space. We proved that
the Thompson group acts by its automorphisms. In particular this immediately gives a definition
of the quantum higher Teichmüller space of a punctured surface S, plus the fact that the mapping
class group of S acts by its automorphisms.
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4.1. The quantum torus related to the set I3

Let T
q

3 be a non-commutative algebra (a quantum torus), generated by the elements Xi , where
i ∈ I3, subject to the relations

q−εij XiXj = q−εji XjXi, i, j ∈ I3. (8)

Here q is a formal variable, so it is an algebra over Z[q, q−1]. The algebra T
q

3 is equipped with
an antiautomorphism ∗, acting on the generators by

∗(Xi) = Xi, ∗(q) = q−1. (9)

Let us denote by Frac(T q

3 ) its non-commutative fraction field.

4.2. The Thompson group action: The quasiclassical limit

Recall that the Thompson group T is generated by flips at edges of the Farey triangulation.
Given such an edge E, let us define an automorphism

ϕE : Frac(T3) → Frac(T3) where T3 := T 1
3 .

Consider the 4-gon of the Farey triangulation obtained by gluing the two triangles sharing the
edge E—see Fig. 6, where E is the horizontal edge. Let SE ⊂ I3 be the 12-element set formed
by the pairs of marked points on the four sides and two diagonals of the 4-gon. On Fig. 6 these
are the points labeled by A,B, . . . ,Z,W . We set

ϕE(Xi) :=
{

X′
i , i ∈ SE,

Xi, i /∈ SE,

where X′
i is computed using the formulas after Fig. 6, so, for instance, if Xi = A, then X′

i = A′
and so on.

Proposition 4.1. The automorphisms ϕE give rise to an action of the Thompson group T by
automorphisms of the field Frac(T3) preserving the Poisson bracket.

Proof. It is known that the only relations between the flips fE are the following ones:

(i) f 2
E = Id,

(ii) fE1fE2 = fE2fE1 if E1 and E2 are disjoint,
(iii) (fE5fE4fE3fE2fE1)

2 = Id,

where the sequence of flips fE1, . . . , fE5 is shown on Fig. 9. The first two relations are obvi-
ously valid. The pentagon relation (iii) is clear from the geometric origin of the formula. The
proposition is proved. �

To introduce the action of the Thompson group on the non-commutative field Frac(T q

3 ), let us
recall some facts about the quantum cluster ensembles from [6].
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Fig. 9. Pentagon relation.

4.3. The cluster X -space and its quantisation

The cluster X -space is defined by using the same set-up as the cluster algebras [8]. We start
from the quasiclassical case. Consider the following data I = (I, ε), called a seed:

(i) A set I , possibly infinite.
(ii) A skew-symmetric function ε = εij : I × I → Z.

We assume that for every i ∈ I , the set of j ’s such that εij �= 0 is finite.
A mutation in the direction k ∈ I changes the seed I to a new one I′ = (I, ε′) where the

function ε′ is given by the following somewhat mysterious formula, which appeared in [8] in the
definition of cluster algebra:

ε′
ij =

{ −εij if k ∈ {i, j},
εij + εik max{0, sgn(εik)εkj } if k /∈ {i, j}. (10)

A seed may have an automorphism given by a bijection I → I preserving the ε-function. A clus-
ter transformation is a composition of mutations and automorphisms of seeds.

We assign to a seed I a Poisson algebra TI := Q[Xi,X
−1
i ], i ∈ I , with the Poisson bracket

{Xi,Xj } = εijXiXj .

Observe that the algebra TI is the algebra of regular functions on an algebraic tori XI: For any
field K , the set of its K-valued points is (K∗)I .

Let us take another seed I′ = (I, ε′) with the same set I , and consider a homomorphism
μk : Frac(TI′) → Frac(TI) defined on the generators by

μk

(
X′

i

) :=
⎧⎨
⎩

Xi(1 + Xk)
−εik if k �= i, εik � 0,

Xi(1 + X−1
k )−εik if εik > 0,

X−1
k if k = i.

(11)

The following result could serve as a motivation for the formula (10).

Lemma 4.2. The map μk preserves the Poisson bracket if and only if the functions ε′
ij and εij

are related by the formula (10).

Proof. Straightforward. �
The cluster X -space is a geometric object describing the birational transformations (11). It

can be understood as a space X|I| obtained by gluing the algebraic tori XJ, corresponding to all
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seeds J obtained from the initial one I by cluster transformations, according to these birational
transformations.

Now let us turn to the quantum case. Given a seed, consider the non-commutative fractions
field Frac(T q

I ) of the algebra generated by the elements Xi , i ∈ I , subject to the relations (8). It
is a non-commutative ∗-algebra, with an automorphism ∗ given by (9).

It was proved in Section 3 of [6] that there is a ∗-algebra homomorphism

μk : Frac
(
T

q

I′
) → Frac

(
T

q

I

)
acting on the generators by

μk(Xi) =
⎧⎨
⎩

XiG|εik |(q;Xk) if k �= i, εik � 0,

XiG|εik |(q;X−1
k )−1 if εik > 0,

X−1
k if k = i,

where

Ga(q;X) :=
{ ∏a

i=1(1 + q2i−1X), a > 0,

1, a = 0.

4.4. The main result

Our goal is the following theorem.

Theorem 4.3. The Thompson group T acts by ∗-automorphisms of the non-commutative field
Frac(T q

3 ), so that specializing q = 1 we recover the action from Proposition 4.1.

Proof. To get the explicit formulae for the action of flips, we will apply the above construction
to the situation when I = I3, and the function εij was defined in Section 2.5.

We define a flip

ϕE : Frac
(
T

q

3

) → Frac
(
T

q

3

)
as the composition of the mutations in the directions of Z,W,X,Y on Fig. 6. An easy com-
putation, presented in Section 4.6 in the quantum form, shows that in the case q = 1 this leads
to the formulas after Fig. 6. In the general case one needs to check the relations for the flips.
The first two of them are obvious. The quantum pentagon relation can be checked by a tedious
computation, using the explicit formulas for the quantum flip given in Section 4.6. Observe that
fE5fE4fE3fE2fE1 differs from the identity only by an involution of the seven variables assigned
to the marked points inside of the pentagon. The theorem is proved. �

The universal PGL3-Teichmüller space story from this point of view looks as follows:

Theorem 4.4. The universal Teichmüller space T3 is the set of the positive real points of the
cluster X -space related to the seed

{the set I3, the cluster function εij defined in Section 2.5}.
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The Thompson group is a subgroup of the mapping class group of the corresponding cluster
ensemble.

Remark (The quantum universal higher Teichmüller space and the W3-algebra). We suggest
that the action of the Thompson group by birational ∗-automorphisms of the quantum universal
Teichmüller space T q

3 should be considered as an incarnation of the W -algebra corresponding to
SL3. (For a down-to-earth definition of W3-algebras see [2]; for an algebraic-geometric discus-
sion of W -algebras see [1].)

4.5. The quantum PGL3-Teichmüller space for a punctured surface

Let us present a punctured surface S as S = SΔ := H/Δ, where Δ is a subgroup of PSL2(Z),
as in Section 3.2.

Definition 4.5. The quantum higher Teichmüller space X q

3 (SΔ) for a punctured surface SΔ is
given by

X q

3 (SΔ) := Frac
(
T

q

3

)Δ
. (12)

Theorem 4.3 immediately implies

Corollary 4.6. The mapping class group of S acts by positive birational ∗-automorphisms of the
∗-algebra (12).

4.6. Appendix: Formulas for a quantum flip

Performing mutations at Z and W we get

B1 = B, C1 = C, F1 = F, G1 = G, Z1 = Z−1, W1 = W−1,

A1 = A(1 + qZ), D1 = D
(
1 + qW−1)−1

,

H1 = H
(
1 + qZ−1)−1

, E1 = E(1 + qW),

X1 = X
(
1 + qZ−1)−1

(1 + qW), Y1 = Y(1 + qZ)
(
1 + qW−1)−1

.

Mutations of the ε-function are illustrated on Fig. 10, where the centers of mutations are shown
by little circles.

Performing mutations at X1 and Y1 we arrive at the final formulas for the quantum flip:

A′ = A(1 + qZ), D′ = D
(
1 + qW−1)−1

,

E′ = E(1 + qW), H ′ = H
(
1 + qZ−1)−1

,

X′ = (1 + qW)−1(1 + qZ−1)X−1, Y ′ = (
1 + qW−1)(1 + qZ)−1Y−1,
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Fig. 10. Mutations of the ε-function.

B ′ = B(1 + qZ)−1(1 + qZ + q2ZX + q3ZXW
)
,

F ′ = F(1 + qW)−1(1 + qW + q2WY + q3WYZ
)
,

C′ = CZX(1 + qW)
(
1 + q−1Z + q−2XZ + q−3WXZ

)−1
,

G′ = GWY(1 + qZ)
(
1 + q−1W + q−2YW + q−3ZYW

)−1
,

Z′ = X(1 + qW)
(
1 + q−1Z + q−2XZ + q−3WXZ

)−1

× (1 + qW)−1(1 + qW + q2WY + q3WYZ
)
,

W ′ = W−1(1 + qZ)−1(1 + qZ + q2ZX + q3ZXW
)

× WY(1 + qZ)
(
1 + q−1W + q−2YW + q−3ZYW

)−1
.

Appendix A. The configuration space of 5 flags in PPP2 is of cluster type E7

If mutating the X-coordinates (as in (11)) we get only a finite collection of different coordinate
systems, we say that the corresponding cluster X -space is of finite type. Based on the Fomin–
Zelevinsky classification theorem [9], we showed in [6] that cluster X -spaces of finite type are
also parametrised by Dynkin diagrams of the Cartan–Killing type. In this paper, we defined
cluster X -spaces under a simplifying assumption that the matrix εij is skew-symmetric. In the
finite type case this boils down to the condition that the Dynkin diagram is simply-laced.

Every skew-symmetric matrix ε :J × J → Z with integer entries determines a graph with
oriented edges. Namely take J as the set of vertices and connect vertices i and j by |εij | edges
oriented towards j if εij > 0 and towards i otherwise. Conversely any graph with oriented edges
and such that edges connecting any two vertices have the same orientation we can associate a
skew-symmetric matrix. Graph notation for skew-symmetric matrices is sometimes more conve-
nient than the matrix notation. Below we use this to picture a function εij from a seed I = (I, ε)

by an oriented graph. A mutation is determined by a vertex k, pictured by a little circle around
the vertex. The mutated function ε′

ij is given by formula (10). If εkl = 0, the mutations at the
vertices k, l commute, so we may picture both of them on the same diagram. The mutated graph
is shown on the right of the initial one. Finally, a seed I = (I, ε) is of finite type if mutating the
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Fig. 11. The moduli space of configurations of 4 flags in PGL3 is of cluster type D4.

Fig. 12. Mutations leading to a standard ε-function of type E7.

graph of ε we can get a graph isomorphic to the Dynkin diagram of type An,Dn,E6,E7,E8,
oriented in a certain way.

Proposition A.1.

(a) The moduli space of configurations of 4 flags in PGL3 has a structure of a cluster X -space
of finite type D4.

(b) The moduli space of configurations of 5 flags in PGL3 has a structure of a cluster X -space
of finite type E7.

Proof. We exhibit a sequence of mutations of the ε-function transforming the ε-function de-
scribing the moduli space of configurations of 4 (respectively 5) flags in PGL3 to a standard one
of finite type D4 (respectively E7). The case n = 4 is shown on Fig. 11, and the n = 5 case on
Fig. 12. The proposition is proved. �
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