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1. INTRODUCTION 

In this paper we shall apply some fundamental facts from the general 
theory of functional analysis in order to study the analytic properties of the 
resolvent kernel and the scattering operator associated with the Schroedinger 
operator 

A = - d + M(p). 

Here d denotes the Laplacian in 3-dimensional Euclidean space, while 
M(q) denotes the operation of multiplication by the real-valued potential 
function p(x), i.e. 

Mmf(x) = Wf(xh XEE~. 

The conditions we shall impose upon q(x) are the following: 

(i) q(x) is locally Hoelder continuous except at a finite number of 
singularities; 

(ii) q(x) is locally square-integrable; 
(iii) 1 q(x) 1 < Ce-a121 for 1 x ) sufficiently large, C and OL being positive 

constants. 

It is important to note that we do not require that q possess any symmetry 
properties such as spherical symmetry. 

With these conditions on q(x), it is known [l] that the operator A, operating 
in the Hilbert spaceP(E,), has a unique self-adjoint extension, whose domain 
is in fact the same as that of the self-adjoint extension of - A. From now on, 
A will be used to denote the self-adjoint extension. Furthermore, it is proved 
in [23 that the resolvent operator R(h, A) = (A - Xr)-1 is an integral 

1 Sponsored by the Mathematics Research Center, United States Army, Madison 
Wisconsin, under Contract No.: DA-I l-022-ORD-2059. 
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operator having a kernel G(x, y, K) (K = 2/x, im K > 0) of Carleman type. 
(Further details are given in Section 2,) The kernel is a meromorphic func- 
tion of K provided that im K > 0, and its poles occur at a finite point set 
(Kn} on the positive imaginary axis (17, 18). The values K,,~ constitute the 
point spectrum of the operator A. 

The first goal of this paper is to obtain an analytic continuation of G(x, y, K) 

into the half-plane im K < 0. As will be seen, the Hilbert space L2(E,) is 
too “small” to accommodate such a continuation, and an appropriate larger 
Hilbert space has to be introduced. The continuation is then accomplished 
in the larger space by reducing the problem to that of solving an infinite set 
of linear equations and employing the theory of infinite determinants. 

The second goal in the paper is to obtain an analytic continuation of the 
scattering operator. The scattering operator S(K) is generally believed (by 
causality requirements) to depend analytically upon the parameter K in the 
half-plane im K > 0, the so-called “physical sheet” of the energy plane 
associated with the Schroedinger operator A. However, it is the singularities 
of S(K) on the “unphysical sheet” im K < 0 which enter into the impedance 
theory [3] and which are associated with the physical theories of resonance 
scattering and unstable particles, for example; and it is these singularities 
which we shall obtain. Our results agree with those known for several special 
radially-symmetric cases. 

Several authors have done work in this same direction. Ladyjzenskaya, 
in a paper [4] dealing with the principle of limiting amplitude, obtained a 
continuation of the resolvent kernel, but the problem discussed by her was so 
designed as to exclude explicitly any singularities in the continuation. 
Grossmann [5] has studied the possibility of obtaining analytic continuations 
of operator-valued functions in a Hilbert space by suitable imbeddings of 
the space. The analytic properties of the scattering operator have also been 
discussed by Hunziker [6] using the idea of functions of a complex variable 
with values in a Banach space, but his work is confined to spherically sym- 
metric cases. For such cases, there is also the survey article by Newton [7]. 
Another approach to the analytic character of the scattering operator asso- 
ciated with the classical wave equation has been developed by Lax and 
Phillips [8]. While the scattering operator for the classical wave equation can 
in fact be related to the scattering operator S(K) for the Schroedinger equa- 
tion, we shall not enter into the discussion of this more abstract approach. 

Finally, it should be noted that, in theory at least, our method is con- 
structive in nature and provides a basis for developing computational 
procedures for scattering problems. 

Sections 2-4 discuss the continuation of the resolvent kernel, Section 5 the 
continuation of the scattering operator. Finally three illustrative examples are 
discussed in Sections 6-8. 
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2. THE CONTINUATION OF THE RESOLVENT KERNEL 

In this section and the two succeeding ones we show that the resolvent 
kernel G(x, y, K) can be continued analytically at least into part of the half 
plane im K < 0. This corresponds to a continuation into the second Riemann 
sheet in the A-plane (K” = A). We recall that the assumptions we shall make 
concerning the potential q(x) are the following: 

(i) q(x) is locally Holder continuous except at a finite number of singu- 
larities; 

(ii) q(x) is locally square-integrable; 
(iii) 1 q(x) 1 < Ce-mlsl for 1 x 1 sufficiently large. 

Our result involves the Hilbert space 2 of complex-valued Lebesgue- 
measurable functionsf(x) such that 

s If(x) I2 e-+1 dx < co. 
ES 

It is convenient to view the Hilbert space A? as the space L”(Ea , +) where 
the measure dp is given by dp = e-alzl dx. With this notation we have 

THEOREM 1. Under the conditions (i), (ii), (iii) abwe on q(x), the yesolvent 
kernel G(x, y, K) associated with (A - Xr)-l defines for each fixed y E E3 a 
function K -+ G(*, y, K) E .%. As an X-valued function of K, G(*, y, K) is 
analytic in im K > 0 except for a$nite number of poles on the positive imaginary 
axis. Moreover, it has an analytic continuation which is meromorphic in 
imK > -&a. 

PROOF. Since our conditions on q(x) are more stringent than those of 
Ikebe [2], in that our condition for large / x 1 is more restrictive, we can 
repeat Ikebe’s analysis. His Theorem 1 tells us that if im X # 0, im K > 0, 
G(x, y, K) satisfies 

&r-Y] 

G(x~Yd4=~,x~Y, - 
I 

eiK[s-zl 

E, b , x _ z ( a(4 Gh Yt 4 dz (2.1) 

as a function of x almost everywhere in E, for almost every fixed y E E3 . 
Further, G is a kernel of Carleman type, i.e., 

I I G(% Y, K) I2 dx < a, for a.e. YE-%, 
E, 

s E, I G&Y, K) I2 4 < ~0, for a.e. XEE,; 

and the only solution of (2.1) w rc h’ h is of Carleman type is G(x, y, K). 

409/16/z-8 
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Ikebe now turns to Fourier transforms, and defines g(x, k, K) to be the 
conjugate Fourier transform of G(x, y, K) (which exists since G is of 
carleman type if im K > 0, im K2 # o), i.e., 

&, k, K) = (27r-3’2 J‘, G(x, y, K) eik+’ u’y. 

g is a bounded function of x, k for all x, k E E, , and g satisfies the equations 

&k.x 

g(x’ ” K, = (2.rr)-3’2 ( k (2 _ K2 

1 
s 

&I.-Y I 
-_ 4a E, , x _ y , dY)& k K) dy. 

If we finally put 

@, 4 K) = (2~)~‘~ (I k I2 - K2)g(X, k, K), 

then h satisfies 

h(x, k, K) = eik.x - -& jE , yrz , 4(Y) h(Y, k, K) dY. (2.2) 
3 

What we shall in fact do is analytically continue both G and h (or g) from 
the half-plane im K > 0, in which they are so far defined, to the strip 
- -& 01 < im K < 0, and we do this through the integral equations which we 
know them to satisfy. We must however note that although G and g are 
Fourier transforms of one another for im K > 0, this is no longer necessarily 
true of their continuations, a fact which is easily seen by considering the 
simplest possible case, that in which Q(X) = 0. For then, if im K > 0, 

G(x, y, K) = 4ne;;yiy , , 

and 

eik.x 

&, k, K) = (2’7)-3’2 , k ,2 _ K2 - 

The continuations of these are clearly &+-~l/(& j x - y I), 
(27r) (- 8 eik.2/1 k I2 - K2); but these are not Fourier transforms of one 
another if im K < 0. For then e’ *llz-~l/(& 1 x - y / ), being exponentially 
large, has no Fourier transform inL2(Es) at all, while (2~) (- 3 eik.=/) k I2 - K”) 

still is square-summable with respect to k and does have a Fourier transform. 
(Indeed, its transform is e-iK’z-*t/(4, 1 x - y I).) 

This means the two continuations do not have the simple connection 
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between them that we might have hoped for. At the same time, we shall be 
able to prove that both are meromorphic and that their poles coincide. 

3. To carry out the continuation we shall use an idea due to Tamarkin 
[9]. What Tamarkin discusses is an integral equation of the form 

where a < s, t < b and g and K are known functions. Tamarkin treats the 
problem by setting it in a Hilbert space-in this case L2(a, b)-and reducing 
the integral equations for the reciprocal kernel H(s, t, X), namely, 

H(s, t, A) + K(s, t, A) = j” H(s, Y, A) K(Y, t, A) dr 
a 

= 
s 

b K(s, I, A) H(r, t, A) dr, 
a 

to an infinite set of linear equations, which are then solved with the aid of 
the theory of infinite determinants. Not only does the existence of H follow, 
but also the fact that, if K is analytic in h, then H is meromorphic in h. What 
follows is an adaptation of Tamarkin’s argument. 

Looking at the integral equations (2.1) and (2.2), we see at once that the 
Hilbert space L2(Ea) will not suit our purposes, since &+-Y1/(477 j x - y I) 
does not belong to L2(E,) f or im K < 0. Instead we choose the larger Hilbert 
space X. We set p(X) = eOLlsl 4( x , and define the operator T, (im K > - $ a) ) 
for functions f E Z by 

(TJ) (4 = - & j, ,c:;, Pi 44). (3.1) 
3 

With the above notation, the integral equations (2.1) and (2.2) take the 
form 

(I- TcJ f = g(K), (3.2) 

where g(K) is an element of Z which depends analytically on K. (Since our 
object is only to perform the continuations to the strips im K > - 4 a, 
we will assume until further notice that im K > - C$ a.) 

We now take up the study of the integral operator T, . It is a simple matter 
to verify that T, is an operator belonging to the Hilbert-Schmidt class. 
Indeed, suppose first that K = u - ir where 0 < r < 4 01. To prove that T, 
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is a Hilbert-Schmidt operator, it suffices to show that N(Z’,) < 00, where 

WTK) = jE XE 1 ,:“:; , P(Y) jl444 d/J(Y) 
3 3 

= e2r’2-y’ I P(Y) i” dp(x) dp(y) 
lx-Y12 

Set 

e2r12-v I 
h(Y) = s, , x _ y (2 4-W 

= 
IS ,2-y,41 + j 1 ezT’~-u’2w) 

1%~421 1x -Y I 

= MY) + h,(Y), 

say. The estimate 

h(Y) G j 
$Tl5--WI 1 

Iz-WI<1 I * -Y I2 
dx = C 

s 
e2Tr dr 

0 
(3.3) 

shows that h,(y) is bounded, while the estimate 

shows that e-2T1~/ h,(y) is bounded. It follows, then, that h(y) = h,(y) + h,(y) 
is bounded on compact subsets of E, and behaves not worse than e271v1 as 
/ y / + co. Thus h eLl(dp), for 27 < (Y, and since p(r) is locally square- 
summable and is bounded for large j y I, it follows that h 1 p ]a belongs to 
Ll(dp). Hence N( T,) < co, as required. 

We have been tacitly supposing in the above calculation that 
- $ OL < im K < 0, but for im K > 0, the proof that N(T,J < co is even 
simpler. (We shall not go through the details.) In fact, for future purposes, 
we note that we can make N(T,J as small as we please by choosing im K 

sufficiently large and positive, i.e., T sufficiently large and negative. For 
integrating (3.3), we obtain at once that h,(y) = 0(7-l) as T - - co, while 

h,(Y) G j eW@-w I dx 
124>1 

= 
s 

+lt/ dt 
Id>1 

(1 =x -y) 

= 0(,-l). 
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Carrying these estimates in place of the earlier ones for h, , ha, we readily 
see that N(T,J = 0(7-l). 

In view of the form of (3.2), it is evidently relevant to establish that 
(I - T,)-l is meromorphic (throughout - 3 a! < im K), and this is done by 
appeal to the theory of infinite determinants. We first note the relation 

(I - TJ-1 = (I - T,2)-1 (I + T,), 

valid certainly if (1 - .a)-, exists, and this assures us that (I- TJ-1 will 
be meromorphic if (I- TK2)-l is. It is in fact (I - TK2)-l that we will investi- 
gate. 

Let {r&l, (i = 1, 2, . ..) b e a complete orthonormal set of functions for the 
Hilbert space .X and denote by f+ = {fi+) the element of Z, (the Hilbert 
space of square-summable sequences of complex numbers) having compo- 
nents fi+ = (f, &). Further, let k(x, y, K) denote the kernel of the Hilbert- 
Schmidt operator TK2. Then the functions 

K&v, K) = (T,2rji) (x) (i = 1,2, *-) 

belong to z?, and the doubly infinite sequence 

satisfies 

2 I kij(~) I2 = N(T,2) < 00 
id 

in the half-plane im K > - 4 01. The equation 

(I- T,2)f = g(4 

is represented in l2 by the infinite system of linear equations 

fi’ - il bi(‘dh+ = gi’k) (i = 1, 2,...). (3.4) 

Now it is a basic result from the theory of infinite determinants ([lo], 
Ch. II), that the conditions 

(ii) il I hi(K) I < a 



318 DOLPH, MCLEOD, AND THOE 

are sufficient for the simultaneous absolute convergence of the infinite 
determinant 

d(K) = 1 aij - &(K) / 

and all its minors, 6, being the Kronecker delta. As we have already seen, 
condition (i) holds, while (ii) also holds since 

since T, is Hilbert-Schmidt. Further, since the bounds implied in conditions 
(i) and (ii) hold uniformly in K for im K 2 - 4 OL + E, for any fixed E > 0, 
the infinite determinant d(K) and its minors will converge uniformly, and 
so will be analytic functions of K for im K > - 4 01. Finally, Tamarkin shows 
that, for those values of K for which d(K) # 0, the infinite set of linear 
equations (3.4) has, if g’(K) E I2 (i.e., g(K) E 3?), one and only one solution 
f+ E 1, (i.e.,f E Z), and this solution is given by the usual formula for solving 
a finite set of linear equations with d(K) and its minors replacing the finite 
determinant. Since the solution fi+(~)i+ is thus given as a quotient of two 
analytic functions, it must be meromorphic, unless d(K) = 0. Hencef+(K), 
thought of as a function of K with values in 2 is (weakly) analytic in 
im K > - i 01. 

We have thus established that the Green’s function G(*, y, K) and its 
Fourier transform g(*, k, K), thought of as functions of K with values in 3?, 
can be continued meromorphically throughout im K > - 4 LX, provided that 
A(K) + 0, and we exclude this possibility in Section 4 below. This implies 
that (I - TK2)-l is meromorphic, and as we saw before, so also is (1 - T&l. 
Further, the poles of G and g will be found among those of (I - TJ-I, 
and so will be effectively the same except that at certain of the poles the 
singularity of G or g may be removable. 

One further remark may usefully be made in this section. It is that we can 
establish very nearly as much under wider circumstances by using a theorem 
in [I 11, p. 592, rather than the work of Tamarkin. In our notation, the theorem 
of [I I] states that, if T, is compact, which it certainly is, and is analytic in K 

in a connected domain D, then either I - T, has a bounded inverse for no 
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point in D, or else this inverse exists except at a countable number of 
isolated points. This is virtually what we want except for the meromorphic 
character, but it seems difficult to extend the argument in [l l] so as to obtain 
this. 

4. We now have to establish that A(K) f: 0. But if we choose im K sufficiently 
large and positive, we have already seen that N( 7’,) can be made as small as we 
please. That is to say that the Hilbert-Schmidt norm of T, can be made as 
small as we please and since the Hilbert-Schmidt norm is never less than the 
Hilbert-space norm, the Hilbert-space norm can also be made as small as we 
please. Hence (I - T,J-l and (I + T,J-l, and so (I - TK2)-l, all exist, which 
would be contradicted by the assumption A(K) = 0. 

This completes the proof of Theorem 1, but for the application to the 
scattering operator, we require a little more. We now know that G(x, y, K) 

can be continued and that the continuation is meromorphic. Furthermore, 
in the region im K > 0, G(x, y, K) is analytic except for possible poles on the 
imaginary axis. This result about the position of the poles is not a conse- 
quence of anything we have done in this paper, but an appeal to the well- 
known fact that G(x, y, K), as a function of h = K2, is analytic except on the 
real axis, where the spectrum lies. We would like to say the same about the 
poles of (I - TJ-l, that they also are, in the region im K > 0, confined to the 
imaginary axis, but this requires proof, since a pole of (I - T&l does not 
necessarily imply a pole of 

G(x, y, K) = (I - TJ-1 $13 , 

the singular part conceivably vanishing in the course of operating on 
ei+-vl/(4rr 1 x -y I). 

We proceed now, therefore, to prove 

THEOREM 2. Under the conditions of Theorem I, in the region im K 3 0, 
the poles of (I - TJ-l are confined to the imaginary axis. 

PROOF. There are perhaps two points worth noting before giving the 
proof. The first is that we are considering the region im K > 0 rather than 
just the region im K > 0. This means in effect that we are excluding the 
possibility of positive A-eigenvalues, and is in line with similar results (for 
more general Q(X)) given by Ikebe [2] and Kato [12]). The second point is 
that K = 0 lies on the imaginary axis, so that we are not excluding the possi- 
bility of a pole at K = 0, and in fact examples can be given in which this 
possibility becomes an actuality. In the appendix there is an example of a 
potential q(x) with compact support for which zero is an eigenvalue with an 
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P-eigenfunction. This would imply that K = 0 is a pole of (I - TX)-l. 
Another example shows that a pole of (1 - TJ-l at K = 0 can arise with an 
“eigenfunction” which is not L2. 

The proof ofTheorem 2 is an almost immediate consequence of the following 

LEMMA. If f (x) E S and satisjies f = T, f for some K in im K 2 0, then 
f(x) is bounded. 

For once the lemma is proved, so that any eigenfunction f of I - T, 
belonging to P is necessarily bounded, it follows by reference to [2], in the 
remark preceding Lemma 4.2, that f E 3, where B is the Banach space 
introduced by Ikebe, and then by reference to Lemmas 4.4 and 4.5 of [2] 
that (Z - TJl exists except for possible poles on the imaginary axis. 

It only remains to prove the lemma. The statementf = T, f written out in 
full is 

f (4 = - & j, , c:; , dY)f (r) dr* 

Since im K > 0, we have that 

say, where R is chosen sufficiently large that 1 q(y) j < Ce-“IlvI for 1 y / 3 R. 
(C will denote various positive constants, not necessarily the same at each 
appearance.) Then 

< c, (4.2) 

since f E S and the second integral in (4.2) is seen to be bounded by splitting 
it over the ranges 1 x - y 1 < 1, 1 x - y 1 > 1. Hence, returning to (4.1), 
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Iterating this, we obtain 

If(4 I G c + c j,,,,, , ;cy)jj, dY 

-tcs 
I 4(Y) I 

id<R Ix--Y/ d?i 
1 ddfk) 1 d2 

fzi>R iY--zi * 
(4.3) 

The second term on the right of (4.3) is seen to be bounded by a straight 
application of the Cauchy-Schwarz inequality. In the third term we change 
the order of integration in the integral, and the inner integral is then 

,y,sR I 4(Y) I2 dYj112 

X 

Hence (4.3) reduces to 

ld<R 1 x --Y la t Y - z la 

c 

If we iterate this, and go through the same manoeuvres, we obtain 

mw+cj , ,<R I qC4fC4 I dz /j- dr 
1 
112 

2. IYl<RI~-YlIY-~l * 

But 

dr 
IvI<R~~-YI~Y-~I s dy < c, 

IYl$R I Y - 2 I2 ’ 

and so 

If(wc+cj 
IZISR 

I d4fC4 I dz d C 

since both q, f are locally L2. This concludes the proof of the lemma and 
so of Theorem 2. 

5. ANALYTIC CONTINUATION OF THE SCATTERING OPERATOR 

We shall now emply the results of the preceding sections to obtain an 
analytic continuation of the scattering operator. The method of continuation 
will be based upon a representation of the scattering operator which has been 
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obtained by Ikebe [13] for potentials of the sort we are considering, but 
satisfying the weaker asymptotic condition q(x) = O(l x I-“-“) as / x 1 --f cc 
for some 6 > 0. 

Let 6 denote the Fourier transform of the function u ELM. The scat- 
tering operator S takes the following form in the Fourier transform space: 

(Su)^(k) = d(k) - i 1 k 1 /aF(I k ) , W, w’) ti(J k / , w’) dw’. (5.1) 

Here Q denotes the totality of unit vectors w’ E E, , and ti(l K 1 , w’) = ti(k’), 
where k’ = 1 k 1 w’. The kernel F(I k 1 , w, w’) appearing in (5.1) is given in 
terms of generalized eigenfunctions 4(x, k) (x, k E E3) associated with the 
generalized eigenvalues I k I2 > 0 of the continuous spectrum of the Schroe- 
dinger operator - A + M(q). The defining equation for F is 

1 
F(I k ) , w, w’) = _ 

J 87r2 E3 
eilklw’az q(x) 4(x, I k j , - W) dx, (5.2) 

where $(x, I k I , - w) = 4(x, k), k = - I k 1 W. The kernel F(l k / , W, w’) 
defines an integral operator of Hilbert-Schmidt type on the space La(Q) 
for 1 k I > 0, as has been demonstrated by Ikebe in [13]. The generalized 
eigenfunctions 4(x, k) are solutions of the Schroedinger equation 

and are obtained as bounded solutions of the corresponding integral equation 

4(x, k) = eikss - -& 1, 
3 
E q(y) $(y, k) dy. (5.3) 

A closer examination of the above integral equation satisfied by 4 shows that 4 
has the asymptotic expansion 

$(x, k) = eik.x - s eilkllzl F(l k /, - wk, - w,) + O(j x 1-l) as Ixj+oo, 

where wk = k/I k I , wy = x/l x 1 . 
As in the case of the resolvent kernel, it is the integral equation (5.3) 

satisfied by 4 which allows us to obtain an analytic continuation. We begin 
by writing (5.3) in the form 

1 
4(X, K, w) = eixz*w - - 4?r s EI ,;“-; , Qb’)dY> KS w) dy, (5.4) 
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where K = 1 k 1 , w = K/I K 1 . Equation (5.4) has an obvious extension to 
complex values of K, and when extended in this manner, takes the form 

4(x, K, a) = 9&, w) + (Td) (x, KY a), (5.5) 

with &(x, w) = eixa.w. Since z+GK is an analytic Z-valued function of K for 
K in the strip 1 im K ) < + 01, the Equation (5.5) has the meromorphic X- 
valued solution 

4 = (1 - T,)-’ A 

for K belonging to the strip ( im K 1 < + 01. 
Let Q : X -+Lr(&) denote the transformation of multiplication by q: 

(Qf> (4 = d4.W 

It is readily observed that Q is a bounded transformation. As a matter of 
f large, say 1 x 1 > R, we have fact, since i q(x) j < Ce-mlzl’for ) x 1 sufficientl! 

(by Schwarz’s inequality) 

s ,.,>R I d4fC4 I dx G Cj-,e,rn If (4 
, 

I e-+l dx < C Ilf /Iti, 

while 

(1, ,<R I dx)f(x) I dx)? Q 1, ,<R I q(x) I2 e+l dx 1, ,<R If I2 e-+l dx r\ 
< 4; 11% , 

r. 

which shows that /I Qf I(Ll < C IIf /Ix. As a consequence, 

(Q4) (x, KY w> = q(x) 4(x, K> a> 

is a meromorphic Ll(Es)-valued function. 
By considering 4 in the form given by (5.5), it can be established without 

difficulty (by estimates similar to those of the previous sections) that 

c$(x, K, w) = O(elimellzl) 

as ( x I + co, uniformly in w E Q. It follows directly that the product:func- 

tion Ax> = 4(x) d( x, K, W) behaves no worse than O(e-+lZI) as ) x ( -+ CO so 
long as K is restricted to lie in the strip I im K ( < 4 0~. Because of this expo- 
nential decay of the function g, the Fourier transform 

t(4 = t2,,),2 I Es ei”.5dx) dx 
edfklw.2g(x) dx 
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possesses an analytic continuation to the strip 1 im 5 1 < 3 OL, the continuation 
being given by 

Consequently the function 

is regular analytic in the variable 5 for 1 im 5 1 < 4 OL, and is a meromorphic 
function of K for j im K [ < 4 01. 

If we now compare (5.6) with the expression (5.2) for F(I K 1 , W, w’), it 
becomes immediately apparent that F(l K 1 , w, w’) has an analytic continua- 
tion to the strip 1 im K I < 4 OL given by 

F(K, W, W’) = (87r-1’2 . H(K, K, W, W’), (5.7) 

and is a meromorphic function of K having poles only in the half-strip 
- & 01 < im K < 0 and on the nonnegative imaginary axis. For each fixed K 

other than a pole, F( K, w, w’) is a kernel of Hilbert-Schmidt class on the 
Hilbert space L2(Q). This follows from the uniform continuity of F(K, W, w’) 

in w, w’ E Q, a fact which scarcely requires proof. 
Let s(K) : L2(s2) -+ La(O) be the operator defined by 

[S(K) U] (w) = U(W) - iK j-/+c, w, cd) u(d) dw’. 

For K > 0, S(K) is the scattering operator associated with the fixed value 
K2 > 0 of the kinetic energy. The above discussion shows that, aside from 
the poles on the non-negative imaginary axis (which, with the possible excep- 
tion of K = 0, correspond to bound states of the Schroedinger operator), 
the scattering operator s(K) admits no other singularities in that part of its 
domain of analyticity which lies in the closed upper half-plane im K > 0. 
This analytic property of S(K) on the so-called “physical sheet” im K > 0 
is generally ascribed to the scattering operator by physicists. A second prop- 
erty, the symmetry relation 

F(K, w, w’) = F(- I?, w, w’), (5.8) 

is an easy consequence of the formula (5.7), (5.6), and (5.4). From (5.8) we 
deduce that the poles of S(K) on the “unphysical sheet” im K < 0 are sym- 
metrically placed with respect to the negative imaginary axis. 

Finally, we note that in the case the potential q(x) has compact support, 
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or else vanishes faster than every exponential e-@lzl as 1 x I-+ co, the constant 
a: appearing in the foregoing analysis may be chosen arbitrarily large, with the 
result that S(K) is a meromorphic operation defined in the entire K-phe. 

To sum up this section, we have 

THEOREM 3. The scattering operator, under the conditions of Theorem 1, 
can be continued analytically through 1 im K 1 < 4 01, and it is in this region 
meromorphic with poles conjined to the subregion - 4 01 < im K < 0 and to 
the nonnegative imaginary axis. The poles in im K < 0 are symmetrically placed 
with respect to the negative imaginary axis. 

6. EXAMPLES 

In the next three sections we look at three examples, and examine them in 
the light of the general theory developed in the earlier parts of the paper. The 
first example is that of the potential arising from a partially transparent sphere 
of radius a, and this gives us a delta-function potential: 

q(x) = V6(p - a) (P = I x I), 

where V is some constant, of either sign. 
(This has been previously discussed by Nussenzveig ([ 141, p. 121) and Petzold 
[15].) Strictly speaking, it does not come within the conditions of our theorems 
since the potential is not locally square-integrable, but the formal analysis is 
very straightforward, and it is interesting to see how it reflects the earlier 
results.) 

The second example is that of a box potential: 

The third is that of an exponential potential: 

Q(X) = - Ve-pIa. 

Again in both cases V is a constant, of either sign. 
In every case, what we do is to look for nontrivial spherically symmetric 

solutions of the equation 
(I- T,) f = 0. 

(Clearly, spherically symmetric solutions are not the only possible ones, but 
they are the only ones for which the analysis is reasonable.) In every case, we 
find that the condition for such nontrivial solutions can be put in the form 
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F(K) = 0, where F is an integral function of K (different, of course for the 
three cases.) This suggests, although it certainly does not prove, that 
(1 - T,)-l is a meromorphic function of K, with poles at the zeros ofF(K). 

There is an essential difference between the first two cases and the third, 
in that the derivation in the case of the first two suggests no other restrictions 
on K; and this is in accordance with the general theory, for the potentials are 
O(e-=iZi) for any IX, and so we would expect (I - TJ-l to be meromorphic 
throughout the entire K-plane. But convergence difficulties in the exponential 
case force us to restrict ourselves to im K > (%z-~, and this is just the limi- 
tation imposed by the general theory. In some sense therefore the general 
theory is best-possible. 

Since the examples are at best no more than suggestive, the discussion of 
the analytical details has been kept fairly formal. We discuss the delta- 
function potential in the remainder of this section, the box potential in 
Section 7, and the exponential case in Section 8. 

The equation 
(I- T,)f=O 

is in full 

f(x) = - & j,, ,;:;I , s(r>f(r) 4v (6.1) 

If we suppose that we look only for solutions which are spherically symmetric, 
and let p, 8,+; p’, 8’, 4’ be the spherical polar coordinates of x, y, respectively, 
then, since our potentials are all spherically symmetric, we obtain 

f(p) = - & jr q(p’)f(p’) pf2 dp’ I,, 9, ,yry , sin 0’ d0’ d4’. 

If, fixing x temporarily, we choose the direction of the axes so that 8’ is the 
angle between x, y, the inner integrand in the last formula line is a function of 
8’ but not of +‘, and the integral evaluates easily by use of the transformation 
cos 0’ = t. The final result is 

f(f) = - & jr [&(P+P’) - &lp-&“I] q(p’)f(p’) ,-,I df’, 

or, with g(p) = db), 

g(p) = - --& 1: [&(P+P’) - &lp-ff I] q(p’)g(p’) dp’. (6.2) 

NOW substitute the delta-function for q and carry out the integration to 
give 

g(p) = - -& {&(P+a) - &IP-al}g(a), (6.3) 
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which implies that, for a nontrivial solution, we must have g(u) # 0. But if 
we insert p = a in (6.3) we have 

g(a) 11 +&?=“- l)/ =o, 

so that g(a) # 0 implies that 

If we take V > 0, it is easy to verify, by trying a solution for K of the form 
K = s + it (t > 0), that such a solution is impossible, and that even if t = 0, 
then the only possibility is s = 0. Hence the solutions of (6.4), except for 
K = 0, are restricted to im K < 0, and this is in accordance with the general 
theory. Even if V < 0, the solutions K = s + it (t > 0) must have s = 0 
according to the general theory, but it is not so easy to see this in the partic- 
ular example. 

7. We now turn to the case of the box potential, also discussed by 
Nussenzveig ([14], p. 97). Inserting the new value for q in (6.2) we obtain 

_ 2iKgo = eiKP I3 P 
V s ,+P’ g(P’) d,,’ _ &P s e-+’ g(p’) dp’ 

0 0 

s 
a 

- e-irp eirp’ g(p’) dp’. (7.1) 
P 

(It will be sufficient to consider p < a.) 
Now we know that a solution of (6.1) is also, formally at least, a solution of 

Schroedinger’s equation, and this could alternatively be verified by differen- 
tiating (7.1). We thus have 

g” + (K” - v)g =o, 

whence 

g = Aeh f &-iv, 

A, B arbitrary constants, r2 = I? - V. Since, by definition, we must have 
g(0) = 0, we obtain that B = - A, 

g = A(&p _ e-h), 
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Substituting this back into (7.1), we see that a nontrivial solution implies 
that 

“v” (ei~p _ e-y = e&p j,” {ei(~+~)~’ _ e+d~‘} dp’ 

- &P 

s 

’ {ei(-~+~)p’ _ ei(-u-s)~‘} dp’ 

0 

- (+XP 

s 

a {edk+r)~’ _ eik-sb’} dp’. 

P 

Evaluating the various integrals, we readily verify that this reduces to 

- $ (&TP - e--i7P) = &P [& + &I 

1 + e+ 1 _ ici + T) - w Z(K - T) I 

2KeiTp 2Ke-iTP 
z--v 

ZV ZV 

ei7a e-im 
~ - ~ 
i(K + 7) i(ft - T) 

+ 2 sin Kp eixa V 
{(K - T) eiTa - (K + T) ewira}, 

since 

K2 - 7’ = v. 

We therefore conclude that for a nontrivial solution the last term in the last 
formula-line vanishes for all p, i.e., 

or 

(K - T) eiTa - (K + T) e-iTa = 0, 

7 cot ~(1 = iK. 

We can cast this into the form F(K) = 0, where F(K) is a integral function of 
K. The zeros of F(K) presumably provide the poles of the meromorphic 
function (I - T&l. 

8. We now turn to the last example, in which 

q(x) = - Ve-Pla (P = I x I)* 

(Cf. Ma [16].) 
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Once again, we look for solutions of (I - Z’,) f = 0 which are spherically 
symmetric. Since any solution must be also a solution of Schroedinger’s 
equation, we have as before that, if g(p) = pf (p), then 

g” + {K” + Ve-pla}g = 0, 

whence it is well-known that 

g = AJ,,,,(2aW2 e-Plza) + B]-,,,,(2aW2 e-pjza), 

or, since g(0) = 0, 

g = C{J-,i+.a(2aV1/2) ]2irra(2uV1/2 e--p’2a) --]zi,a(2aV1/2) J-2i,a(2a V2 c-p/2a)}. 

(A, B, C are arbitrary constants.) 
03.1) 

Since, as before, the integral equation satisfied by g is 

g(p) = & jr Le. *K(P+P’) - ei”l~-~‘I] e-~‘la g(P’) &,‘, 

we can substitute from (8.1), and if we write 

V = 2iKa, a = 2aW2, t = 2aV1/2 c-P/2a 

we obtain (for a nontrivial solution) that 

= (g j, (zf) (+)-l U-d4 Iv(f) - Jv(4 l-d0 dt’ 

- (g)” j; (C) (+)+ U-d4 W) - Jd4 I-v(W dt’ 

- (JL)-” j: (zfj (+)“-’ {J-d4 Jv(t’) - Jv(4 J-&‘)I dt’. (8.2) 

(Since J.(t) behaves for small t like t”, we note that the convergence of the 
various integrals at the origin demands that re v < 1.) 

We now use the relations 

I t’- J”(t) dt = - tl-” J&t), 

I tl-” J-v(t) dt = tl-” J-Y+l(t), 

I 
t”+l J”(t) dt = t”+l Jv+l(t), 

f t”+l J-“(t) dt = - t”+l L-l(t), 

4091 I6/2-9 
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whence (8.2) simplifies to 

i’d/-&) Iv(t) - s/v(a) J-v(t)} 
V 

= (3 i-3 [au--l J-da) {- c+ L(a) + 4 - a”-l I”(4 {al-” J-#+l(a)>] 

- r3” (3 [a--y-1 J-Y(a) by+l J”+l(a) - t”+l Jv+l(q> 
+ a-“-l J”(a) {a”+1 J-+1(a) - t”+’ J-“-l(t)}] 

- (3” (3 [au-l J-,(a) i- P” Iv--l(t) + 4 - aYe1 Iv(a) {tl-” J++I(~)>], 
(8.3) 

where 

c, = li’i tl-Y J”&) 

and where the term 

vanishes because re v < 1. By using the identity 

2v J”(t) = CL-l(~) + L+1(~h 

we find that the terms involving Bessel functions in t cancel on the two sides 
of (8.3); while the terms involving /,-r(a), J-y+l(a), /y+r(a), J--y.Ja) similarly 
disappear in the right-hand side. In order therefore that (8.3) should hold 
for all t, we are forced to conclude that J-.(a) = 0, i.e., 

J4,a(2aV1’2) = 0. 

This is the required analytic equation in K. There is nothing in this equation 
which implies a restriction of the form im K > - 1/2a, which our general 
theory leads us to expect. On the other hand, reasons of convergence have 
led us throughout to demand re Y < 1, and this is precisely im K > - 1 j2u. 

APPENDIX 

The object of this appendix is to provide two examples which were men- 
tioned in Section 4. The first is of a potential with compact support which has 
zero as an eigenvalue with an L2-eigenfunction. The second is of a potential 
for which (I- T&i has a pole at K = 0 with an ,‘eigenfunction” which is 
not L2. 
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Both examples are constructed similarly. To take the first, consider the 
function U(X) given by 

1 
-7 

cos e (r 2 a), 
u(x) = (1) 

f(r) cos e (I < a), 

where (I, 8, 4) are the usual three-dimensional spherical polars, a is some 
positive number andf( r is a function, three times continuously differentiable, ) 
which is to be further determined later. In order that U(X) be continuously 
differentiable, we must have 

f(a) =$ f'(a) = - f . (2) 

For Y > a, it is clear that U(X) satisfies Au = 0. For r < a, we readily verify 
that it satisfies the equation 

Au = qu, 
where 

Now we can define the required potential by 

the required eigenfunction being given by (1). The only restrictions necessary 
on f are that (2) hold; that 

(3) 

and its derivative vanish at r = a, if we want to insist that q be continuously 
differentiable and so Hoelder continuous; that f not vanish in T < a in order 
that q have no singularities there; and finally, in order to cope with the 
exceptional point r = 0, that (3) tend to a limit as r + 0. This last condition 
can be met if we insist that f behave sufficiently like T as r -+ 0, and there 
is no difficulty in choosing an f which satisfies this and the other conditions 
as well. 
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To get the second example, we consider U(X) given by 

and as before construct a q with compact support for which Av = qv. 
Certainly (1 - T,)-l now has a pole at K = 0, for v is a solution in 2’ of 
v = Tow. But v is not L2. 
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